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Singularities of logarithmic foliations

Fernando Cukierman, Marcio G. Soares and Israel Vainsencher

Abstract

A logarithmic 1-form on CP
n can be written as

ω =
( m∏

0

Fj

) m∑
0

λi
dFi

Fi
= λ0F̂0 dF0 + · · · + λmF̂m dFm

with F̂i = (
∏m

0 Fj)/Fi for some homogeneous polynomials Fi of degree di and constants
λi ∈ C

� such that
∑

λidi = 0. For general Fi, λi, the singularities of ω consist of a
schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly,
finitely many isolated points. This is the case when all Fi are smooth and in general
position. In this situation, we give a formula which prescribes the number of isolated
singularities.

1. Introduction and statement of result

The search for numerical invariants attached to algebraic foliations goes back to Poincaré [Poi91].
He was interested in determining bounds for the degree of curves left invariant by a polynomial
vector field on C

2.
Recent work has treated the question by establishing relations for the number of singularities of

the foliation and certain Chern numbers and then using positivity of certain bundles. For a survey
of recent results, see [Bru00, CL91, Est02, Soa00].

A foliation of dimension r on a smooth variety X of dimension n is a coherent subsheaf F of
the tangent sheaf TX of generic rank r, locally split in codimension � 2.

If r = n− 1 (codimension one foliations), the foliation corresponds to a global section of Ω1
X ⊗L

for some line bundle L.
Suppose X = CP

n, with homogeneous coordinates x0, . . . , xn. Recall Euler’s sequence,

Ω1
CPn(1) → O⊕n+1 → O(1).

A global section ω of
Ω1
CPn(d) ⊂ O⊕n+1(d − 1)

can be written as

ω =
n∑
0

Fi dxi

where Fi is a homogeneous polynomial of degree d − 1, subject to the condition∑
Fixi = 0

(contraction by the radial vector field on C
n+1).
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The degree of a codimension one foliation F ,degF , is the number of tangencies of the leaves of F
with a generic one-dimensional linear subspace of CP

n. A simple calculation shows that degF = d−2
if the 1-form defining F has components Fi of degree d− 1. The form ω is integrable if ω ∧ dω = 0.

Integrable 1-forms make up a Zariski closed subset of P(H0(Ω1(d)). We denote by Fol(CP
n; d)

the space of codimension one integrable holomorphic foliations of degree d − 2 of CP
n.

Not much is known about the dimensions nor the number of irreducible components of
Fol(CP

n; d) (but see [CL96] and [CEL01]).
When ω can be written as

ω =
( m∏

0

Fj

) m∑
0

λi
dFi

Fi
= λ0F̂0 dF0 + · · · + λmF̂m dFm

for some homogeneous polynomials Fi of degree di and λi ∈ C
� such that

∑
λidi = 0, we say ω is

logarithmic of type d = d0, . . . , dm. Given positive integers d0, . . . , dm, set d =
∑m

i=0 di and consider
the hyperplane

CP(m − 1, d) = {(λ0, . . . , λm) ∈ CP
m | Σdiλi = 0}.

Define a rational map Ψ by

CP(m − 1, d) ×
m∏

i=0

P(H0(CP
n,O(di)))

Ψ−→ Fol(CP
n; d)

((λ0, . . . , λm), (F0, . . . , Fm)) �→
( m∏

j=0

Fj

) m∑
i=0

λi
dFi

Fi
.

The closure of the image of Ψ is the set Logn(d) of logarithmic foliations of type d (of degree d− 2)
of CP

n. Recall the following result.

Theorem 1 (Calvo-Andrade [Cal94]). For fixed di and n � 3, logarithmic foliations form an
irreducible component of the space of codimension one integrable holomorphic foliations of CP

n of
degree d − 2 (with d =

∑
di).

The singular scheme of the foliation defined by ω ∈ H0(Ω1(d)) is the scheme of zeros of ω. This
is the closed subscheme with ideal sheaf given by the image of the co-section ω∨ : (Ω1(d))∨ → O.

For ω general in H0(Ω1(d)), there are just finitely many singularities, to wit (cf. Jouanolou
[Jou79, Theorem 2.3, p. 87] setting, in his notation, m = d − 1, r = n),∫

CPn

cn(Ω1(d)) =
n∑
0

(−1)i
(

n + 1
i

)
dn−i.

On the other hand of course, a general ω is not integrable.

Theorem 2 (Jouanolou [Jou79]). For integrable ω, the singular set must contain a codimension 2
component.

