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Abstract

We obtain a maximal transference theorem that relates almost everywhere convergence of multilinear
Fourier series to boundedness of maximal multilinear operators. We use this and other recent results on
transference and multilinear operators to deduce L? and almost everywhere summability of certain m-
linear Fourier series. We formulate conditions for the convergence of multilinear series and we investigate
certain kinds of summation.

2000 Mathematics subject classification: primary 42B15, 42B25.

1. Introduction

Transference is a powerful tool that reveals equivalent and often unexpected refor-
mulations of certain estimates. The study of transference of boundedness of linear
operators has been pursued by several authors; for brevity we only mention the pi-
oneering work of de Leeuw [5] that was beautifully placed into a framework of a
general theory by Coifman and Weiss [4].

As an application of transference and some basic functional analysis, the L? con-
vergence of Fourier series of L? functions on the circle T is equivalent to the L*
boundedness of the Hilbert transform H on R. Likewise, the almost everywhere
convergence of the Fourier series of a function on T whose p™ power is integrable
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follows from the L? boundedness of the maximally modulated Hilbert transform

H.(f) = sup |H(M: f)],

on L?(R), where M* f(x) = ¢*** f(x) and H is the Hilbert transform; the passage
from the circle to the line here follows from the maximal transference theorem of
Kenig and Tomas [11].

It is natural to investigate analogous reductions of the problem of convergence
of multilinear Fourier series on T" x --- x T” to the boundedness of multilinear
operators on R” x - - - x R". It turns out that such reductions are possible and are easy
consequences of a rich theory of multilinear transference. Multilinear transference
has been studied by (in chronological order) Murray [15], Grafakos and Weiss [9], Fan
and Sato [6], Blasco [1], and Blasco and Villaroya [2]. These articles are concerned
with transference of operators that are linear in each variable. In this work we discuss
transference of maximal multilinear operators analogous to that obtained by Kenig
and Tomas [11] for maximal linear operators.

As an application of transference (and some basic functional analysis), one can use
the boundedness of the bilinear Hilbert transforms

1 d
() H,(f1, f)(x) = g V~/ filx =) fr(x +01t)—tt-,
R

obtained by Lacey and Thiele [12, 13] to deduce the L? convergence of the bilinear
Fourier series

> Emga(myermiinns

|m+n|<N
jm—an|{<N

as N — oo and vice versa. Here « is a fixed real number, g,, g, are functions on the
circle T, and f,, f; functions on the line. We note that the aforementioned convergence
can also be obtained via the boundedness of the bilinear conjugate function obtained
in Fan and Sato [6] using transference. Likewise, we can use maximal multilinear
transference to obtain almost everywhere convergence for multilinear Fourier series.
Details on these applications will be given at the end of this paper.

We will be working with indices 1 < p, ..., p, < 0o such that

1 1 1 1
(2) - =—+4+—4..-+—>0.
14 P P2 Pm
We say that a function B € L*°((R")") is an m-linear multiplier, or lies in

My, p....om.p(R"), if the m-linear operator

(3) TB(fl-'~-vfm)(-x)
- / B, .. E)FIE) - fulEm)e™ Tt dg, .. dE,,
(R
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satisfies, for some constant C, the estimate

NTa(fis-. oy fdliee S Clfilleor - Nl fonllLom

for all smooth compactly supported functions f; on R". When all p; < 0o this means
that Tz admits a bounded extension from L”(R") x --- x LP~(R") to L?(R").

We define the class .4, ,,... ,..,(T") in the same way. (We identify T with [0, 1].)
We say that a sequence b € L*®((Z")") belongs to &), p,. ...p..,(T"), or is an m-linear
multiplier on T", if the operator

@ S g = Y bl kn)Ei(h) - B (k)T

ke(Znym

initially defined for trigonometric polynomials g;, extends to a bounded operator from
L (T")yx---x LP~(T"yto LP(T"). The spaces &, p,...p,.p(R")yand A, ,, . (T
are easily seen to be Banach spaces (or quasi-Banach spaces when p < 1) with respect
to the norms (respectively quasi-norms when p < 1) defined by the corresponding
operator norms. We will use the notation

I B||J{,,,_,,,,,‘,,,,,,,,,(R") = ”TB"L”l(IK")xMxLP'"(IR")—«»LF(R")s

W1ty 1 s T = N S6ll o1 T8y o om (F1y > Lo T) s

for these multiplier and operator norms.

