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How many spheres of given diameter can be packed in a 
cube of given size? Or: What is the maximum diameter of k 
identical spheres if they can be packed in a cube of given size? 
These questions are obviously equivalent to the following problem: 

Let d(P., P ) denote the distance between the points P. 
1 J i 

and P., and T the set of all configurations of k points 
J k 

P (1 < i < k) in a closed unit cube C. For which configuration £ — — 

S € T. is m (S) = min d(P., P.) as large as possible, 
k l < i < j < k * J 

and how large is rri = max in (S) ? The maximum exists 

s,rk 
because of the compactness of r . 

We shall call a best configuration any configuration for 
which the maximum is attained. In any dimension d we have 
the following Lemma: 

BASIC LEMMA. Any best configuration contains at 
least one point on every face of C. The same is true not only 
for a cube, but also for any parallelotope. 

Here we shall prove the lemma for right parallelotopes. 
For skew ones a simple modification of the proof would be 
needed. 

In a suitably chosen Cartesian coordinate system a 
d-dimensional right parallelotope IT may be defined by 

0 £. x £ a ( * £ i f i ^ ) * -^ a configuration S of k points 
I d 1 1 

P.(x . , . . . , x . ) (1< j£k) contains no point of the face x = a , 
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say, then it cannot be a best configuration. Numerate the points 
P . according to non-decreasing f i rs t coordinate: 

1 1 1 1 1 
0 £ x , < x7 £ • • • < xv - a - 6 (c > 0). Then the k points 

Q. (x . + ~ 7 € , x . , . . . , x. ) (1 < j < k) a re also all in IT , but 
J J K - l j j — — 

d(Q.,Q.) > d (P . ,P . ) ( K i < j < k ) , q . e . d . 
i j i j 

For k = 2 clearly m = \ rd, d denoting the dimension of 
the cube. The points of a best configuration lie in opposite 
v e r t i c e s . 

The determinat ion of a general formula for m, is a 
k 

difficult problem. It seems that each value of k must be 
treated individually. 

In d = 2 dimensions it has been solved [ l ] for 2 £ k £ 9 . 

In this paper we shall give the solutions for k = 2, 3 ,4 , 8, 
and 9 in three dimensions. The cases k = 5 and k = 6 a re 
t rea ted in separate papers . Fig. 1 displays these known 
solutions. * 

The case k = 2 is t r iv ia l , m =NT3. 

The cases k = 3 and k = 4 may be t rea ted together , since 
we can a s s e r t m = m = */2. The configuration of four points is 

an inscribed regular te t rahedron, and for th ree points simply one 
of i t s four ve r t i ces is omitted. 

For the proof let us consider any set S of three points 
P.(l<i<3) of C with 

(1.3) d ( P . , P ) > \T2 = m (Ki<j<3). 
i j - 3 ~ -

We shall show that up to symmetr ic ones the only such set is the 
indicated one. 

If no point of S would lie in a ve r t ex of C, then 
according to the basic lemma the three points would have to lie 
on mutually orthogonal non-intersect ing edges. With respec t to 
suitably chosen coordinates we might therefore assume them to 
be P (x , 0 , 1 ) , P ( l , x ,0 ) , and P ( 0 , 1 , x j , with 

1 1 2 2 3 3 

In the meantime the author has found the solution for k=7 as well . 

266 

https://doi.org/10.4153/CMB-1966-033-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-033-0


(2) 0 < x. < 1 ( K i < 3) 
i 

Now by (1. 3) 

d2(P P ) = (1-xJ 2 + x 2 + 1 > 2, 
1 2 1 2 "~ 

d ( P 2 , P 3 ) = * + ( 1 " X 2 ) 2 + x 3 - 2 » 

2 2 2 
and d ( P 0 , P J = x̂  + 1 + (1-xJ > 2 . 

3 1 1 3 "~ 

Adding these inequalities we would obtain 

2 2 2 
X + X + X > X + X + X 0 

1 2 3 — 1 2 3 

in contradiction to (2). 