It is easy to see that, for logarithmic (hence, integrable) forms

ω = λ0F̂0 dF0 + · · · + λm F̂m dFm

the singular set contains the union of all codimension two subsets

Fi = Fj = 0, i �= j.

It is worth mentioning that Jouanolou describes examples of integrable 1-forms with singular
schemes containing positive dimensional components of ‘wrong’ positive dimension. We found no
hint as to the existence of isolated singularities for general enough foliations.
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Singularities of logarithmic foliations

Let Di be the divisor associated to Fi. We assume that the following genericity conditions hold:

the Di, i = 0, . . . ,m, are smooth and in general position,
λi �= 0, i = 0, . . . ,m.

(1)

Remark that (1) defines a Zariski open subset of

CP(m − 1, d) ×
m∏

i=0

P(H0(CP
n,O(di))).

Before stating our main result recall that the complete symmetric function σ�, of degree � in the
variables X1, . . . ,Xk is defined by: σ0 = 1 and, for � � 1,

σ�(X1, . . . ,Xk) =
∑

i1+···+ik=�

Xi1
1 . . . Xik

k .

We then have the following.

Theorem 3. Let F be a logarithmic foliation on CP
n of type d = d0, . . . , dm, given by

ω = λ0F̂0 dF0 + · · · + λmF̂m dFm

and satisfying (1). Then the singular scheme S(F) of F can be written as a disjoint union

S(F) = Z ∪ R

where

Z =
⋃
i<j

Di ∩ Dj

and R is finite, consisting of

N(n, d) =
n∑

i=0

(−1)i
(

n + 1
i

)
σn−i(d)

points counted with natural multiplicities. Moreover:

(i) N(n, d) = 0 if n � m and di = 1 for all i;

(ii) N(n, d) =
( m
n+1

)
if n < m and di = 1 for all i;

(iii) N(n, d) > 0 whenever di � 2 for some i.

It will be shown below, see formula (8) in § 4.3, that

N(n, d) = the coefficient of hn in
(1 − h)n+1∏m
0 (1 − dih)

from which we deduce the following example.

1.1 Example
If di = 1 for all i then (1− h)n+1/

∏m
0 (1− dih) reduces to (1 − h)n/(1 − h)m and we have items (i)

and (ii) of the theorem.

(i) n � m. In this case (1 − h)n/(1 − h)m is a polynomial of degree n − m < n and hence the
coefficient of hn vanishes, so that there are no isolated zeros.

(ii) n < m. In this case (1 − h)n/(1 − h)m reads 1/(1 − h)m−n and it is easily seen that the
coefficient of hn is

( m
n+1

)
.
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2. Proof of the theorem

We will show that, if a point is non-isolated in S(F), then it lies in Di ∩Dj for some i < j. Indeed,
let C be an irreducible component of S(F) of dimension 1 � dimC � n − 2. By ampleness and
general position, we may pick a point p ∈ C lying in the intersection of precisely k of the divisors
Di, 1 � k � min{n,m + 1}. Let fi be a local equation for Di at p. Near p, the foliation F is given
by the 1-form

� = f0 · · · fm

m∑
i=0

λi
dfi

fi
.

Renumbering the indices we may assume p ∈ D0 ∩ · · · ∩ Dk−1. The local defining equations fi = 0
of the Di, for i = 0, . . . , k − 1, are part of a regular system of parameters, i.e. df0, . . . , dfk−1 are
linearly independent at p. Write g̃ = fk · · · fm. Since p �∈ Dj , k � j � m, we may assume g̃ vanishes
nowhere around p and write � as

� = f0 · · · fk−1g̃

[k−1∑
j=0

λj
dfj

fj
+

m∑
i=k

λi
dfi

fi

]
= f0 · · · fk−1g̃

[k−1∑
j=0

λj
dfj

fj
+ η

]
,

where η =
∑m

i=k λi(dfi/fi) is a holomorphic closed form near p. Since η is closed, by the formal
Poincaré lemma it is exact near p, say η = dξ. Set ϑ = �/g̃. Then F is defined around p by

ϑ = f0 · · · fk−1

[k−1∑
j=0

λj
dfj

fj
+ dξ

]
= f0 · · · fk−1

[
λ0

d(exp[ξ/λ0]f0)
exp[ξ/λ0]f0

+
k−1∑
j=1

λj
dfj

fj

]
.