We introduce the dilation operator DX f(x) = f(Rx) for R > 0 whenever f is
a function on R". The following proposition summarizes a few basic properties of
multilinear multipliers. The simple proof is omitted.

PROPOSITION 1.1. Let by, by € My, p,....pnp,(R") and b € 4, (R") for some | <
DPis--oy Pn <00 and0 < p < oo satisfying 1/py+ -+ 1/pm = 1/p. Then

@ T, + Ty, = Ty4, € M, ps....pm.p-

®) TG, () ooy ) = Togin € Mopy.py....pm.p» Where @; represents product in
the variable i, that is, (b; ®; b)(xy, ..., xm) = bi(x1, ..., Xm)b(x;).

(¢) The dilation operator DX leaves the norm of a multiplier invariant, that is,

u DRb‘ llwﬂp,.pz..,..pm.y = ubl “‘/‘(P]-I’}--..I'm.ﬂ.
2. Transference of maximal multipliers

The main result of this section, Theorem 2.2, concerns transference of maximal
multipliers. This theorem will be a key element in obtaining almost everywhere
convergence for certain multilinear Fourier series. A similar result is mentioned as a

https://doi.org/10.1017/51446788700011381 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700011381

68 Loukas Grafakos and Petr Honzik (4]

remark (without proof) in Fan and Sato [6] for maximal dilations of multipliers. For
the applications we have in mind, we need a slightly stronger version of this theorem
that allows an arbitrary family of multipliers.

We fix a set " and a set of b, € L*((R")™) indexed by a € I'. We also fix indices
D1, - - Dm that ~atisfy (2) and we assume that T, is a bounded m-linear operator
from L7 (R") x --- x LP~(R") to LP(R"). Then, for f; € L?(R"), we set

N(fiv--os fu)(x) = sup T, (frs e s )]

13
We make a similar assumption for S, and for g; € LP(T"), we set
Mg, ... gn)(x) = sup |5, (81, - - - gm)(X)] -

ae

We will need the following lemma from the measure theory whose easy proof is
omitted (see [7]).

LEMMA 2.1. Let A be a family of measurable functions on a measure space X.
Suppose that

< C < 00.
LP(X)

sup
{FCA:F finite}

sup f
feF

Then for every f € A there is a measurable function g, such that f = g, a.e. and

<C.

Lr(X)

sup gy
feA

We introduce the following notation G, .(x) = e™**/7 which will be used re-
peatedly in the sequel. We note that for all continuous functions g on T" we have

5) lin?) e” / g(x)G, (x)dx = g(x)dx.
£ n Jn
We now state and prove the main result of this section, a transference theorem for
maximal multilinear multipliers. In the case m = 1, a slightly weaker version of this
theorem was obtained by Kenig and Tomas [11].

THEOREM 2.2. Let 1 < py,..., pn < 00,0 < p < 00, where > ., 1/p; = 1/p,
and let b, € L*((R")™), where a € I'. Assume that every b, has a Lebesgue point at
every k € (Z")". Suppose that for all f; € L? (R") we have

INCfis - os fodllrmny < Clfilleowny < Il fonllom oy -
Then for all g; € L? (T") we have

Mg, ... gudliram < Cllgilleman - 1 8mll Lomcrn).
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PROOF. Let us fix a, ..., o in the index set I'. In view of Lemma 2.1, it will be
enough to prove the boundedness of the following operator

M°(Q. ..., Qw)(x) = sup |85, (Q1. ..., Qm)(®)].

