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Abstract

At least 200 billion black soldier fly (Hermetia illucens) larvae (BSFL) are reared each year as food
and feed, and the insect farming industry is projected to grow rapidly. Despite interest by
consumers, producers, and legislators, no empirical evidence exists to guide producers in
practicing humane – or instantaneous – slaughter for these novel mini-livestock. BSFL may
be slaughtered via freezing, boiling, grinding, or other methods; however standard operating
procedures (SOPs) and equipment designmay affect the likelihood of instantaneous death using
these methods. We tested how larval body size and particle size plate hole diameter affect the
likelihood of instantaneous death for black soldier fly larvae that are slaughtered using a standard
meat grinder. Larval body size did not affect the likelihood of instantaneous death for larvae that
are 106–175mg inmass. However, particle size plate hole diameter had a significant effect on the
likelihood of instantaneous death, with only 54% of larvae experiencing an instant death when
using the largest particle size plate (12-mm hole diameter) compared to 84% using the smallest
particle size plate (2.55 mm). However, a higher percentage of instantaneous death (up to 99%)
could be achieved by reducing the proportion of larvae that become stuck in the machine. We
conclude by outlining specific recommendations to support producers in achieving a 99%
instantaneous death rate through specific SOPs to be used with similarly designed machines.
We also develop a protocol for producers that wish to test their own grinding SOPs.

Introduction

The insects as food and feed industry (IAFF) is the single, largest animal livestock farming
initiative in human history, already rearing over 1.2 trillion insects a year (Rowe 2020). The IAFF
industry has the potential to help achieve sustainable agriculture goals by optimising, and
possibly minimising, land and other resources used to obtain animal protein while promoting
local circular food systems that turn waste into food, feed, and fuel (van Huis & Tomberlin 2017;
Parodi et al. 2022; Purkayastha & Sarkar 2022; van Huis & Gasco 2023). These benefits can result
in greater economic and food security (van Huis 2013; Chia et al. 2019), especially crucial at a
time when the global human population is growing (United Nations 2022) and climate change is
heightening food insecurity (Makkar 2018).

The IAFF industry is growing rapidly to meet the demand of emerging markets (de Jong &
Nikolik 2021; World Wildlife Fund & Tesco 2021); for instance, Makkar et al. (2014) estimate
that up to 100% of fishmeal could safely be replaced with insect protein in aquaculture feed which
would result in 160–320 trillion additional insects reared each year (dependent on body mass;
Rowe 2020). Insect protein is also suitable for human, vertebrate livestock (chickens, pigs, etc),
and pet consumption markets that represent additional insects reared over and above that
estimate (de Jong & Nikolik 2021). All this demand means that large facilities are currently
being built and planned that could ultimately rear three trillion individual insects or more each,
every year (van Huis & Tomberlin 2017; Innovafeed 2020).

As the industry grows, interest in the welfare of insects as mini-livestock has also emerged
from consumers, producers, academics, legislators, and advocacy groups for the industry and
animals (de Goede et al. 2013; Bear 2019; IPIFF 2019; Lambert et al. 2021; van Huis 2021;
Delvendahl et al. 2022; Barrett et al. 2023a,b; DEFRA 2023; Eurogroup for Animals 2023;
Klobučar & Fisher 2023; Kortsmit et al. 2023; Voulgari-Kokota et al. 2023). Sentience is generally
considered a precondition for the consideration of welfare (though see Dawkins 2017) and there
is currently no scientific consensus on insect sentience (Adamo 2016, 2019; Barron &Klein 2016;
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Klein & Barron 2016; Gibbons & Sarlak 2020; Mikhalevich &
Powell 2020; Lambert et al. 2021; Loon & Bovenkerk 2021; Over-
gaard 2021; Kakrada & Colombo 2022; Elwood 2023; Voulgari-
Kokota et al. 2023; Barrett & Fischer 2024).

