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Abstract

In this paper, the author generalizes the concept of thinness introduced by Kingman and
Robertson (1968) to study the convexity of the range of a multimeasure. It is proved that
every thin multimeasure taking values in a Frechet space has convex range, and that, for a
suitable measurable space, if a multimeasure is non-atomic, then the weak closure of its range
is convex.

Subject classification {Amer. Math. Soc. {MOS) 1970): primary 28 A 25, 28 A 45, 46G99,
54 C 60; secondary 46 A 05,46 G 10.

1. Introduction

Let (S, ̂ f) be a measurable space (that is, a set S in which is denned a tr-algebra
Jt of subsets) and let A' be a locally convex space. A map M from Jl to the
family of all non-empty subsets of X is called a multimeasure (or set-valued
measure) from J( to X if for every sequence of disjoint sets At tJ( (i = 1,2,...)
with Ui i i^ i = ^> t n e series S g ^ M ^ ) converges (in the sense of Kluvanek and
Knowles (1975), p. 3) to M(A).

The purpose of this paper is to study the range of a multimeasure M, that is, the
set

R(M) = \J{M(A): Ae«#}.

For the case of point-valued measures, Lyapunov (1940) has proved that the range
of a measure m from ^ to Rre is convex (and compact) if m is non-atomic. This
result has been generalized by Kingman and Robertson (1968) and by Knowles
(1975) for measures taking values in a locally convex space. In this paper we shall
generalize the concept of "thinness" introduced by Kingman and Robertson
(1968), p. 348, and apply it to observe the convexity of the range of a multimeasure.
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[2] The range of a multimeasure 443

Our main results are Theorem 2 and Theorem 3. The former states that every
thin multimeasure taking values in a Frechet space has convex range; in the latter
we prove that if Jt is M-essentially countably generated and if M is non-atomic,
then the weak closure of R(M) is convex. These results will be presented in Section 3.
Section 2 contains definitions and preliminary results which we shall need in
Section 3.

I should like to express my gratitude to Professor A. P. Robertson for suggesting
this problem and for many helpful discussions. I am also grateful to the referee for
his helpful suggestions leading to the presentation of this paper.

2. Definitions and preliminaries

Henceforth (S,«4T) is a measurable space, Xis a Hausdorff locally convex space
with (topological) dual X' and M is a multimeasure from dl to X, except where
otherwise specified.

A (point-valued) measure m from ^ to Xis called a selector for M if m(A) e M(A)
for every A eu?. We denote by Sf(M) the set of all selector measures of M.

DEFINITION 1. A multimeasure M is said to be perfect if

M(A) = {m(A): meSf(M)}

for every AeJK.

It is clear that if Mis a perfect multimeasure, then for every sequence of measures
mie3^{M)(ji=' 1,2,...) and every sequence of disjoint sets Aie~#(i = 1,2,...)
with \J%1Ai = A, there exists an me^(M) such that Ytt.\mMd = m{A).
Conversely we have the following lemma the proof of which is trivial.

LEMMA 1. Let 3^ be a family of measures from JK to X with the property that for
every sequence of measures wie<?f' (j = 1,2,...) and every sequence of disjoint sets
A^Jl (i = 1,2,...) with USa^i = A, there exists an meJf such that the series
SiLiWiC^i) converges to m(A). Then the set-valued map M: Jt^-X defined by
M{E) = {m(E): mejf},for every Ee~#, is a perfect multimeasure.

For other results on the perfectness of a multimeasure, we refer to Coste (1975,
1976) and Tolstonogov (1975).

Now let us introduce the concept of atomicity for a multimeasure. Recall that
a set A eJ( is called an atom of J( if A¥=0 and EeJt, E<=A imply E = 0 or
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DEFINITION 2. A set A e ^ i s called an atom of Mif M(A)^{0} and EeJK,E<^A
imply M(E) = {0} or M(A \ E) = {0}. The multimeasure M is said to be non-atomic
if it has no atoms.

Clearly if A is an atom of J( and if M(A)^{0}, then 4̂ is an atom of M. Also, if
A is an atom of M, then it is an atom for any meSf(M) with m(A)J=0.

