ON THE DENSEST PACKING OF SPHERES IN A CUBE

J. Schaer
(received February 22, 1965)

How many spheres of given diameter can be packed in a cube of given size? Or: What is the maximum diameter of k identical spheres if they can be packed in a cube of given size? These questions are obviously equivalent to the following problem:

Let $d\left(P_{i}, P_{j}\right)$ denote the distance between the points P_{i} and P_{j}, and Γ_{k} the set of all configurations of k points $P_{i}(1 \leq i \leq k)$ in a closed unit cube C. For which configuration $S \in \Gamma_{k}$ is $m_{k}(S)=\min _{1 \leq i<j \leq k} d\left(P_{i}, P_{j}\right)$ as large as possible, and how large is $m_{k}=\max _{S \in \Gamma_{k}} m_{k}(S)$? The maximum exists because of the compactness of Γ_{k}.

We shall call a best configuration any configuration for which the maximum is attained. In any dimension d we have the following Lemma:

BASIC LEMMA. Any best configuration contains at least one point on every face of C. The same is true not only for a cube, but also for any parallelotope.

Here we shall prove the lemma for right parallelotopes. For skew ones a simple modification of the proof would be needed.

In a suitably chosen Cartesian coordinate system a d-dimensional right parallelotope Π may be defined by $0 \leq x^{i} \leq a^{i}(1 \leq i \leq d)$. If a configuration S of k points $P_{j}\left(x_{j}^{1}, \ldots, x_{j}^{d}\right)(1 \leq j \leq k)$ contains no point of the face $x^{1}=a^{1}$,

Canad. Math. Bull. vol. 9, no. 3, 1966
say, then it cannot be a best configuration. Numerate the points P_{i} according to non-decreasing first coordinate:
$0 \leq x_{1}^{1} \leq x_{2}^{1} \leq \cdots \leq x_{k}^{1}=a^{1}-\epsilon(\epsilon>0)$. Then the k points
$Q_{j}\left(x_{j}^{1}+\frac{j-1}{k-1} \epsilon, x_{j}^{2}, \ldots, x_{j}^{d}\right)(1 \leq j \leq k)$ are also all in Π, but $d\left(Q_{i}, Q_{j}\right)>d\left(P_{i}, P_{j}\right)(1 \leq i<j \leq k)$, q.e.d.

For $k=2$ clearly $m_{2}=\sqrt{d}$, d denoting the dimension of
the cube. The points of a best configuration lie in opposite vertices.

The determination of a general formula for m_{k} is a difficult problem. It seems that each value of k must be treated individually.

In $d=2$ dimensions it has been solved [1] for $2 \leq k \leq 9$.
In this paper we shall give the solutions for $k=2,3,4,8$, and 9 in three dimensions. The cases $k=5$ and $k=6$ are treated in separate papers. Fig. 1 displays the se known solutions. *

The case $k=2$ is trivial, $m_{2}=\sqrt{3}$.
The cases $k=3$ and $k=4$ may be treated together, since we can assert $m_{3}=m_{4}=\sqrt{2}$. The configuration of four points is an inscribed regular tetrahedron, and for three points simply one of its four vertices is omitted.

For the proof let us consider any set S of three points $P_{i}(1 \leq i \leq 3)$ of C with

$$
\begin{equation*}
d\left(P_{i}, P_{j}\right) \geq \sqrt{2}=m_{3} \quad(1 \leq i<j \leq 3) \tag{1.3}
\end{equation*}
$$

We shall show that up to symmetric ones the only such set is the indicated one.

If no point of S would lie in a vertex of C, then according to the basic lemma the three points would have to lie on mutually orthogonal non-intersecting edges. With respect to suitably chosen coordinates we might therefore assume them to be $P_{1}\left(x_{1}, 0,1\right), P_{2}\left(1, x_{2}, 0\right)$, and $P_{3}\left(0,1, x_{3}\right)$, with
In the meantime the author has found the solution for $\mathrm{k}=7$ as well.
(2)

$$
0<x_{i}<1 \quad(1 \leq i \leq 3) .
$$

Now by (1.3)

$$
\begin{aligned}
& d^{2}\left(P_{1}, P_{2}\right)=\left(1-x_{1}\right)^{2}+x_{2}^{2}+1 \geq 2, \\
& d^{2}\left(P_{2}, P_{3}\right)=1+\left(1-x_{2}\right)^{2}+x_{3}^{2} \geq 2,
\end{aligned}
$$

and

$$
d^{2}\left(P_{3}, P_{1}\right)=x_{1}^{2}+1+\left(1-x_{3}\right)^{2} \geq 2 .
$$

Adding these inequalities we would obtain

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \geq x_{1}+x_{2}+x_{3}
$$

in contradiction to (2).
Therefore at least one point of S lies in a vertex of C, say $P_{1}=A_{1}$. (See fig. 2) Then by (1.3), P_{2} and P_{3} have to lie in the pyramid $A_{3} A_{6} A_{7} A_{8}$. This set assumes its diameter $m_{3}=\sqrt{2}$ only between the vertices of the equilateral triangle $A_{3} A_{6} A_{8}$. Thus for $k=3$ points without loss of generality $P_{2}=A_{3}$, and $P_{3}=A_{6}$. q.e.d.

