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The detector solid angle (Ω) in X-ray Energy Dispersive Spectroscopy (XEDS) is one of the 
important parameters controlling our ability to measure signal generated by the electron solid 
interaction, however, it is often overlooked or incorrectly calculated.  In order to optimize detection 
of elemental species it is incumbent upon the analyst to maximize its value.  In addition, with the 
new generation of  silicon drift detectors a range of alternate geometries is possible in electron 
columns and due to their compact size these detectors can potentially achieve high geometrical 
collection efficiencies.  Traditional solid angle approximations  break down in some of these 
geometries, and we present formulae herein which can be used to more precisely determine its value.    
 
The conventional method for  calculating the nominal  solid angle of a detector  is to compare its 
active detection area to the equivalent surface area of a sphere nominally located at the same radial 
distance from the specimen. To calculate the solid angle (Ω) one simply takes the surface area (S) of 
the equivalent sphere divided by the square of its radius (R):   Ω = S / R2. While this is an exact 
equation, the typical approximation made in the microanalysis community is to  replace S by A  the 
active area of the detector which is collecting the x-ray signal and R by  d, the radial specimen-to-
detector distance (figure 1). This approximation rapidly leads to non-physical values (> 2π) as A 
increases and d decreases.   For a detector whose active area is circular in cross-section, or whose 
active area is defined by a circular collimator it can be shown that appropriate solid angle formulae 
can be written as [1]: 
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This relationship is plotted in figure 2 for detectors of active area from 10-100 mm2, the asymptote is 
for which is 2π sterradians.   Here a is the radius of the equivalent detector active area and d the 
radial detector to specimen distance. In order to use this relationship, it is essential to know the 
actual value of d, which in many cases is also  ill-defined or not accurately determined.   Fortunately 
the value of d can be  experimentally determined by a simple procedure outlined herein.  
 
Under constant electron optical  operating conditions it can be shown that the Intensity (I) of a given 
x-ray line will vary  simply as  I = κ  * Ω = κ  ∗ S / R2 here, κ  is a term which incorporates all the 
physics associated with x-ray generation, absorption and fluorescence processes in the specimen.   
Taking the logarithm of both sides of this equation results in the relationship: 
  

ln (I) = ln (κ∗ S) -2 ln (R) 
 
This is equation is  in the form of a simple linear relation y = b + mx ,  where we can associate the 
slope m = -2 and the intercept b = ln (κ∗ S). Many x-ray detectors are mounted on instruments with 
linear translation mechanisms allowing an analyst to insert/remove the detector along a radial line of 
sight path to the specimen. While these mechanisms allow precise linear motion, their disadvantage 
is that the exact end-point value is not accurately known.  To determine the value of Ro, the fully 

Microsc Microanal 15(Suppl 2), 2009
Copyright 2009 Microscopy Society of America doi: 10.1017/S143192760909583X

520

https://doi.org/10.1017/S143192760909583X Published online by Cambridge University Press

https://doi.org/10.1017/S143192760909583X


inserted minimum distance of a detector in this geometry, one simply  measures I for various values 
of R(δR) and plots the result on a log-log plot as shown in figure 3.  A plot of this form will be 
linear, however only a single solution will exist whose  slope = -2.  Thus the determination of Ro is a 
simple iterative process. One begins by assuming an initial value of Ro and uses the incremental 
displacement of the detector δR  to determine the range of values of R(δR).  The data is plotted and 
the best linear fit is found.  In general, the slope of this curve will differ from the value of -2.  The 
same data set is then recalculated by changing the initial value of Ro and replotted and a new best fit 
is iteratively obtained. Each incremental change of the starting point Ro will gradually change the 
calculated intercept and slope.  This process is continued until one sweeps through the value where 
the slope is -2.  The value of Ro at that point represents the best estimate of the distance  d 
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2 , which  should be used in all subsequent solid angle calculations.  
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Figure 1. The geometry of a solid angle calculations 
detector active area  (A) is represented by a  plane 
section of circular cross-section defined by its radius a 
which is  positioned at a distance d from the specimen. 
R is the effective radius of the subtending sphere. 
 
Figure 2. Calculated solid angle for various active area 
detectors at a range of distances from the specimen. 
  
Figure 3. Log-Log plot of ln (I) vs ln (R) to determine 
the best experimental value of Ro = 4.12 mm @ m = -2 
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y = 12.028 - 1.2548x   R= 0.99506 
y = 13.633 - 1.8471x   R= 0.99968 
y = 14.085 - 2.0001x   R= 0.99981 
y = 14.587 - 2.1657x   R= 0.99978 
y = 17.314 - 3.0023x   R= 0.99862 
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