However, a recent review of neurobiological and behavioural
research on insects indicates sentience is plausible (Gibbons et al.
2022), especially in some orders with farmed insects (e.g. black
soldier flies [Hermetia illucens], BSF, in the order Diptera). Import-
antly, developmental stage may impact the likelihood of sentience
in an insect species, especially in the holometabolous insects that
undergo a complete metamorphosis (for discussions, see Gibbons
et al. 2022; Barrett & Fischer 2023; Fischer & Sandall 2023). For
instance, Gibbons et al. (2022) found that adult dipterans meet six
of eight criteria for sentience according to the Birch et al. (2021)
invertebrate sentience framework while slaughter-age larval dip-
terans met only four of eight; the remaining two, or four, criteria,
respectively, had not yet been assessed for that order at that life
stage. While the framework rated adult dipterans as having “strong
evidence for sentience”, last instar larval dipterans still fulfilled
enough criteria for there to be “substantial evidence for sentience”
at this life stage. Therefore, given the scale of the IAFF industry,
these data suggest it to be prudent to begin to protect farmed insect
welfare from a precautionary perspective, even without complete
information on insect sentience at all life stages (Birch 2017; Barrett
& Fischer 2023).

Of particular interest to producers (Bear 2019), legislators
(UK Government 2015; Council of Animal Affairs 2018), and
the media (Sebo & Schukraft 2021; Carlson 2023; Reynolds
2023) has been the welfare of insects during slaughter. Accord-
ingly, the lack of guidance on best practices for humane slaughter
of insects represents a significant risk to the industry’s social
licence to operate (Barrett & Adcock 2023). This is especially
important given that the industry’s most informed and youngest
consumers appear to be the most concerned about insect pain in
the industry (at least in the US; Fukuda et al. 2023), suggesting that
– alongside evidentiary trends (Gibbons et al. 2022) – social trends
are unlikely to make the issue of insect welfare at slaughter less
salient to the public over time.

BSF are expected to become the most farmed insect species in
the near future. BSF are generally reared in batches and slaughtered
as larvae (BSFL). BSFL may be slaughtered using a variety of
different methods, including (but not limited to): freezing (in air
or liquid nitrogen); baking in a convection oven; roasting in sand or
sunshine; microwaving; boiling/blanching; asphyxiation; and
grinding/shredding (for a review, see Barrett et al. 2023a). Humane
slaughter may be defined as “when an animal is either killed
instantly or rendered insensible until death ensues, without pain,
suffering or distress” (Royal Society for the Prevention of Cruelty to
Animals [RSPCA] 2023). Clearly, only some of these methods are
likely to satisfy this standard. Importantly, the methods and con-
ditions that generate the most humane slaughter process for BSFL
may be different than for previously studied species (mostly verte-
brates) due to the number of animals to be killed and their unique
physiology/morphology (e.g. small bodied, ectothermic, etc). Bar-
rett et al. (2023a) suggest boiling/blanching, freezing in liquid
nitrogen, and grinding/shredding are the methods most likely to
be instantaneous, and thus humane, for BSFL; however, they
acknowledge that standard operating procedures (SOPs) are
needed to define what practices achieve humane death using each
method while remaining practical and economical.

We set out to test if grinding can result in instantaneous (< 1 s),
and thus humane, death for BSFL. As larval body size at time of

slaughter can vary, we tested two different slaughter-relevant larval
body sizes. Producers may also vary the grind consistency of the
larval product by changing the hole diameter of the particle size
plate on the grinder; therefore, we also tested the effect of particle
size plate hole diameter on the likelihood of instantaneous death.
From these data, we develop a set of practical recommendations for
producers on how to generate grinding SOPs with the greatest
likelihood of instantaneous death. Further, given significant vari-
ance in machinery design from our own grinder, we provide a
protocol for producers interested in testing their own machinery
and SOPs for BSFL at four different body sizes.