A set of $k=4$ points with

$$
\begin{equation*}
d\left(P_{i}, P_{j}\right) \geq \sqrt{2}=m_{4} \quad(1 \leq i<j \leq 4) \tag{1.4}
\end{equation*}
$$

contains of course a subset of three points with (1.3). With the indicated solution for $k=3$, the solution for $k=4$ is therefore obvious: $\mathrm{P}_{4}=\mathrm{A}_{8}$.

The case $\mathrm{k}=8$. It looks obvious, and is indeed readily proved, that the best configuration consists of the eight vertices of Consider any set S of eight points
(1.8) $\quad P_{i}(1 \leq i \leq 8)$ of C with $\min _{1<i<j<8} d\left(P_{i}, P_{j}\right) \geq 1=m_{8}$.

We shall prove that there is just one such set; namely the conjectured one, for which in (1.8) equality holds. Consider C as the union of eight closed cubes C_{i} of side 1/2. Enumerate them such that the vertex $A_{i} \in C_{i}(1 \leq i \leq 8)$. Their diameter is
$\sqrt{3 / 2}<1$, such that in every cube C_{i} by (1.8) there can be at most one point of S. And since there are as many points P_{i} as cubes C_{i}, in every C_{i} there must lie exactly one point of S, say $P_{i} \in C_{i}(1 \leq i \leq 8)$.

We shall now show how the location of every P_{i} may be restricted to a smaller cube $C_{i}^{1} \subset C_{i}$. Iterating the process we find for every i a sequence of cubes $C_{i} \supset C_{i}^{1} \supset C_{i}^{2} \supset \ldots$, all containing A_{i} and P_{i}. Then we shall show that the sequence of the sides s_{n} of these cubes C_{i}^{n} approaches 0 as n tends to infinity, proving $P_{i}=A_{i}$. The process leading from C_{i}^{n} to C_{i}^{n+1} consists of the following: Consider the right square prism of side s_{n} and diagonal 1 which fully contains a closest neighbour cube C_{j}^{n} and as much as possible of C_{i}^{n} (see fig. 3). Excluding its face which lies entirely in C_{i}^{n}, by (1.8) it cannot contain more than one point of S. And because it contains already $P_{j} \in C_{j}^{n}$ its intersection with C_{i}^{n} is excluded as a possible location of P_{i}. Every C_{i}^{n} may be truncated in that manner by its three closest neighbours. What is left as a possible location of P_{i} is the cube C_{i}^{n+1} of side s_{n+1}.

Now $\left(1-s_{n+1}\right)^{2}=1-2 s_{n}^{2}$ and therefore

$$
s_{n+1}=1-\sqrt{1-2 s_{n}}=2 s_{n}^{2}\left(1+\sqrt{1-2 s_{n}^{2}}\right)^{-1}
$$

Thus for $s_{n} \leq s_{0}=1 / 2, s_{n+1}\left(s_{n}\right)^{-1}=(1+\sqrt{1 / 2})^{-1}<1$. This proves $s_{n} \rightarrow 0(n \rightarrow \infty)$ and hence $P_{i}=A_{i}(1 \leq i \leq 8)$.

For the case $k=9$ the best configuration is also easily guessed: It contains the eight vertices A_{i} and the center M of C. We have to prove that this is the only configuration S of nine points $P_{i}(1 \leq i \leq 9)$ in C for which

$$
\begin{equation*}
\min _{1 \leq i<j \leq 9} d\left(P_{i}, P_{j}\right) \geq \sqrt{3 / 2}=m_{9} . \tag{1.9}
\end{equation*}
$$

As in the case $k=8$ we may write $C={ }_{i=1}^{9} C_{i}$, where C_{9} consists of M alone, and the $C_{i}(1 \leq i \leq 8)$ are cubes of side 1/2. But now we don't take them closed, but let each of their 26 vertices besides M belong to one C_{i} only in such a manner that no $C_{i}(1 \leq i \leq 8)$ contains a pair of opposite vertices. This may be achieved easily in many different ways. Then by (1.9) each $C_{i}(1 \leq i \leq 9)$ can contain at most one point of S, and because there are as many points in S as there are sets C_{i}, every $C_{i}(1 \leq i \leq 9)$ contains exactly one point of S, say $P_{i} \in C_{i}(1 \leq i \leq 9)$. Now $P_{9} \in C_{9}$ means $P_{9}=M$, and by (1.9) we deduce immediately $P_{i}=A_{i}(1 \leq i \leq 8)$.

Figure 1.

Figure 2.

Figure 3.

REFERENCES

1. J. Schaer, The densest packing of nine circles in a square.

University of Alberta, Calgary