P

In analogy, for trigonometric polynomials @, ... O, we define

N°(Qi1, ..., Qm)(x) = sup | Th, (fis o0 S ()] -

bay b

We shall first obtain the boundedness of M? for trigonometric polynomials Q ;. We
observe that for linear monomials P;(x) = e¥"** we have

So(Py, ..., P)(x)G,(x)
= Coe™™ f(w blki, ..., k,,,)i[lexp (—%15, _ k}.,z) AT 6% g
where Cy = \/P_T—T:- If we set g;(x) = P;j(x)G,, .(x), we can write
Ty(g1. - 8m)(2) |
= Coe™™ /(W bEr, ... &) i[l exp (—%k&j — k) €60 g

and compare the two operators as follows:

1S6 (P, - .y Pm)(X)Gpe(x) — Polgr, - - ., 8m)(X)]

< C'lbll / e gt

{Ee(R )™ |E|>r)

+C'e—"'"/ b(kl,...,km)—b(——”‘ b, +km)
(ne(Ry™:In|<re} v/ P1 A Pm

where r > 0 is arbitrary. The first term above tends to 0 as r — 0o while the second
one tends to 0 as ¢ — O whenever k is a Lebesgue point of . We can extend the
same estimate to trigonometric polynomials Q; by linearity. Taking the supremum,

dn,

we obtain
IMO(le ERER] Qm)(x)Gp,e - No(Qle.sv ey QmGp,,,.s)(x)l = ol/r(l) + rmnoe(l)-
Using (5) we deduce

/ sup ISbu‘(Qh---v in)('x)lpdx
T

T

= lime"f sup |8y, (Q1s -+ Qm) ()G, (x)|” dx.
R

-0 " bcl|v-'-vbuk
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The function M%(Q,, ..., Q.) is bounded by some constant K, so

lim &" f SUp 1, (Qs - Q) (DG () dx
R

=0 " ba| ..... bak

< Koyr(l) +1im£"/ sup |8y, (Q1s ..., Qm)(X)G e (x)]” dx.
R

=0 "Ox|<R/E) bayresbay

After we deduce the estimate

3"[ sup |8, (@1, .-+ Qm)(X)Gpe(x)]? dx
IXxI<R/e bay

,,,,, bay

<R" (01/r(1) +rmn05(l))

+ 8"/ sup ITb,,(Qle.ev L) QmGp,,.e)(x)'p dxv
n b

oy oo b

we take R and r such that the first term above is negligible and finally obtain

IM°(Qu, ...\ @)llLsqny < lim sup " IN(Q\Gper - -2 QmGpp lLram

< Climsup e”P | QG py clliei -+ €| QG p, cll o e™”

£->0

< CliQilie - 1 QmllLem.

This proves that the operator M° is bounded for trigonometric polynomials.

To extend the boundedness to general L?/ functions g, we first recall that the linear
operator S, is well defined and bounded on L# x --- x L?" for any o € I'. This
implies that whenever trigonometric polynomials Q;; — g, in L' (T"), we have

Sp, (Qrts oy Oma) = S5, (81 -+ -1 8m)

in L?. We can now can use the trivial estimate

IM°(gy, ..., 8m)(x) — M°(Q1yy ..., Qmi)(X)]

k
<Y 185, (Quts s Q) (X) = Sh, (1 ) (X))
i=|
and take the L? norm to obtain the required estimate for general functions g; €
L, O

We make a couple of remarks. It is possible to define the multilinear multiplier
even in the case when some p; = co. The multiplier then, of course, extends only to
the closure of the set Co° in L*™. It is possible to prove the above transference result in
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this setting, using an arbitrary cutoff function in place of G, ,,. When p > 1, the proof
can be trivially extended to regulated maximal multipliers, where b, is regulated, if
by(x) = limy, ¢, * b, for any point x € Z"" for some approximate identity ¢,. Key
to this is the following lemma, which has been proved for bilinear multipliers in [1].