For convenience of terminology we say that a family Jf? of measures fills out
M if M(/4) = {m(A): me^f) for every AeJ(. The following lemma is immediate.

LEMMA 2. Le/ M:^^-Xbe a perfect multimeasure. IfS?(M) contains a subset 3P
consisting of non-atomic measures such that Jt? fills out M, then M is non-atomic.

A set EeJK is said to be M-null if M(EnF) = {0} for every FtJ(. Now let uf0

be a sub-o--algebra of J(, that is, J(^J(. We say that J( is M-essentially equal to
JK0 if for each AeJK, there exists BeJ?0 such that ^ A B = (^ \5 )u (5 \^ ) is
M-null. If, in addition, ^Ko is countably generated, then we say that ~4( is M-
essentially countably generated.

LEMMA 3. Let M: JK^-X be a multimeasure. If ^K is M-essentially countably
generated and if M is non-atomic, then every meSf{M) is non-atomic.

PROOF. Let JK0 be a countably generated cr-algebra of subsets of 5 such that
u ^ c u ? and Jl is M-essentially equal to JK0. Let w e ^ ( M ) and suppose that m
possesses an atom Ae^f. Then there exists Be^tf0 such that A AB is M-null.
It follows that B is an atom of m0, the restriction of m to Jl^. Hence, by Kluvanek
(1973), Lemma 1, there exists an atom D ofJK0 such that D<=B and m(D) = m(B).
Thus M{D)^ {0} and it is easily verified that D is an atom of M. This completes the
proof.

LEMMA 4. Let X, Y be locally convex spaces. Let M: ~#->X be a perfect multi-
measure and <p: X-> Y a continuous linear map. Suppose that J( is M-essentially
countably generated and M is non-atomic. Then the multimeasure <p°M:J(-+Yis
non-atomic.

PROOF. Certainly <poM is a multimeasure from Jl to Y. Moreover, for every
Ae*#, we have

(<p o M) (A) = {(<p om)(A):me S?(M)}.

By Lemma 3, each measure meS^(M) is non-atomic. Hence each measure <pom
is non-atomic by Kluvanek (1973), Lemma 2. Therefore <poM is non-atomic by
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Lemma 2. This completes the proof.

Now let m: ^ - > X be a measure. For any A e~d, we write

R(m, A) = {m(A nB):

Let / be an index set directed by the relation <. A net {Bf. iel} of sets in ~tf is
said to be m-Cauchy (respectively m-convergent to B eJf) if for every neighbourhood
U of 0 in X, there exists ioel such that R(m,Bi A £,)<= U for every ijel with
/„</ and io^j (respectively ^ ( m ^ j A ^ c 1/ for every iel with IO<I)-

We say that a measure m: J(-> X is c/aye</ if ^ is m-complete, that is, every
/M-Cauchy net of sets in Jl is m-convergent to an element of Jl. It is known that
if X is metrizable, then every measure from J( to X is closed (Kluvanek (1973),
Lemma 9).

We close this section by recalling the notion of integral of a function with respect
to a vector measure. Let m-.JC^-X be a measure. A measurable real-valued
function/on S is said to be m-scalarly integrable if it is integrable with respect to
every measure x' om, x' e X'. Then, for any EeJK, we denote by $Efdm the linear
form on X' defined by

for every x' e X'. The function/is said to be m-integrable if it is m-scalarly integrable
and lEfdmeX for every EeJt. According to Kluvanek and Knowles (1975),
Lemma 1, p. 26, if the space X is sequentially complete, then every bounded
measurable real-valued function on S is /w-integrable for any measure m-.Jt^-X.

An m-scalarly integrable function/is said to be m-null on E if \Afdm = 0 for
every A<=E, AeJ(.

3. The range of a perfect multimeasure

Let 3tf be a family of measures from Jt to X. We denote by^T(Jf) the collection
of all sets EeJK that are m-null for every meJf. For a single measure m, we
write ̂ (m) instead of^T({m}). Thus

Now let Jf be as above and let EeJ(. We define J%?f ,£) to be the set of all
real-valued bounded measurable functions / on S such that \Bfdm = 0 for every

and/is not m-null on E if E$jV(m).

https://doi.org/10.1017/S1446788700011964 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011964


446 Le Van Tu [5]

DEFINITION 3. A family 2SP of measures from Jt to X is called thin (that is, Jt-
thin) if the set ^(^,E) is non-empty for every EeJK\^(Jf). A multimeasure
M: JK^'X is said to be thin if ^{M) contains a thin family J f that fills out M.