Set z0 = exp[ξ/λ0]f0 and z1 = f1, . . . , zk−1 = fk−1. Since u = exp[ξ/λ0] is a unit, we also have that
z0, . . . , zk−1 are part of a regular system of parameters at p. Now ϑ can be written as

ϑ =
z0

u
z1 · · · zk−1

[
λ0

dz0

z0
+

k−1∑
j=1

λj
dzj

zj

]
.

Thus, F is defined around p by the 1–form

ϑ̃ = z0z1 · · · zk−1

[
λ0

dz0

z0
+

k−1∑
j=1

λj
dzj

zj

]
=

k−1∑
j=0

λjz0 · · · ẑj · · · zk−1 dzj . (2)

If k = 1, (2) shows that the foliation is defined near p by dz0 and then is non-singular at p. Hence,
we necessarily have k � 2. Note that the ideal of the scheme of zeros of ϑ̃ (as well as of ω) near p is
generated by the k monomials z0 · · · ẑj · · · zk−1 with 0 � j � k − 1. That is, just the scheme union⋃

i,j Di ∩ Dj , for 0 � i < j � k − 1. Thus, C must be contained in Di ∩ Dj , for some i < j, and
therefore C is an irreducible component of Di ∩ Dj and dimC = n − 2. �

The formula for the finite part is proved in the next section in a slightly more general context.

2.1 Remark

The argument above shows that the codimension two part, Z =
⋃

Dij, of the singular scheme of
a general logarithmic foliation is equal to the singular scheme of the normal crossing divisor

⋃
Di.

This will enable us to use Aluffi’s formula [Alu99] for the Segre class. We also note that, since Dij

is smooth and connected, the component C is actually equal to some Dij .
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3. Formulas

Let E → X be a holomorphic vector bundle of rank n over a complex projective smooth variety of
dimension n. Let s : X → E be a section. Assume that:

(1) the scheme of zeros W of s is a disjoint union

W = Z ∪ R

with R finite;

(2) there are Cartier divisors D0, . . . ,Dm, m � 1, such that

Z =
⋃
i<j

Dij

as schemes, where

Dij = Di ∩ Dj ;

(3) for all choices of indices

Ir = (0 � i1 < · · · < ir � m),

the intersection DIr =
⋂

i∈Ir
Di is transversal.

We are mainly interested in the case where X = CP
n and the section s is a logarithmic form as in

Theorem 3.
We give an expression for the number of points in R, counted with natural multiplicities, in

terms of the intersection numbers

DJ · cj(E)

with

J = (j0, . . . , jm), DJ = Dj0
0 · · ·Djm

m , |J | + j = n.

When Z =
⋃

i<j Dij is a disjoint union, the formula is but a simple direct application of usual
excess intersection techniques as reviewed below.

Disjointness implies that Z is a local complete intersection with explicitly known normal bundle.
The ideal of W is the image I(W ) of the co-section

s∨ : E∨ → O.

It can be written as

I(W ) = I(Z) · I(R).

Locally, it is of the form I = 〈z0, z1〉 · m, where z0, z1 are equations for the pair of transversal
divisors cutting Z, and m denotes an ideal of finite co-length corresponding to the finite part R ⊂ W .
(Note that m = 〈1〉 if R is disjoint from the present coordinate chart.)

Let π : X ′ → X be the blowup along Z. Put E′ = π−1(Z), the exceptional divisor. The pullback
π�s∨ of the co-section maps π�E∨ onto

O(−E′) · I(R′).

(R′ = π−1R). We get an induced map of sheaves

(s′)∨ : π�E∨ ⊗O(E′) → I(R′) ⊆ O.

Dualizing, we find a section s′ of

E ′ = E ⊗ O(−E′) (3)

whose scheme of zeros is precisely R′  R, the finite part.
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Indeed, since R is disjoint from the blowup center, π : X ′ → X is an isomorphism in a neigh-
borhood of R′. Hence, the length of OX′/I(R′) is the same as for R. This implies the formula for
the degree of the zero cycle,

deg[R] = deg[R′] =
∫

X′
cn(E ′). (4)

To compute it explicitly, recall that the exceptional divisor E′ is the projective bundle P(NZ/X) of
the normal bundle of Z in X. The restriction of NZ/X to each Dij is the restriction of O(Di)⊕O(Dj).
Let ι : E′ ↪→ X ′ be the inclusion. We recall from [Ful84, B.6, p. 435] a couple of facts that follow
from the construction of the blowup as Proj(⊕Ik) of the Rees algebra of the ideal sheaf I = I(Z).
The natural relatively ample line bundle OX′(1) is presently the image of π�I → π�OX = OX′ , thus
it is equal to the exceptional ideal sheaf OX′(−E′). The exceptional divisor E′ ⊂ X ′ is identified to
the projectivization of the normal cone, Proj(⊕Ik/Ik+1). Accordingly, we have the identification
ι�π�I = I/I2 → ι�OX′(1). The latter is simply the hyperplane bundle OE′(1) of the CP