Materials and methods

Larval rearing

BSF were obtained from a colony that is maintained at the Forensic
Laboratory for Investigative Entomological Sciences Facility at
Texas A&MUniversity, USA. The colony originated from a colony
in Tifton, GA, USA, and the adult colony is maintained and eggs
were collected according to methods described by Miranda et al.
(2020). Upon eclosion (i.e. the act of emerging from an egg case),
27 replicates of 0.5 g of newly hatched larvae (approximately 10,000
larvae) were weighed on an OHaus® Adventure™ Pro AV64 balance
(OHaus® Corporation, Pine Brook, NJ, USA) and each replicate was
placed on 500 g of Gainesville diet (50% wheat bran, 30% alfalfa
meal, and 20% corn meal; Hogsette 1992) saturated with RO
(reverse osmosis) water (70%) in 0.5-L deli food storage containers
(Amazon.com Inc, Seattle, WA, USA). The newly hatched larvae
were allowed to feed for approximately one week and then the
contents (i.e. larvae, diet, and frass [i.e. insect waste) of the 0.5-L
containers were poured on top of 8 kg of Gainesville diet (70%
moisture) placed in the centre of a 30-L Sterilite® ClearView Latch™
storage container (Sterilite®, Townsend, MA, USA), with approxi-
mately 800 g of dry diet placed around the perimeter of the wet diet
to prevent developing larvae from escaping. To obtain medium size
larvae, two of the 0.5-L containers with seven day-old-larvae (DOL)
were placed in one pan with 8 kg of diet (approximately 20,000
larvae per pan), while to obtain large larvae, only one container with
7DOL (10,000 larvae per pan) was placed in each 30-L pan. In total,
18 pans were set up for medium-size larvae and nine pans for large
larvae. The larvae were allowed to feed in the pans for one week and
then sifted from the diet and frass for use in the experiments
described below.

Proportion of instantaneous death due to mechanical
separation of the body segments

We assessed the likelihood of instantaneous mortality after receiv-
ing a single cut to a particular body segment in the medium- and
large-sized larvae (18–19 DOL), as well as 7 and 23–24 DOL. Each
larva used was weighed individually to determine body weight and
confirm no consistent differences in body size across treatments
within a group.

Larva were placed individually on a hot plate kept at 32°C in
room temperature air (23.1–24.3°C) and allowed to acclimate for
30 s prior to the beginning of the trial. The use of the hot plate
prevented larval bodies from rapidly chilling due to a combination
of convective cooling and haemolymph loss; larval bodies were
found to drop 1–5°C within 5 s of administering a cut without
using the hot plate, which influenced our ability to usemovement to
assess time-of-death. The hot plate kept larval bodies well above
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thermal minima so that movement could always be performed and
assessed (Addeo et al. 2022).

For this work, 130 larvae were used from each age/size group,
with ten assigned to receive a single dorso-ventral horizontal cut,
using a razor blade, in one randomly assigned body segment (S1–
S12) and ten control larvae that underwent the same treatment
programming but received no cut. One second after receiving the
cut, both halves of the larvae were assessed for movement using a
poke on the dorsal surface from anMT-29/1HT needle microprobe
(Physitemp, Clifton, NJ, USA). Larvae that were ataxic when poked
were considered ‘dead’. Movement was assessed to be ‘controlled’
(e.g. locomotion, circular movements of the head or posterior,
thrashing, rolling, self-cannibalism, etc; see Supplementary Videos
1–10 included in Barrett et al. 2023c) or ‘uncontrolled’ (e.g. a twitch
response). Only controlledmovements were to be counted as ‘alive’,
but no uncontrolled responses were exhibited outside our pilot
trials, which occurred at a cooler temperature. The cessation of
controlled behaviour is a frequent behavioural endpoint marking
death in lethal studies of insects (e.g. Lighton & Turner 2004;
Barrett et al. 2023d), though it has not yet been verified metabol-
ically or with electrophysiology in this specific context. Complicat-
ing matters, ‘controlled’ behaviour has been observed in the
headless portions of decapitated vertebrates (Michel 2019). Never-
theless, if precautionary considerations justify attempting to ensure
that BSFL are slaughtered humanely, then these same consider-
ations justify treating these behaviours as markers that the animals
have not yet died.

In all cases, only one half of the body moved after receiving the
cut: for medium-sized larvae, cuts in segments 1–5 indicated the
posterior half of the larvae was alive, while cuts in segments 6–12
indicated the anterior half of the larvae was alive; for large-sized
larvae, cuts in segments 1–4 indicated the posterior half of the
larvae was alive, cuts in segments 5–12 indicated the anterior half
of the larvae was alive.