Thus, any thin multimeasure is perfect. If X = R°° and if M is a point-valued
measure, M = (/*„), where the measures /j.n possess a control measure v with
corresponding density functions fn, then M is thin if and only if the set
{fn: n = 1,2,...} is thin in the sense of Kingman and Robertson (1968), p. 348.
In particular, if X = Rw and if v is non-atomic, then M is thin (Kingman and
Robertson (1968), Lemma 2).

The following example shows that there are thin multimeasures other than point-
valued measures.

EXAMPLE 1. Let T = [0,1] and let % be a a-algebra of subsets of T. Also let v be
a finite positive measure on °ll and define J1^ to be the set of all non-negative
measures / i o n t such that /x. ̂  v. It is easily verified that for every sequence of
measures / ^ e ^ (/ = 1,2,...) and every sequence of non-negative "^-measurable
functions ft on T{i = 1,2,...) with 2£. i / i (0< 1 f«r each reT, there exists
such that

i=U2 Jr\i=l

Now let Y=[0,\],3§ the a-algebra of Borel sets of Y and A the Lebesgue measure
on 3S. Then let S = Tx Y with the er-algebra J( = °U® SS. For each / t e ^ , we
define a measure m^. -#->R as follows

= JJ
where ^ ' denotes the set of all ye Y such that (/, y) eA. We prove that the family
3F = {m ,̂: /i£,5f0} satisfies the conditions of Lemma 1. In fact, let (jXi), i= 1,2,...,
be a sequence of members of J^o and let C^), i = 1,2,..., be a sequence of disjoint
sets in J( with US=i^< = A. Then, by the property of ̂  mentioned above, there
exists fie2% such that

S f A(^^(0= f (S^J))«WO- f

That is, Yif=1mfJ<A^ = tnf/<A). Therefore, by Lemma 1, the set-valued map
M: ̂ - > R defined by M(A) = {m{A)\ mejf} is a perfect multimeasure.
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We now verify that M is a thin multimeasure. Let EeJt\J/~{2^)\ we define a
function/ : 5->R as follows

f(t,y)=y-(KEt))~1\ udXiu) if (t,y)eE and

f(t,y) = 0 otherwise.

Then the function/is bounded, ^-measurable and, for every teT,

f(t,y)d\(y) = 0.
E'

It follows that, for every /j.eJt?0,

It can also be seen that for every m e / , the function/is not m-null on E if
E$J/~{m). Thus, the family J f is (~#-)thin and therefore Mis a thin multimeasure.

Note that in Example 1 the set-valued map Mo: ^->R defined by

Ae<%,isa. perfect multimeasure. Moreover, if % is embedded in J( by the injection
A -+A x Y, then Mo is exactly the restriction of M to °U.

More generally we have the following theorem whose proof is similar to the
argument presented in Example 1.

THEOREM 1. Suppose that X is sequentially complete. Let M: Jt'-> X be a multi-
measure such that £f(M) contains a family «3f that fills out M and has the property
that for every sequence (m^) of members of 34? and every sequence (/{) of non-
negative measurable functions on S with "Ef=i fi< 1> there is anmeJ^C satisfying

Then there exist a space Slt a a-algebra <J(X of subsets ofS± and a thin multimeasure
Mx: J(x-+X such that J£ can be embedded in J(x in such a way that M is the
restriction of Mx to J(.

REMARK 1. It is reasonable to ask if there is any relationship between the thinness
of 5f(M) and the perfectness of M. But to our knowledge, this question remains
open. We were unable to construct a non-perfect multimeasure M for which Sf(M)
is thin; the problem being our inability to determine all members ofS?(M). We have
confined ourselves, in this paper, to the study of perfect multimeasures whose use is
common in mathematical economics and control theory.
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LEMMA 5. Let M: ~#->- X be a thin multimeasure and let A eJt. Then the set-
valued map MA: J(-+X defined by MA{B) = M(AnB), BeJ(, is a thin multi-
measure.

