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THE MEAN LATTICE POINT DISCREPANCY

by M. N. HUXLEY

(Received 25th April 1994)

Consider a sufficiently smooth simple closed convex plane curve enclosing the origin, expanding linearly with
time. The root mean square of the discrepancy (number of lattice points minus area) from time l = M to
t = M+ 1 is almost as small as the root mean square discrepancy from time f = 0 to t = M, so the discrepancy
has no memory.

A.M.S. subject classification: 11K38, 11P21.

Let C be a simple closed convex curve in the plane, winding once round the origin,
given by x = x(t), y=y{t) with the functions x(t), y(t) four times continuously differenti-
able, and with the radius of curvature bounded away from zero and infinity. Let A be
the area of C. For M large and for u, v in 0 ^ " ^ 1. O^v^ 1, we consider the enlarged
and shifted curve C^u, v), the locus of the point (Mx(t) + u, My(i) + v). Let N^u, v) be
the number of integer points inside CM(u, v), and let D^u, v) be the signed discrepancy

The root mean square value of D^u, v) over u and v is bounded above and below by
multiples of yjM [9]. We consider the curve C^O.O) for M varying, and drop u and v
from the notation, writing CM, NM and DM for the curve C^O, 0), the number of lattice
points #^0,0) and the signed discrepancy D^O.O). Nowak [10] showed that the root
mean square of DM over M is (X^/M). He also showed [11] that D^u, v) is not Q(^/M)
uniformly in u, v, and M.

We give a localised form of Nowak's result, which shows that the discrepancy DM has
no memory: if we imagine M as a time variable, then DM returns almost to its mean
square value within a bounded time. We note that when M increases by more than y/l,
then every lattice square which was cut by the curve now lies completely inside it. As a
corollary we get a pointwise bound for the discrepancy DM with the usual exponent 2/3
[1, 2, 3, 5, 12] which corresponds to the existence of the radius of curvature. We use
Fourier theory, together with the duality of points and lines in plane projective
geometry. This duality was also used in [7] in estimating the number of rational points
with bounded denominator which lie close to the curve C. Relations between these
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problems, and others involving lattice points and plane curves, form the theme of a
forthcoming book [8].

Theorem. Suppose that the curve C encircles the origin, is four times differentiate, and
has radius of curvature bounded away from zero and infinity. Then for M large

M + 1

j \D,\2dt = O(M log M).
A*

The implied constant depends on the shape and size of C, and on its position and
orientation with respect to the coordinate axes.

Corollary. Under the same conditions

DM = O(M2/3(logM)1/3).

We use the Fourier series discovered by Kendall [9], a remarkable extension of a
formula for the discrepancy of an ellipse as an infinite series of Bessel functions first
stated by Voronoi [13]. The Fourier coefficients correspond to short arcs of the curve
where the gradient is close to a rational number. Hlawka [6] and Herz [4] have
computed the Fourier coefficients to great accuracy for the n-dimensional lattice point
problem.

Lemma 1 (Fourier series for the discrepancy). If there is no lattice point on CM(u, v),
then the discrepancy DM(u, v) is equal to the sum of a Fourier series

h k

The Fourier coefficients are given by

and for h and k not both zero

aM(h, k) = — b/J,k, —h) + b^ —k,h) + e^h, k),

where b^v) is defined as follows. Let P be the point of the curve C where the vector v is in
the anticlockwise direction of the tangent. Let p be the radius of curvature of C at P, and
let L(v) = OP x v be the moment about the origin of v acting at P. Then
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The residual term satisfies

Lemma 2 (mean to maximum). Let 5 satisfy 0<5^M/2. lf\DM\^.5ASM,

then we have

n

dt

n

' 7l dt
M-i

and
M+d trj2

f D2 dt > ——
M-d 4

Proof. Since C, lies outside Cu for t>u, the number of lattice points caught inside C,
is a non-decreasing function of t. For I ̂  u

N(^Afu, D,^Du-A(t2-u2).

Hence if DM>0, then for M^t^M + S

D,^DM- A(t2 -M2)^DM-A(t- M)(t + M)^DM-5A 5M/2 ̂  DM/2,

and similarly if DM<0, then for M — d^t^M

The results follow at once by integration over t. •

Our next lemma uses the functions sine2*, A(s), where

sin nx . . . . i i m
sine x = , A(s) = max (1 — s, 0).

nx
These functions are both non-negative, with a maximum at the origin, and form a
Fourier transform pair.