Larvae were assessed for movement for an additional 90 s; if
movement ceased, a poke from the probe was used to assess if the
larva was alive-but-inactive or had ceased moving altogether and
could be presumed dead. If dead, time of death was recorded. At
90 s, larvae were removed from the experimental arena and killed by
placing a freezer.

Assessing instantaneous grinding SOPs at scale

To grind the larvae, we used a Univex MG89 Meat Grinder
(Salem, NH, USA) with an internal rotating blade immediately
anterior to the particle size plate. We tested three different
particle size plates with holes 2.55 mm (small), 5.5 mm
(medium), or 12 mm (large) in diameter, and two larval body
sizes (medium- and large-sized larvae). We determined larval
body size by weighing five groups of ten larvae from each batch
(two batches of larvae at each size, used for two separate trials) to
obtain an average larval weight.

We ran three replicates in each trial for each plate-larval size
combination and two trials were performed on two separate days.
For each replicate, we turned on the grinder and then poured 500 g
of larvae into a funnel, inserted into the hopper of the grinder. We
collected the mass of all the ground material that made it through
the particle size plate into a plastic container. When larvae
stopped passing through the particle size plate we stopped the
grinder and collected the mass of all the material stuck behind the
particle size plate at the internal rotating blade. We also collected
and counted any larvae that were stuck in the tube leading to the

blade and noted any obvious injuries (e.g. open wounds or dis-
tortion of the body shape from pressure). We noted the time we
started and stopped pouring the larvae in the hopper in addition to
the time larvae started and stopped coming out of the particle size
plate to calculate loading and output rates for each replicate.
Between each replicate, we took apart and cleaned the entire
machine prior to reassembly.

For each group of larvae (those that passed through the plate and
those stuck at the blade), we carefully stirred the material
before taking three 8–12 g subsamples from each, placing the
subsamples in individual plastic vials filled with 70% EtOH; the
remaining sample material was frozen for 24 h to kill any living
larvae. We stored subsamples at –4°C until counting to prevent
decomposition.

To count each subsample, we drained the EtOH using an ultra-
fine mesh kitchen strainer and carefully spread out the remaining
material onto a paper towel using forceps. Using the data from the
trial on the mechanical separation of body segments in individual
larva, we counted and recorded the cut location for any larval bodies
that were intact enough to be ‘alive’ (see Figure A in Supplementary
File 1). This method prevented double counting of bodies, as only
one side of a separated larva was counted. When there was an
incomplete separation of the larval body, or when separation
occurred on a diagonal, we recorded the segment of the wound
that reached the farthest across the midline of the animal (as this is
closest to the nervous system’s position). We also counted any
larvae that were uncut (e.g. whole).

For each replicate, we divided the mass of each group of larvae
(those at the blade and that passed through the plate) by the average
weight of an individual larva from that batch to determine the
number of larvae in each group. We then added these numbers to
the number of larvae stuck in the tube to get the total number of
larvae in that replicate. We divided the number of larvae in each
group by the total number in the replicate to determine the per-
centage of larvae that got stuck at the blade or passed through the
particle plate for each group.

We determined the expected total number of larvae in each
subsample by dividing the mass of the subsample by the average
mass of a single larva from that batch. We determined the likeli-
hood of instantaneous death for each subsample by multiplying the
number of larvae cut in a particular body segment by the proportion
of larvae that were immobile 1 s after being cut in that body segment
during our individual mechanical separation trials; we then divided
this number by the expected total number of larvae in the sub-
sample. We determined the total likelihood of humane death using
the proportion of larvae that got stuck at the blade vs made it
through the plate and the likelihood of humane death for each of
those groups.

Statistical analysis

Data were analysed in GraphPad Prism v 9.5.1 and R v 4.1.3
(R Core Team 2019; GraphPad Software for Windows 2023);
normality and homoscedasticity were assessed prior to choosing
a particular analysis method. A two-way ANOVA was used to
assess the effects of larval body size and particle size plate hole
diameter on loading and output rates in grams per second (g s–1)
and individuals per second. A mixed-effect model with Sidak’s
multiple comparisons test was used to assess if paired larval output
rates were slower than loading rates across all treatments; a linear
regression was used to determine the relationship between loading
and output rates. A one-way ANOVA was used to assess variance
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in larval weight among treatment groups in the razor-cuts experi-
ment. Alpha was set at P < 0.05.