LEMMA 2.3. Assume the hypotheses of Theorem 2.2 and also that p > 1. Let ® be
in L'(R™). Then for any by = b,, * ®, ..., by = b,, * ® we have

<Cl®lo @
LP(R")

sup |75,(q1, - - -, Gm) (X))
by,....bx

for Schwartz functions q, . . ., qm, where C is the constant in Theorem 2.2.

PROOF. To prove this result, we need to use the linearization introduced in [11].
Clearly, if we write

sup |T5,(q1, - - -, Gm) ()]
byiby

LP(R")

=T @ - am. o T

>

Lp(R")

we can express the second norm as the supremum over all Schwartz functions
hy, ..o b with | 3210l g, < 1 Of the expression

fZT,,,(q.,...,qm)(x)hi(x)dxl.
R

By Parseval’s identity, this is equal to

/ Y b EDGED - G (Zsj)dsl---dsm.

The claim then follows by expressing b; as b,, * ®, and applying the assumption that
the maximal operator N is bounded on products of Schwartz functions. O

To obtain maxirmal transference in the opposite direction, one has to impose some
additional condition on the set of the multipliers. For example, a standard condition
is that the set of multipliers {b,}, contains all dilations of its elements.

THEOREM 2.4. Let 1 < py,..., pm < 00, 0 < p < 00, where Z',":l 1/p; =1/p,
and let b, € L*((R")™), where « € T'. Assume for every b, and R > 0 we have a
B € T such that b, = D®by. Let any b, has a Lebesgue point at every k € (Z")" and
let us assume that it is Riemann integrable over any rectangle.
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Suppose that for all functions g; € LPi(T") we have

IM(g1, ..., 8m)ILrcany < ClIgtllLorcny < -+ |8m | Lom vy

Then for all f; € L?/(R") we have
INCfis o fdllemey < Clfilleor@ay =< | fonll om gy

PROOF. Again, in view of the Lemma 2.1, it is enough to prove the boundedness
of the operators N°. Moreover, a limiting argument similar to that in Theorem 2.2
shows that it is enough to work with smooth compactly supported functions a;. One
can check that for any Riemann integrable bounded function b we have

Jim D¥'S, 1, (DRa,, ..., DRa,)(x) = Ty(a, ..., an)(x),

where the right-hand side (which is well defined for large R) is a Riemann sum. For
the maximal operators, this implies

N%ay, ..., a,)(x) < lim inf D¥'M(D?*a,, ..., DRa,)(x)

and the claim follows. O

3. Tools to study convergence

Before we turn to applications of transference of maximal multipliers to conver-
gence of m-linear Fourier series, we discuss a couple of useful results in the study of
convergence. We begin with a general theorem that formulates an equivalent condition
for the L? convergence of multilinear multiplier operators on the torus.

THEOREM 3.1. Fix 0 < p < 0o and 3_7_ 1/p; = 1/p, | < p; < 0. Suppose
that for each R > O there is a compactly supported sequence bg € I*°((Z")") and a
sequence b € 1°°((Z")™) such that for any k € (Z")™ we have bg(k) huindicd b(k). Then
the sequence Sy, (g1, ..., gnm) converges in L?(T") for any g; € L?(1") if and only if

there exists a constant K < oo such that

©) sup |brll.#,, ., pnr < K.

R>0

Moreover, if (6) holds for some K < 0o, we must have ||b| 4,,,, ,., < K and
Soe(81s ooy 8m) = Sp(g1r..., 8m) in LP(T") for all g; € LP(T"). (Here S, denotes
the unique bounded extension of the same operator.)
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PROOF. We deduce (6) by a repeated application of the uniform boundedness
theorem. Each operator S,, corresponds to a compactly supported multiplier and
is therefore bounded. From the convergence we see that for each {g;}, we have a
constant Cy, . such that ||S,, (g1, ..., gm)ller < Cig,), for any choice of R. Now we
fix g2,..., 8w and apply the uniform boundedness theorem on the family of linear
operators Sp, (-, g2, . - -, gm), indexed by R. This gives us a constant C,,

"Sbk('s 825044 gm)”LM—»L" < ng,...,g,,,-

In other words, we obtained a family of operators Sy, (gi/l1g1llr, *s - . ., gm) indexed
by R and g,. We use the uniform boundedness in the second variable and proceed by
induction. This way we deduce the existence of a constant K < oo such that

I Se,(gr/Ngilicens - s 8m/NI&mllLem) e < K.