Lemma 3 (short interval means). Let sl,...,sR be real numbers, and let

R

F(x)= £ are(srx),
r = l

where au...,aR are any coefficients. For positive real numbers d and A, and any real X,
let

Jf + A

/(A)= f \F(x)\2dx,
X-A

and
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Then S(d) is positive, and

Proof. We take X = 0. Since

= 1 dy.

sincx =
sin nx_ 2

7IX 71

for |x| ̂  1/2, we have

J |F(x) | 2rfx^ J |F(x)|2sinc2^-dx

since A(s) is the Fourier transform of sine2)'. For X non-zero, we replace a, by

Our last lemma is geometrical.

a

Lemma 4 (Reciprocation). T/ie fines ax -I- fiy = 1 m the plane which do not go through
the origin correspond one-to-one to the points (a, /?) other than the origin, the poles of these
lines with respect to the unit circle. If the line ax + f}y = 1 is tangent to a given convex
curve C enclosing the origin, given in polar coordinates by r = f(0), then the point (a, /?)
lies on a convex curve D given parametrically by

sin(fl + A) cos

where X is the angle between the radius vector OP and the tangent at the point P with
polar coordinates r and 0 on the original curve C, with

cot X=^ log f(0), 0<X<n.
at)

The radius of curvature a at the point Q on D corresponding to the tangent to C at P is
related to the radius of curvature p of C at P by
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pa sin3 A = 1. (2)

Proof. If ax + Py = 1 is the tanget to C at the point P (r cos 0, r sin 0), then

acos0+/?sin0=l/r, (3)

and the gradient at P is

/ a dr • a\lfdr a • o\ COS 0 + COt A sin 0 4 ._ ,.
rcos0H—sin 9 )/ —cos0-rsin0 ) = = tan(0 + A)

V d9 )l\dO ) cotAcos0-sin0 V ;

and asserted. Thus

(4)

The simultaneous equations (3) and (4) for a and /? give (1) of the theorem.
Differentiating, we get from (3)

Thus

and the

da
do™

> s 0 + i s

cot A
r

rsinA

da

tangent to the curve D at

1 dt
:in0= —r — + asin0—/?cos0

r do

sin 0 sin (0 + A)+cos 0 cos (0 + A)
rsinA

cos A
j — Qr sin A

= -cot0 = tan^0 + -J.

the point Q is

xrcos0 + >rsin0=l,

corresponding to the point P on C; we have verified that reciprocation is a self-inverse
transformation. Differentiation in (4) gives

^cos (0 + A) + ^ s in (0 + A)=(asin(0+A)-/3cos(0 + A))( 1 + ^
do do

1 / . . - » . ( 6 )

rsinA
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Solving (5) and (6) as simultaneous equations for da/dO and dfi/d6 gives

da._ sing / d)\df[_cosO{ dX\
de~~rsinH\ +d6j'~dd~r sin2 X\ +d6J

Since 6 + n/2 is the tangent angle, the radius of curvature of D is given by

"rsin2 (7)

The arc length of C is given by

2

Since the tangent angle for C is 6 + X, we have

+ dd)P~
_ (

dd)P~ d9
rfs

We deduce (2) from (7) and (8).

(8)

•
We can now prove our theorem on the mean value of the discrepancy DM under

enlargement of the curve CM.

Proof of the Theorem. The result is not a Parseval inequality, so we must work to
get convergence. From the mean-to-max argument (Lemma 2), we have

/(6M)
3

/(6M)
3

so that

M + l

J \Du\
2du^75A252(M+l)2 216M

M

M+l

J
M-S

a + » D,
dt du.

We choose 5 = l/y/hf, so that the first term is O(M). Next we write

D,= X ( - 2i) Im bt{h, k) + o(4-\
, 0) \WM/

with
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lrabtt+il2(h,k) sinSnUX-
nUk,-h)

where p(v) denotes the radius of curvature at the point where the vector v is the
anticlockwise tangent.

Thus

M + l .1728M 2 Af + 1

f1 \Du\
2du< 2

M t M-S

We use Lemma 3 with

X 6,,+a/2(M) sine « # , - * )
(/..kl/IO, 0)

du
u + d/2

+ O(M). (9)

-<5)/2,A =

and the real numbers s, as — L(v) indexed by the non-zero integer vectors v. The
corresponding coefficients are

The integral in (9) is

Z Z s i n c ^ v ) s inc^w) ^

We want to estimate this sum in order of magnitude. Non-zero terms have

(11)

Since the origin is an interior point of C, we have

« M- (12)
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The inequality (11) introduces the non-uniformity in the position and orientation of C.
We use it to deduce that when the A function is non-zero, then

w.

Hence the expression (10) is

(13)

where the second sum is over w satisfying (11), and we have used Cauchy's inequality in
the form

2 sine <5L(v) sine <5L(w)

(MM)3/4
. sine2 <5L(v) sine2 SL(w)
" |v|3'2 + |w|3/2

to break the symmetry, interchanging v and w in the second sum.
To estimate the number of vectors w satisfying (11), we consider the equation

Uk,-h)=-X.

By reciprocation (Lemma 4), the point (h/X,h/X) lies on a smooth curve D reciprocal to
C. If (11) holds, then v and w correspond to points (hukl) on XlD, (h2,k2) on X2D, with

The lattice point (h2,k2) lies within a distance 0(1) of the curve X^D, whose length is
0(|v|). Hence for fixed v there are 0(|v|) solutions of (11).

We divide the sum in (13) into blocks of the form R^|v|^2/?, where R is a power of
two. Thus the sum in (13) has size

The main result follows on substituting this bound into (9). The Corollary follows by
the mean-to-max argument of Lemma 2 with

6 = \DM\/5AM. •
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