A beta regression (Cribari-Neto & Zeileis 2010) was used to
analyse the effects of trial and larval size on proportion of instant
deaths. Model terms were also assessed with a type II ANOVA
(Fox & Weisberg 2019). There was no significant interaction
between trial and larval size when predicting proportion of
humane deaths (χ22,1 < 0.01; P = 0.93) nor was there a significant
difference between trials (χ22,1 < 0.1; P = 0.31), indicating there
was no trial effect. However, we included trial as a random effect in
all models regardless, to control for any unaccountable differences
between trials.

Analysis of instant death percentages overall (stuck at the blade
and passed through the plate, combined), instant death percentages
at the blade only, and instant death percentages passed through the
particle plate only, were conducted using generalised linear models
with a beta family and logit-link to account for the dependent
variable being percentage data (Brooks et al. 2017). Whenever
percentage (dead instantly) was estimated to be less than 0%, which
occurred sometimes in the ‘stuck at blade’ population due to
variance in larval weight, a 0% instant death percentage was sub-
stituted. Trial number was fitted as a random intercept. Maximal
models with interaction terms were fitted initially followed by step-
wise removal of non-significant model terms as determined by log-
likelihood tests. Pair-wise post hoc comparisons were conducted
using the package ‘emmeans’ (Lenth 2023).

A generalised linearmodel with a beta family and logit-link were
also used to analyse if changes in the likelihood of getting stuck at
the blade were based on larval body size or particle size plate hole
diameter. Trial was fitted as a random intercept and post hoc pair-
wise comparisons were conducted using the package emmeans.

Data, videos, and all supplementary files are available at Barrett
et al. (2023c).

Ethical justification

Research on insects is not currently subject to any legally man-
dated ethical review; therefore, no ethical approval was required to
conduct this study. The authors made an effort to consider mini-
mising the number of individuals used (e.g. by selecting only two
body mass categories for the at-scale work and running pilot tests
to determine the minimum sample size that could be run to attain
accurate results of a full grinder). Individuals could not be anaes-
thetised/stunned prior to receiving cuts (as this would interfere
with the behavioural assessment of death) or prior to the slaughter
process (as larvae are not stunned on farms and larval activity
during slaughter could have effects on survival that we should
replicate). However, larvae were frozen following experimenta-
tion and sample collection to ensure death occurred rapidly.
Notably, there is currently disagreement as to whether freezing
provides a humane method of killing for insects, however current
best practice guidelines do suggest this method can still be used
until further data are acquired to resolve this dispute (Fischer et al.
2023). Despite our best efforts to consider and minimise welfare
impacts on our research subjects we acknowledge a practice that
we believe would improve our methods and further minimise
harm to the animals in future studies that seek to replicate our
design. Larvae could have been anaesthetised immediately follow-
ing output from the slaughter machine (or immediately following
the completion of the cut assay), preferably using isoflurane. This
approach would prevent possible suffering during sample collec-
tion and weighing, which occurred while larvae were not

anaesthetised in our at-scale study, as well as any possible suffer-
ing during the freezing process.

Results

Body-size variation in the proportion of instantaneous death
due to mechanical separation of the body segments

There was no statistically significant difference in the masses of
larvae across treatments in any age/size group (One-way ANOVAs,
7 DOL: F = 0.67, df = 12; P = 0.78; medium: F = 1.14, df = 12; P =
0.34; large: F= 0.91, df = 12;P= 0.54; 23–24DOL: F= 0.79, df = 12;P
= 0.66); therefore, themasses of each group were calculated from all
BSFL used in all treatments (Table 1). There was a degree of overlap
in mass range in the medium and large, and large and 23–24 DOL,
treatments (Figure S1; Supplementary File 3).