Let us now assume (6). Then clearly for any choice of trigonometric polynomials
{Q;},, Fatou’s lemma gives

1S6 (@1 -y @odlle < Hminf [[Sp, (Qus ..oy @rdllee < KN Qullir - - N1Qmllrm,s

which means that S, extends to a bounded operator on L?* x ... x LP» with norm
bounded by K.

Fix now g; € L”(1") foreach 1 < j < m. For any ¢ > 0, we may take
trigonometric polynomials {Q;} such that |Q; — g,li.»» < €. The Fourier transform
of a trigonometric polynomial is compactly supported, which means

”Sb(le ey Qm) - Sbn(le LR} Qm)“L" i 0

We can pick Ry such that the above quantity is less than € for R > R, and then write

IS8y 8m) — Sbe (815 8m)ller
S Cp(llSee(8rs - s 8m) — S (@1 ooy Qe
+ 1S5, (Q1y o s Qm) — Se(Qurs ooy Ol
+ 186(Q1, .-, Om) — S8y -+, 8m)lLr)-

The middle term on the right is controlled by &, while the remaining two can be
estimated using multilinearity by the usual transformation

Sb(le sy Qm) - Sb(glv “ e -vgm)
= SI)(QI» ey Qm _gm) + Sb(le ceey Qm-l — 8m-1> gm)
+ - _Sb(gl - le--~vgm)~

These terms all have L? norm estimated by some constant multiple of K¢. The same
works for S,,. The result follows by triangle inequality (or quasi-triangle inequality
when p < 1). |
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Next we obtain a result allowing us to derive almost everywhere convergence for
multilinear operators from the boundedness of a corresponding maximal operator. Let
(X;,u;), 1 <j <m,(Y,v)be measure spaces and let 0 < p; < 00,0 < g < oc.
Suppose that 2 is a dense subspace of L?/(X, u) for all j. Suppose that for every
e > 0, T, is an m-linear operator defined on L” (X, p;) x «+- x LP(X,,, 1,,) with
values in the set of measurable functions on Y. Define a sublinear operator

(7) T*(fl‘---,fm)=SUP|Ts(fl,~--fm)|-
£>0
Then we have the following result.

THEOREM 3.2. Suppose that for some B > Qand all f; € L7 (X;, u;) we have

”Tt(fl* ceey fm)”L"-’“ S B”fl ”L”l oo ”fm”LF’"
and that for all h; € 9
(8) lin(1)T,.(h,,...,h,,,)=T(h,,...,h,,,)

exists and is finite v-a.e. and defines a multilinear operator on 2™. Then for all
fi € LP(X, ;) the limit (8) exists and is finite v-a.e. and defines a bounded multilinear
operator T from LP' (X ;) x -+ x LP"(X,) to L"*°(Y) that uniquely extends T defined
on P,

PROOF. Given atuple (f,,..., fn) In L?” x --. x LP", we define its oscillation at
the point y € Y as

O(flw R fm)(y) = “msuplimsuplTs(fh ey fm)(y) - Ta(fh AR fm)(y)'

£ 6—0

We will show that for all (f,,..., f,)in L? x -.. x LP and § > 0, we have
9 vi{yeY:O(fi,..., fuX(y) > 8}))=0.
Once (9) is established, given (fi,..., fu) In L x --- x LP we obtain that

O(fi,..., fu)(y) = O for v-almost all y € Y, which implies that T,(fi, ..., fu)(y)
is Cauchy for v-almost all y and it therefore converges v-a.e. to some multilinear
operator T(f}, ..., fu)(y) as ¢ — 0 that extends T defined on 2.