1-bundle
E′ = P(NZ/X) → Z. We may compute the self-intersection (cf. [Ful84, 2.6, p. 44]),

(E′)2 = ι�(ι�E′) = ι�(ι�c1(OX′(E′)) ∩ [X ′])
= ι�(ι�c1(OX′(−1)) ∩ [X ′])
= −ι�(ξ ∩ [E′])

with
ξ = c1(OE′(1)).

Recall that the push-forward of powers of the hyperplane class ξ of the CP
1-bundle E′ =

P(NZ/X) → Z are expressed (cf. [Ful84, p. 47]) by Segre classes:

π�(ξj+1) = sj(NZ/X) ∀j ∈ Z.

Writing [Dij ] for the cycle class of Di ∩Dj in the Chow (or homology) group A�X, we have, for
r � 0,

(E′)r+1 = ι�(ι�(E′)r) = ι�((−ξ)r ∩ [E′]).
We may write

π�((E′)r+1) = π�ι�((−ξ)r ∩ [E′])

= (−1)r
∑
i<j

sr−1(O(Di) ⊕O(Dj)) ∩ [Dij ]

in the group AmX of cycles of dimension m = n − 2 − k.
Put

skij = sk(O(Di) ⊕O(Dj)) ∩ [Dij ]

= (−1)kDi · Dj ·
k∑

u=0

Du
i Dk−u

j .

Since sj = 0 for j < 0, we also have
π�((E′)) = 0.

It follows from (4) and (3) that

deg[R] =
∫

X
π�cn(E ′)

=
∫

X

n∑
r=0

cn−r(E) · π�((−E′)r)
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=
∫

X
cn(E) +

n−1∑
r=1

(−1)r+1cn−1−r(E) · π�((E′)r+1)

=
∫

X
cn(E) −

n−1∑
r=1

∑
i<j

cn−1−r(E) · s(r−1)ij

=
∫

X
cn(E) −

n−1∑
r=1

(−1)r−1cn−1−r(E)
∑
i<j

r−1∑
u=0

Du+1
i Dr−u

j .

The idea now is to reduce the general case to the above situation. This will be done by a sequence
of blowups along smooth centers with known normal bundles.

We explain how the reduction works, say in the case when all four-fold intersections are empty,
for the sake of simplicity. The general case is entirely similar. Thus assume that for all

I4 = (0 � i0 < i2 < i3 < i4 � m),

we have

DI4 :=
⋂
i∈I4

Di = ∅.

(This is the case if, for instance, dim X = 3.) It follows that for all choices of triple indices,

I3 = (i < j < k) �= I ′3 = (i′ < j′ < k′),

we must have

DI3 ∩ DI′3 = ∅.
Now, the union T of all triple intersections DI3 is smooth.
Let π : X ′ → X be the blowup along T . The strict transform D′

ij is equal to the blowup of Dij

along the disjoint union of Cartier divisors Dijk, hence D′
ij  Dij holds. Moreover, since Dij ∩ Djk

is a union of connected components of the blowup center, it follows that D′
ij ∩ D′

jk = ∅. We also
have that the D′

i meet transversally.
Look at the pullback π−1W of the zero scheme of the section s. We will take coordinates on X

in a neighborhood of a point 0 ∈ D123, say. Near 0, W is equal to the union D12 ∪ D13 ∪ D23. Let
zi = 0 be a local equation of Di. Then the ideal of W near 0 is equal to the intersection

〈z1, z2〉 ∩ 〈z1, z3〉 ∩ 〈z2, z3〉 = 〈z1z2, z1z3, z2z3〉.
The blowup center, T , is locally given by 〈z1, z2, z3〉. The restriction of X ′ over the present affine
neighborhood of the point 0 is covered by three affine open subsets, one for each choice of zi as a
generator of the exceptional ideal O(−E′).

Say we take z1 as a local generator. We may write zi = z1z
′
i, i = 1, 2. Here z′i is a local equation

of the strict transform of Di.
The pullback of W is given by the ideal

I(π−1W ) = z2
1〈z′2, z′3, z′2z′3〉 = z2

1〈z′2, z′3〉.
This is twice the exceptional ideal, times the ideal of the strict transform of D23.
Note that the strict transforms of D13 and of D12 are empty in the present neighborhood of X ′.