The proportion of BSFL that died instantly, or after 90 s, varied
based on larval body size and treatment (e.g. body segment injury
location; Figure 1, Tables S1, S2; Supplementary File 3). Smaller
larvae were more likely to die across all treatments (Figure 1[b], [d]).

Across the four age/size categories, 160 BSFL were cut in body
segments 9–12 where they could be expected to reach their open
body cavity with their mouthparts. In observing their behaviours
for 90 s, only one larva ever attempted to self-cannibalise (a 0.09-g
‘medium’ sized larvae), or 0.63% of the tested subjects. Other
behavioural responses, exhibited by larvae across age/size categor-
ies and treatments, included: unprompted forward and backward
locomotion; continuous lateral rolling; waving of the head from
side-to-side; contracting the body segments; thrashing; rolling;
circling of the head or posterior; as well as any of these movements
prompted in response to a poke from the probe after a period of
stillness (for examples of these behaviours, see Supplementary
Videos 1–10 in Barrett et al. 2023c).

Loading and output rates

The loading rate of larvae in g s–1 to the machine did not vary
according to body size or particle size plate hole diameter (two-way
ANOVA; all P > 0.05; Figure S2; Supplementary File 3). Larvae were
loaded at a rate of 39.4 (± 6.5) g s–1 across all conditions. Large-sized
larvae were loaded at a rate of 227.0 (± 30.9) estimated individuals
per second, while medium-sized larvae were loaded at a rate of
369.7 (± 72.6) estimated individuals per second (Figure 2).

The rate of larval output in g s–1 from the machine also did not
vary according to body size or particle size plate hole diameter (two-
way ANOVA; all P > 0.05; Figure S2; Supplementary File 3). Larval
output rates were 25.22 (± 4.41) g s–1. Larval output rates were
always slower than their loading rates (mixed-effect model: X2 =
11.16, df = 1; P = 0.0008; Sidak’s MCT: large: t = 18.02, df = 17; P <
0.0001; medium: t = 9.59, df = 17; P < 0.0001; Figure S3; Supple-
mentary File 3). The large-sized larval output rate was 150.2
(± 20.0) estimated individuals per second while the medium-sized

Table 1. Mean mass, and mass ranges, of larvae from each age/size group in g

Group Mean (± SD) mass (g) Mass range (g)

7 DOL 0.0063 (± 0.0029) 0.0013–0.0132

Medium 0.0956 (± 0.017) 0.0542–0.1480

Large 0.1573 (± 0.0232) 0.1032–0.2179

23-24 DOL 0.2346 (± 0.0307) 0.1565–0.2985
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larval output rate was 228.6 (± 48.8) estimated individuals per
second (Figure 2).

Effects of body size and particle size plate hole diameter on
likelihood of instantaneous death

Medium-sized larvae from batches one and two weighed 0.1076 (±
0.0061) and 0.1055 (± 0.0043) g, respectively, while large-sized

larvae from these two batches weighed 0.1724 (± 0.0079) and
0.1749 (± 0.0066) g. Both were within the SD of the means of our
medium- and large-sized populations used for the mechanical
separation by body segment test.

A greater proportion of BSFL got stuck at the blade and did not
make it through the particle size plate, if a smaller particle size plate
hole diameter was used (Figure 3; Z < –3.78; P < 0.001), or if the
larvae were smaller in body size (Figure 3; z ratio = 2.47; P < 0.02).

Figure 1. Proportion of larvae of different ages/sizes dead instantly, or by 90 s, due to cuts from a razor blade at different body segments. The proportion of larvae dead by body
segment cut location, (a) instantly or (c) by 90 s; and the proportion of larvae dead across all treatments (cuts in S1–S12) (b) instantly or (d) by 90 s by age/size. DOL = day old larvae;
BSFL = black soldier fly larvae.