To approximate O(f, ..., f,) we use density. Given0 < n < 1,findg; € 2
such that || f; — g;ll.» < n. Itis easy to see that for some constant C we have

(10) O(fla-'-vfm)sO(glv"'vgnl)+CZO(¢lv-*-’d)m) v-a.€.,

where ¢; is either f; or f; — g; and the sum is taken over all finitely many possible
combinations of expressions of this sort in which at least one ¢, is f; — g;. Since
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T.(81 .- gm) = T(g1, .-, gm) v-a.e., it follows that O(g,, ..., g.) = O v-ae. We
can therefore pointwise control the oscillation O(fy, ..., f,) by a sum of oscillations
of tuples of functions in which at least one entry has small norm.

Now for any § > 0 and any tuple (¢, ..., ¢,) as above we have

v({O(d1, ..., ¢w) > 8))

IA

v({O (@, ..., ¢n) >3}
V(T (@1, ..., &) > 8/2})
2Bligillee - - NdmliLm/8)?
<CUf, ... fa)2B/8)" 1Y,
where C(fi, ..., f.) is a constant depending on the functions f;. Letting n — 0
and using (10), we deduce (9). We conclude that T.(f,..., f,) is a Cauchy se-

quence and hence it converges v-a.e.tosome T(f,, ..., fn). Since |T(fi, ..., fu)| <
IT.(fi, ..., fw)l, it follows that T is a bounded operator (with norm at most B). [

IA

IA

4. Multilinear Fourier series

We now discuss applications of the preceding results. We consider an open con-
nected set E C R™ which contains the point 0 in its interior. Define the m-linear
Fourier partial sum

PEgr ....gmd@) = D ailk) .. gk et ke

(k... ki )ER-C(ENT™™)

which naturally converges to g,(x) - - - gn(x) whenever gy, ..., g, are smooth func-
tions on T". The summation here is taken over all lattice points inside the R-fold dilate
of the set E and the convergence is understood as R — oc. We will use transference
to study the L” and almost everywhere convergence of this series whenever the g;
lie in some Lebesgue spaces. In view of Theorem 3.1, the L” convergence of Pf
is a consequence of the uniform boundedness of the family of multilinear operators
{Pg}r-0. Transferring these operators to R”, reduces matters to showing that x. lies
in A, . »(R") (for the L? convergence problem) and that the maximal operator
SUPy.o | Tyv. ! is bounded (for the almost everywhere convergence problem). Here
N - E is an N-fold dilate of E and T} is defined in (3).

We consider the case in which the set E is a polygon in R? with finitely many
sides. We prove an easy geometric lemma, which allows us to write this polygon as a
difference of finite unions of triangles.

LEMMA 4.1. Let D C R? be a closed polygon with finitely many sides. Then we
can find two finite sets 7, 9 of closed triangles each of which has two sides parallel

10 axes such that 3 ;5 X, Lres, X, =X, ae
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PROOF. Clearly, we can divide any polygon into finitely many triangles. Consider
such a triangle and denote it 7. If T does not have any sides parallel to the first
coordinate axis, the orthogonal projection of its vertices on the second axis consists
of three distinct points and the straight line parallel to the first coordinate axis passing
though the middle of these three points splits 7 into two triangles T’ and T” which
have one side parallel to the first coordinate axis.

Let T’ have vertices A, B, C, where the line AB is parallel to the first coordinate
axis. If no remaining side of 7' is parallel to the second coordinate axis, let X be
the point of intersection of the line passing through A and B and of the line passing
through the point C and parallel to the second coordinate axis. The triangles AXC
and B X C have two sides parallel to the coordinates, and we have

= or
XABC XAXC + XBXC

= - or
XABC XAXC XBXC

= — a.c.
XABC XAXC + XBXC

So this procedure splits T to at most four triangles, which we place in J, or %
according to the sign they inherit by the previous identities. O