PROOF. Certainly MA is a multimeasure. Suppose that S^(M) contains a thin
family J f that fills out M. For each meJf, we define the measure mA by
mAE) = m(AnB), Be Jit. Then let 3CA = {mA: meJf}. It can be shown easily
that the family JfA is thin and fills out MA. This completes the proof.

Following Kluvanek and Knowles (1975), p. 82, we call a measure m: J(->X
a Lyapunov measure if the sets R(m, A) are convex and weakly compact in Zfor all
A eJt. If these sets are merely convex, we will say that m is a convex measure.

LEMMA 6. Let X be a Frechet space and let 3P be a thin family of measures from
Jl to X. Then for any mx, m2eJt, the measures mx and (mlt m2) are Lyapunov.

PROOF. Note first that, since X is metrizable, the measures mx and (wx, m^ are
closed. Now let EeJ?\jV(m-d; then EeJ?\jV(2T). Hence, by the thinness of 3V,
there is a bounded measurable function/on S such that (i) \Efdm = 0 for every
m e / , and (ii)/is not w-null on E if E$Jf{jri). Therefore, by Kluvanek and
Knowles (1975), Theorem 1, p. 82, the measure mx is Lyapunov.

To prove that the measure (m^m^) is Lyapunov, we note that if EeJK and if
/ i s a bounded measurable function on S, then

J fd(mv ma) = M fdrn^ \fdm2\ •

Now let Ee^tf\jV((m1,m^)). Then either E^^Vijn-^ or E^^{m^ and hence
E^JfiJF). Thus, a function/satisfying the conditions (i) and (ii) mentioned above
exists and we have

fd(mv mjj) = 0.
v

Moreover, since E$jV(mj) (J = 1 or 2), the function/is not wiy-null on E; hence
/ i s not (m^m^-null on E. Therefore, again by Kluvanek and Knowles (1975),
Theorem 1, p. 82, the measure (m^m^) is Lyapunov. This completes the proof.

LEMMA 7. Let M: JV->Xbe a perfect multimeasure. Suppose that S?{M) contains
a family 3tf* consisting of convex measures such that 2^ fills out M and for any
m1,mie2tf>, the measure (m^m^) is convex. Then the range of M,

R{M) = U {M(A): A eJf),
is convex.
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PROOF. Let xvx2eR(M) and O<A<1. Then there exist Ax,A2eJ( and
mltm^etf such that xt = m^A^) and x2 = m2(A^). Since the measures mv m% and
(m1,m2) are convex, there exist Bx,B2,BzeJ( with i ^ c ^ ^ , 5 2 C ^ 2 \ A and

^a such that

= 0 -

Let us put 2?4 = /41D/42\53 and B = ^ u ^ u ^ u ^ . We choose any
and define the measure m by, for every

m{A) = m ^ n (B1 u 5g))+/n2(^l n (.S2 u £4))+mz(A \B).

Then it is clear that meS^(M) and m(B) = AJC1+(1-A)X2. This completes the
proof.

THEOREM 2. L«/ Xbe a Frechet space and let M: J(-> Xbe a thin multimeasure.
Then

(i) R(MA) = (J {M(A nB): BeJPj is convex for every A eJ(;
(ii) if for every A e^#, M(A) contains 0, then M(A) is convex for all A eJt.

PROOF, (i) By Lemma 5, the multimeasure MA is thin. Let JfA be a thin family
of measures that fills out MA. Then, by Lemma 6, for any mlf m2eJ^A, the measures
mx and (mlt m^) are Lyapunov. Therefore R(MA) is convex by Lemma 7. To prove
(ii) let AeJt. For any BsJK, since QeM{A\B), we have M( inJ? )c J l / ( 4
Therefore

which is convex by (i). This completes the proof.

The following lemma generalizes Lemma 5 of Kluvanek (1973).