Figure 2. Estimated number of individual black soldier fly larvae (BSFL) processed per second using the grinding technique. Showing (a) estimated number of individual larvae of a
large and medium body mass loaded per second into the hopper of the grinder and (b) estimated grinder output rate for large- and medium-sized larvae.
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The (mean ± SD) of all medium-sized larvae that got stuck at the
blade when using the smallest plate hole diameter was 14.99 (±
3.21)% compared to 9.81 (± 1.13)%with themediumhole diameter,
and 8.19 (± 1.51)% with the largest. For the large-sized larvae we
saw 15.69 (± 1.49), 10.84 (± 0.81) and 9.19 (± 0.79)% stuck at the
blade with the smallest, medium and largest plate hole diameter,
respectively. The likelihood of instantaneous death for BSFL that
got stuck at the blade did not vary based on particle size plate hole
diameter or larval body size (Z > –2.32; P > 0.05). Across all larvae,
only 2.65 (± 3.68)% showed instantaneous death when stuck at the
blade (range: 0.00–13.12%).

A greater percentage of BSFL made it through the particle size
plate, the larger the hole diameter (Z < –12.38; P < 0.0001). The
likelihood of instantaneous death for larvae that made it past the
particle size plate varied based on particle size plate hole diameter,
but not larval body size (Figure 4; Z = 1.26; P = 0.21). In terms of
experiencing an instantaneous death, we observed 99.27 (± 0.69)%
with the smallest plate hole diameter and 84.97 (± 2.33) and 59.26
(± 3.10)% with the medium and largest, respectively.

The overall likelihood of experiencing an instantaneous death
(when considering both the larvae that made it through the plate

and those stuck at the blade) varied based on particle size plate hole
diameter (Figure 5; Z > –27.49; P < 0.0001), but not larval body size
(Figure 5; X2 = 0.01; P = 0.91). Across all larvae in a run, 83.82 (±
2.57)% experienced an instantaneous death when using the smallest
plate hole diameter with 76.03 (± 2.66) and 53.80 (± 2.62)%
experiencing instantaneous death with the medium and largest
hole diameter, respectively.

Finally, a total of 743 BSFL were found within the tube leading
up to the blade at the end of runs, across all replicates; of these,
6.19% had received externally observable injuries (5.34 and 6.90%
of medium- and large-sized larvae, respectively).

Discussion

We found that very few BSFL died instantly after receiving a cut to
a single body segment. The segments in which cuts produced
some likelihood of instantaneous death varied based on larval
size, with smaller larvae (7 DOL) more likely to die instantly than
larger larvae (23–24 DOL). This is likely a result of two factors:
(1) nervous system location within the body cavity changing as
the animals’ grow non-isometrically in body and brain mass
(Barrett et al. 2022); and (2) reduced oxygen availability due to
proportionally increased haemolymph loss in smaller larvae.
Larvae exhibited a variety of abnormal behaviours in response
to mechanical separation of different body segments, including
continuous rolling, thrashing, or backward locomotion. Despite
widespread reports of insect self-cannibalism in response to
injuries that rupture the body cavity (e.g. Eisemann et al. 1984),
we found that only one larva (0.63% of subjects) engaged in this
behaviour during our study (Supplementary Video 10 in Barrett
et al. 2023c).

Particle size plate hole diameter, but not larval body size (across
the range 106–175 mg in mass), affected the likelihood of instant-
aneous death when using a standard meat grinder design. The
likelihood of instantaneous death was highest (84%) when the smal-
lest particle size plate hole diameter was used (2.55 mm) and lowest
(54%) when the largest particle size plate hole diameter was used
(12 mm). However, a significant challenge in using this slaughter
method to generate instantaneous death was the incomplete slaugh-
ter of a group of larvae that got stuck at the blade at the end of a run:
only 3% of these larvae experienced an instantaneous death. If this

Figure 3.Percentage of black soldier fly larvae stuck at the blade relative to particle size
plate hole diameter or larval body size, and likelihood of instantaneous death. A greater
percentage of larvae got stuck at the blade when a smaller particle size plate hole
diameter was used (Generalised linear model; S-M: Z = –9.98; P < 0.0001; S-L: Z = –13.59;
P < 0.0001; M-L: Z = –3.78; P = 0.0005). Further, a greater percentage of large-sized larvae
were stuck at the blade than medium-sized larvae (Generalised linear model; Z = –2.47;
P = 0.013). Letters indicate statistically significant differences between hole diameters
or larval sizes, with P < 0.05.