We now discuss the problem of the convergence of bilinear Fourier series summed
over lattice points inside dilates of polygons in R2. Let us fix such a polygon D.
Apply Lemma 4.1 to obtain sets of triangles indexed by the sets 7, and . It follows
from the work of Lacey and Thiele [12], [13] that the characteristic function of any

triangle in R? with no side parallel to the antidiagonal y = —x lies in .#,, ,, ,(R)
where 2/3 < p < 00,1 < p|, p; <00and 1/p, + 1/p, = 1/p. (If the triangle has
a side parallel to the antidiagonal y = —x, then the same conclusion is valid with the

additional restriction that p > 1.)

Using Lemma 4.1 we conclude that the characteristic function of a polygon D in
R? with no side paralle! to the antidiagonal y = —x is a bounded bilinear multiplier
in A, ,, ,(R) where 2/3 < p < 00,1 < p;,p, <o0oand 1/p,+ 1/p, = 1/p.
Moreover, part (¢) of Proposition 1.1 says that any dilate of D is also a bounded
bilinear multiplier (with the same norm). We can now take a suitable increasing
sequence or R, such that D dilated by R, contains no lattice point in its boundary and
such that there is exactly one R between R, and R, such that the dilate of D by the
amount R’ has a lattice point in its boundary. We can also arrange so that the dilate of
D by R, contains only the zero lattice point. This choice of our sequence ensures that
for any R > O there is an n such that P = P . Thus the characteristic function of
any dilate of D has a Lebesgue point at every lattice point and we can apply both the
transference theorem in [6} and Theorem 3.1 to obtain the boundedness of each of the

https://doi.org/10.1017/51446788700011381 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700011381

{13] Maximal transference and summability of multilinear Fourier series 77

operators P?. We conclude that P2 (g, g2) — g8z in L”(T) for any g, € L7 (T)
and g, € L”(T) where 2/3 < p < 00, 1 < py, p < 00o. Precisely we have the
following.

THEOREM 4.2. Let 2/3 < p <00, | < p;,p2 <00, I/py+ 1/p, = 1/p and
D C R? be a polygon that contains 0 in its interior and has no side parallel to the
antidiagonal y = —x. Then for g; € L?(T) and g, € L?*(T) we have

R—o0 .
PR(g1, 82) — 8182 in LP(T).

Using a similar argument we can also obtain a theorem in which the summation is
taken over lattice points in a dilate of a disc.

THEOREM4.3. Letl < p <2,2 < py,py <00, 1/py+1/p,=1/pandlet U be
the unit disc in R, Then for g, € L?(T) and g, € L"*(T) we have

P{ (g1, 82) =5 gi1g: in LP(T).

Theorem 4.3 easily follows by applying the previous reasoning to the characteristic
function of a disc in R* and using the fact that this function is an .#,, ,, , bilinear
multiplier on R x R. For the last result we refer to {8].

We now pass to an application of the maximal transference Theorem 2.2. Let E
be a polyhedron in R™ containing the origin. One would like to known whether the
expressions PE(gi, ..., gn) converge almost everywhere to the product g, - - - g» as
R — oo whenever g; € L? (T). The previous analysis reduces this problem to the
LP x ... x LP~ — LP? boundedness of the maximal operator definedon R x --- x R

znm(fl! ey fm)(-x) = i,upo / ot / f.l(gl) et fm(gm)eZHix(E|+~-+s,,,)dgl .- dfm

(&1/N....kn/N)EE

which is a variant of a multilinear Carleson type operator. In the forthcoming publica-
tion, Muscalu, Thiele, and Tao (see [16] for the Walsh case) show that the following
so-called bi-Carleson operator

(gt(fh fZ)(-x) = sup
N>0

/ f &) fr(&)e =8+ dg de,
Ej<kr<N

maps L7 (R) x L”(R) into LP(R) forall | < p;, p, < cowith2/3 < p < o0
whenever 1/p, + 1/p, = 1/p. Let us introduce a bilinear multiplier operator S, on
T x T by setting

Sb(gly gz)(x) = Z gl("l)éz(nz)eznix("'+"3)

ny<ny
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for all g,, g, smooth functions on T. The operator S, is a version of a discrete
bilinear Hilbert transform and admits a bounded extension (also denoted by S;) from
LP(T) x LP(T) to LP(T) via bilinear transference; see Fan and Sato [6] when
l<p,pr<00,2/3<p<oo,andl/p+1/p2=1/p.