LEMMA 8. Let M:Jl->Xbe a perfect multimeasure. Suppose that S?(M) contains
'a family J? such that Jl? fills out M and for every me J f and every x'eX', the
measure x' om is non-atomic. Then the weak closure ofR(M) coincides with co R(M)
(the closed convex hull of R(M)).

PROOF. Let xecoR(M) and let

V={yeX:\<y,xr>\<l, i=l,2,...,n}
is
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be a weak neighbourhood of 0 in X. We prove that x+V meets R(M). For each
m e / , define the measure fim: JK->THn by

Hm = (x'1om,...,x'nom).

Then each /xm is a non-atomic scalar measure. Let Jf0 = {jj,m: m e / } ; it is easily
verified that the family J^o satisfies the conditions of Lemma 1. Therefore the
set-valued map Af0: ^ - > R n defined by

M0(A) = WA):nejQ (AeJT),

is a perfect multimeasure. Moreover, since each measure /ie,?f0 is non-atomic
(hence convex), it follows from Lemma 7 that the set R(M0) = U {M0(A): A eJ[)
is convex.

Now since xecoR(M), there exists yecoR(M) such that y-xeV. Let
y = 'Z%.1^jm^Aj), where m^tf, A^Jf, Os;A,<l for y = 1,2, ...,/> and
Sf=i^ = 1- Since for every jf = 1,2, ...,p, iim(Aj)eR(M0) which is convex, there
exist meJt? and 4̂ e^# such that

3 = 1

That is, for every i = 1,2,..., n,

i

Hence, for every i = 1,2,..., n,

This shows that m(A)ex+ V and completes the proof.

REMARK 2. The result of Lemma 8 had been proved by Tolstonogov (1975),
Theorem 6, under different conditions. In fact, Tolstonogov assumed that for each

there exists a weakly compact set Q in X such that M(A n JB)C Q for every
. In the following example we shall see that a multimeasure may satisfy the

conditions of Lemma 8 and yet it may not have the property required by
Tolstonogov.
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EXAMPLE 2. Let (S,Jf) be a measurable space and let A be a family of finite
non-negative non-atomic measures on ~#. Let 88 be the linear space of all real-
valued bounded ^-measurable functions on S. For two functions fge^S, we say
that they are A-equivalent if \\f-g\d\ = 0 for every AeA. Then let X = @(A) be
the linear space of equivalence classes/ fe38. We furnish X with the locally convex
topology T(A) defined by the semi-norms pk(f) = J |/|^A, AeA.

Also, let ^7(A) denote the subset of X consisting of classes/with 0< /< 1, and
let Jf(A) be the subset of ^Z(A) consisting of classes %A> where XA is t n e

characteristic function of A, for A e^tf.
We can choose the family A so that the set Jf(A) is not r(A)-complete (for

example, choose A to be the family of measures equivalent to a non-closed non-
atomic vector measure; see Kluvanek and Knowles (1975), pp. 72 and 77, Example
2), and therefore 3&£&) is not r(A)-complete.

Now for each/eJ ' /A), define a map mf: Jt^-X by mt(A) = xlf, for every
Ae~£. It is easily shown that each m1 is a measure and that the family
$? = {mffeSS^K)} satisfies the conditions of Lemma 1. Therefore the set-valued
map M: «<#-> X defined by M(A) = {m(A): meJ^} is a perfect multimeasure.

Moreover, for each x' eX' and each mfe3^, we prove that the measure x' omf

is non-atomic. In fact, since the linear form x' is r(A)-continuous, there exist a
AGA, a number ArJsO and a real-valued measure fi on J( such that |/Lt|̂ A:A and
<*',£> = fgdfi for every geX(Kluvanek and Knowles (1975), Theorem 1, p. 41).
It follows that for each

= f
Thus | x' o mt | < kA and therefore the non-atomicity of x' o m1 follows from that of A.

Finally, we note that the range of the multimeasure M is the whole set SS^K)
which is convex but not r(A)-complete and therefore not weakly compact.

THEOREM 3. Let M: JK^-X be a perfect multimeasure. If JK is M-essentially
countably generated and if M is non-atomic, then the weak closure ofR(M) coincides
with co R(M).

PROOF. This follows immediately from Lemmas 3, 4 and 8.
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