Thus, the D′
ij are presently disjoint.

The local expression shows that the image I(W )OX′ of the co-section

π�s∨ : E∨ → OX′
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is of the form

I(W )OX′ = O(−2E′) · I(Z ′) · I(R′),

where the finite piece R′ = π−1(R)  R and Z ′ =
⋃

D′
ij is the disjoint union of pairwise transversal

intersections of Cartier divisors D′
i.

Hence, we may apply the previous case to the section s′ = s ⊗O(−2E′) of E ′ = E ⊗ O(−2E′).
We find

deg[R] = deg[R′]

=
∫

X′
cn(E ′) −

n−1∑
r=0

(−1)r−1cn−1−r(E ′)
∑
i<j

r−1∑
u=0

(D′
i)

u+1 · (D′
j)

r−u.
(5)

Let E′
i denote the sum of the (disjoint) exceptional divisors over all DI3 with i ∈ I3. Using the

formulas D′
i = π�Di − E′

i and universal formulas for c(E ⊗ O(−2E′)) and applying π�, the above
expression can be written in terms of the intersection numbers DJ · cj(E).

In general, let r be the smallest integer such that for all possible choices of indices

Ir+2 = (0 � i0 < i1 < · · · < ir+1 � m),

we have

DIr+2 :=
⋂

i∈Ir+2

Di = ∅.

If m � 2, we have r � min(n−1,m−1) because dim X = n and the divisors are in general position.
Of course, if r � m no Ir+2 exists! If m = 1, set r = 1.

We then have that the union

Zr+1 =
⋃
Ir+1

DIr+1

of all (r + 1)-fold intersections among Di is smooth. Let π1 : X1 → X be the blowup along Zr+1.
A local analysis as performed above shows that the strict transforms D1

i are in general position and
the intersections D1

Ir+1
are empty. Moreover, there is a section s1 of E1 = E ⊗ O(−rE1) with zeros

scheme W 1 equal to the disjoint union Z1 ∪ R1, with R1 = (π1)−1(R)  R. Here Z1 is the scheme
union of the pairwise intersections D1

ij. Continuing this way, we construct a sequence of blowups,

Xr πr−→ · · · π2−→ X1 π1−→ X

such that ultimately the bundle

Er = E ⊗O(−rE1 − (r − 1)E2 − · · · − Er)

is endowed with a section sr whose scheme of zeros is exactly

Rr = (πr)−1 · · · (π2)−1(π1)−1(R)  R.

Thus, we get the formula

deg(R) =
∫

X
π1

� · · · πr
�(cn(Er)).

The right-hand side may clearly be written in terms of the intersection numbers DJ · cj(E).
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4. Examples

Set for short ci = ciE . Let

σi = σi(D) =
∑

i0+···+im=i

Di0
0 · · ·Dim

m

denote the sum of all monomials of degree i in the classes of the Di.

4.1 m = 1

We find

n = 3 : deg(R) = c3 − D0D1c1 + D2
0D1 + D0D

2
1.

n = 4 : deg(R) = c4 − D0D1c2 + (D2
0D1 + D0D

2
1)c1 − (D3

0D1 + D2
0D

2
1 + D0D

3
1).

These first few cases suggest the formula for general n, still with m = 1,

deg(R) = cn −
n−2∑

1

(−1)n−iσn−i(D)ci − (−1)nσn(D),

which will be generalized in the sequel.

4.2 Aluffi’s formula

This was explained to us by P. Aluffi. In fact, nearly closed formula can be achieved using Fulton’s
residual intersection formula (RIF) [Ful84, 9.2.3, p. 163], instead of the above blowup sequence. It
requires the knowledge of the Segre class of the excess locus Z =

⋃
Dij. This is rendered feasible

thanks to Aluffi’s formula for the Segre class of the singular scheme of a normal crossing divisor
D =

∑
Di (cf. [Alu99, proof of Lemma II.2]). The formula reads

s(Z,X) =
((

1 − 1 − D∏m
0 (1 − Di)

)
∩ [X]

)
⊗X O(D).

The right-hand side uses Aluffi’s · ⊗ L operation on the Chow group introduced in [Alu94]: if ai is
a class of codimension i in the Chow group, and L is a line bundle, then

ai ⊗ L =
ai

c(L)i
.