Using the a” srementioned result concerning the bi-Carleson operator, Theorem 2.2,
and Theorem .2 we deduce the following:

THEOREM 4.4. Let 1 < p,, p, < 0o with2/3 < p < 00 whenever 1/p, + 1/p, =
1/p. Then for g; € L*i(T) we have

Y 81n)aa(n)e D 5 S, (gy, 82)(x)

nm<nz<R
as R — oo for almost all x in T.

For our next application, we let again D be a polygon in R? containing O in its
interior with no side parallel to the antidiagonal y = —x. We are interested in showing
that the operators P (g1, g,) converge a.e. to the product g,g, whenever g, and g,
are L*i functions on the circle.

We can reduce the boundedness of the operator T2 to that of C, in the following
way. We first write D as a union of at most four polygons each contained in one of
the four quadrants and without loss of generality we may work with the part of D in
the first quadrant. Using Lemma 4.1 we can break D as a difference of two finite
unions of triangles with two sides parallel to the axes. Applying translations in Fourier
space (modulations in time space), we may assume that all of the triangles that appear
in the decomposition have an acute angle at the origin. This way we can pointwise
control Tf by a finite sum of operators of the form (for some ¢ > 0)

Cg*(flv fz)(X) = sup

N>0

/ f FuED) (e =+ g de, |
O<t)<ctr <N

Using the boundedness of this version of the bi-Carleson operator, Theorem 2.2, and
Theorem 3.2 we obtain the following:

THEOREM 4.5. Let D be a polygon in R? with no side parallel to the antidiagonal
Y = —x that contains O in its interior. Let 1 < p;, p; < 0o with2/3 < p < o0
whenever 1/p, + 1/p, = 1/p. Then for g; € LPi(T) we have PL(g\, §2) = 882
almost everywhere on T as R — oo. If D has a side parallel to the the antidiagonal

y = —Xx, then the same conclusion is valid whenever p > 1.

The preceding result may be viewed as a bilinear analogue of the Carleson-Hunt
theorem [3, 10] on the almost everywhere convergence of Fourier series of L? functions
on the circle (with respect to polygonal summation).
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Another analogue of the Carleson-Hunt theorem can be obtained using recent
results by Li and Muscalu [14] who showed that the maximal operator obtained by
considering the supremum of all the shifts of a Coifman-Meyer multiplier o on R™
is LP(R) bounded. (Taking 6(£) = X000y When m = 1, yields the Carleson-Hunt
theorem.) The Coifman-Meyer symbols are those satisfying

19 - 820 (&1, .y Em) < Cayan (1E1] <+ [Ey [y TUbtHamD
for all sufficiently large multi-indices ¢, ..., a,. The associated maximal operator
is defined as the supremum of the operators |7, | over all z € (R")™, where 0, =
o (- + 7). The result of [14] then says that this maximal operator is bounded from
LP(R) x --- x LP(R) to L?(R) for any p; satisfying (2) with 1/m < p < o0.
Combining this theorem with Theorem 3.2 and Theorem 2.2 yields the following
result:

THEOREM 4.6. Let o be a Coifman-Meyer multilinear multiplier on R™ which is
continuous at zero and let 1 < p; < 00, 1/m < p < 00 be such that (2) holds. Then

!i—l;%Tg(.+z)(f|,...,fm)=To(f|,...,fm) a.e.

and

li_r’l(l) Soc+0(81s . s 8m) = Ss(g1, ..., 8m) aee.

forany f; € LP/(R") and g; € LPi(T").
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