Figure 5. Instantaneous death for all black soldier fly larvae in a 500 g run (stuck at
blade and past plate) relative to hole diameter. A greater percentage of larvae
experience an instantaneous death when a smaller particle size plate hole diameter
was used (Generalised linearmodel; S-M: Z = –8.24;P < 0.0001; S-L: Z = –27.49; P < 0.0001;
M-L: Z = –20.44; P < 0.0001). Letters indicate statistically significant differences with
P < 0.0001.

Figure 4. Instantaneous death for black soldier fly larvae relative to hole plate
diameter. A greater percentage of larvae experience an instantaneous death when a
smaller particle size plate hole diameter was used (Generalised linear model; S-M: Z = –
12.38; P < 0.0001; S-L: Z = –16.12; P < 0.0001; M-L: Z = –14.22; P < 0.0001). Letters indicate
statistically significant differences with P < 0.0001.
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population was removed (e.g. all larvae made it through the particle
size plate), instantaneous death was more likely across all plate sizes:
99% for the smallest plate and 59% for the largest.

From these data, we can make the following recommendations
to producers to ensure a 99% chance of instantaneous death for
their larvae when using grinding for slaughter:

• Validate mortality rates with each machine, using the param-
eters defined here;

• For grinding machines that use a particle size plate, use hole
diameters 2.55 mm or smaller for BSFL populations that have a
minimum average body mass of 106 mg;

• To prevent BSFL from being incompletely slaughtered
(e.g. stuck at the blade), run a filler (substrate, dead BSFL,
vegetables, etc) through the machine at the end of the run to
ensure all BSFL are completely processed; and

• When usingmachines with other designs, or slaughtering BSFL
smaller than 106 mg or larger than 175 mg in average mass,
producers should test their specific SOP (see methodology and
materials in Supplementary Files 1 and 2) to determine the
likelihood of instantaneous death.

An important limitation of our results is that wewere unable to assess
any injuries that occurred in the machine prior to reaching the blade/
plate, which could have contributed to pain/suffering prior to the time
of death. We found that larvae spend 3.78 s in the machine (the time
from pouring to output), meaning there are several seconds during
which time larvae may incur an injury, prior to death at the blade/
plate. Indeed, 6.19% of larvae found in the tube, anterior to the blade,
at the end of runs were injured; however, given the unusual low-
density loading of the machine at the very end of a run, it is unclear if
these larvae are representative of the experiences of all larvae.

Grinding may also serve as a method for humane depopulation,
should producers need to cull livestock in response to an emergency
(e.g. disease outbreak). In cases of depopulation, insects may not be
separated from their feeding substrate, while at times of slaughter
(and thus in our study) larvae have been separated from their feed.
Our results may not accurately reflect instances of depopulation
where substrate would still be mixed in with larvae, or when larvae
are smaller than 106 mg in mass (as larvae may need to be
depopulated at very early instars). Until empirical data on these
body sizes, and with substrate mixed in, are tested, we recommend
producers monitor their own grinding-depopulation SOPs via
modification of the previously mentionedmethodology andmater-
ials in Supplementary Files 1 and 2.

Overall, our results suggest that grinding can serve as an instant-
aneous method of slaughter for 106–175 mg BSFL, but that SOP
strongly affects the probability of humane death. Small particle size
plate hole diameters, fillers at the ends of runs to reduce the
probability of incomplete slaughter, and testing of each novel
machine design or larval body size can ensure grinding is used
humanely for the slaughter of BSFL. Furthermore, determining if
the method is viable in terms of economics and practicality should
also be considered. Finally, while grinding may serve as an instant-
aneous method of slaughter, it may still lead to public scrutiny of
insect slaughter practices due to negative public perception of
methods employed; further research into the social acceptability
of this practice for insect farming would be valuable.

Animal welfare implications

Currently, billions of farmed BSFL are slaughtered each year with
no established SOPs to ensure instantaneous death. This study

provides the first empirically supported guidance for humane
processing of BSFL; implementation of these practices by producers
would help reduce the potential risk of unnecessary suffering for
billions of animals.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/awf.2024.10.
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