We have

s(Z,X) = [X] −
((

1 − D∏m
0 (1 − Di)

)
∩ [X]

)
⊗X O(D). (6)

The operation · ⊗ L behaves well with respect to Chern classes of ‘rank 0 bundles’(!). That is, if
E,F are bundles of the same rank, then

((c(E)/c(F )) ∩ a) ⊗ L = (c(E ⊗ L)/c(F ⊗ L)) ∩ (a ⊗ L).

We have to pretend that the fraction in (6) is the quotient of the Chern classes of two bundles of
the same rank, so regard the second piece as(

(1 − D) · 1m∏m
0 (1 − Di)

∩ [X]
)
⊗X O(D),

that is, view the numerator as the Chern class of the bundle O(−D) ⊕O⊕m. Tensoring by O(D),
the numerator turns from

(1 − D) · 1m, into (1 − D + D)(1 + D)m = (1 + D)m;
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the denominator goes from
∏

(1 − Di) to
∏

(1 + D − Di); and again nothing happens to the term
[X], because it is of codimension 0. Bottom line,

s(Z,X) = [X] − (1 + D)m∏m
0 (1 + D − Di)

∩ [X].

We apply Fulton’s RIF, in his notation, to the regular embedding i : X → Y with X as above,
and i equal to the zero section of Y := E ; we take for f : V = X → Y = E the given section s as in
the beginning of § 3. Now we have, in one hand, X · V = cn(E) by [Ful84, Example 3.3.2, p. 67 or
6.3.4, p. 105]. Presently, the residual intersection class R is equal to the class of the finite part R
since the latter is disjoint from Z. Hence, we may write

[R] = cn(E) ∩ [X] − [c(E) ∩ s(Z,X)]n,

where [·]n denotes the n-codimensional part of a cycle. We get,

[R] = [c(E) ∩ ([X] − s(Z,X))]n

= c(E) ∩
[

(1 + D)m∏m
0 (1 + D − Di)

]
n

.

Hence,

deg R =
∫

X

[
c(E)(1 + D)m∏m
0 (1 + D − Di)

]
. (7)

4.2.1 Remark. Let us recall a nice observation in [AF95] to the effect that, if F is a virtual
sheaf of rank n − 1 then cn(F ⊗ L) = cn(F ) for any line bundle L. We may write

c(E)(1 + D)m∏m
0 (1 + D − Di)

= c

(
E + O(D)⊕m −

m⊕
0

O(D − Di)
)

= c

((
E ⊗ O(−D) + O⊕m −

m⊕
0

O(−Di)︸ ︷︷ ︸
rank=n−1

)
⊗O(D)

)
.

Thus, in degree n we find [
c(E)(1 + D)m∏m
0 (1 + D − Di)

]
n

=
[
c(E ⊗ O(−D))∏m

0 (1 − Di)

]
n

.

This can be expanded as
n∑
0

ci(E ⊗ O(−D))σn−i(D) =
n∑
0

i∑
0

(
n − j

i − j

)
cj(E)(−D)i−jσn−i(D).

4.2.2 Remark. The preprint by Catanese et al. [CHKS04] also contains a similar formula,
deduced by different methods and in the context of another subject, namely, algebraic statistics.

4.3 Foliations on CP
n

For E = Ω1
CPn(d), the above reduces to

deg R = coefficient of hn in
(1 − h)n+1∏m
0 (1 − dih)

=
n∑

i=0

(−1)i
(

n + 1
i

)
σn−i(d). (8)

with σn−i the complete symmetric function of degree n − i in d0, . . . , dm.
One further application of Remark 4.2.1 yields the following positivity result.
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Proposition 4.4. Assume at least one di � 2 (and, of course, all di � 1). Then we have deg R > 0.

Proof. We show that, under the change of variables di = ei + 1, the formula (8) becomes

deg R =
n∑
0

(
m − 1

i

)
σn−i(e).

The latter is obviously > 0 if some ei > 0. To show the last equality, we use Remark 4.2.1 to write

cn

(
O(−h)⊕n+1 −

m⊕
0

O(−dih) + O⊕m−1

)

= cn

(
O⊕n+1 −

m⊕
0

O(h − dih) + O(h)⊕m−1

)

=
[
c

(
O(h)⊕m−1 −

m⊕
0

O(h − dih)
)]

n

=
[

(1 + h)m−1∏m
0 (1 − eih)

]
n

= σn(e) + (m − 1)σn−1(e) +
(

m − 1
2

)
σn−2(e) + · · · .
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