Therefore at least one point of S lies in a vertex of C, 
say P = A . (See fig. 2) Then by (1.3), P0 and P have to 

1 1 £ 3 

lie in the pyramid A A A A . This set assumes its diameter 

m = N/~2 only between the vertices of the equilateral triangle 

A A A . Thus for k = 3 points without loss of generality 

P 2 = A3> and P 3 = A6. q.e.d. 

A set of k = 4 points with 

(1.4) d(P ,P.) >NT2 = rn (K i< j<4 ) 
i J - 4 ~ ~ 

contains of course a subset of three points with (1.3). With the 
indicated solution for k = 3, the solution for k = 4 is therefore 
obvious: P A = A^ . 

4 8 

The case k = 8. It looks obvious, and is indeed readily 
proved, that the best configuration consists of the eight vertices 
of C. Consider any set S of eight points 

(1.8) P ( l < i < 8 ) of C with min d(P. ,P . )>l=m . 
l<i<j<8 2 J 8 

We shall prove that there is just one such set; namely the 
conjectured one, for which in (1.8) equality holds. Consider C 
as the union of eight closed cubes C. of side 1/2. Enumerate 

l 

them such that the vertex A c C. ( K i < 8 ) . Their diameter is 
i i — — 
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N/ 3/2 < 1, such that in every cube C. by (1.8) there can be at 

most one point of S. And since there a re as many points P. as 

cubes C , in every C. there mus t lie exactly one point of S, 
i i 

say P. 6 C. ( K i < 8 ) . 
J l l ~" — 

We shall now show how the location of every P . may be 
I x 

res t r i c ted to a smal ler cube C. C C. . I terat ing the p r o c e s s 
I I 1 2 

we find for every i a sequence of cubes C, D C , D C. D . . . , 
i l l 

all containing A. and P. . Then we shall show that the sequence 
of the sides s of these cubes C. approaches 0 as n tends 

n l 
to infinity, proving P. = A. . The p rocess leading from C. to 

n+1 1 1 1 

C. consis ts of the following: Consider the r ight square p r i s m 
of side s and diagonal 1 which fully contains a c loses t 

n n n 
neighbour cube C . and as much as possible of C. (see fig. 3). 

n 
Excluding i ts face which l ies entirely in C. , by (1.8) i t cannot 

contain m o r e than one point of S. And because it contains 

already P . € C. i ts in tersec t ion with C. is excluded as a 
J J n i 

possible location of P . . Every C. may be truncated in that 
manner by i ts three c losest neighbours. What is left as a 

n+1 
possible location of P . i s the cube C. of side s . . 

i l n+1 
2 2 

Now (1-s , , ) = l - 2 s and therefore n+1 n 

s 1A = 1 - N / T T £ 2 = 2 s 2 (1 + N / T ^ 2 S 2 ) * 1 . 
n+1 n n n 

Thus for s < s = 1/2 , s tA (s f * = ( I + N T U T ) " 1 < 1 . 
n ~ o n+1 n 

This proves s -*• 0 (n -** oo) and hence P . = A. ( K i < 8 ) . 
n i î — — 

For the case k = 9 the best configuration is also easily 
guessed: It contains the eight ve r t i ces A. and the center M of 

C. We have to prove that this is the only configuration S of 
nine points P . ( l < i < 9 ) in C for which 

f1-9* min d (P . ,P . ) > \T3j2 = m . 
l<i<j<9 X J 
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As in the case k = 8 we may write C = U C , where 
1=1 l 

C consis ts of M alone, and the C . ( l < i < 8 ) a re cubes of side 
9 l ~" — 

1/2. But now we don't take them closed, but let each of their 
26 ver t ices besides M belong to one C. only in such a manner 

that no C (1 < i < 8) contains a pair of opposite ver t i ces . This 
i — — 

may be achieved easily in many different ways. Then by (1.9) 
each C. (l<.i<.9) can contain at most one point of S, and because 
there a re as many points in S as there are sets C., every 

C. (l<.i<.9) contains exactly one point of S, say P. € C.(1<C i<£9). 
l i l 

Now P € C means P = M, and by (1.9) we deduce 

immediately P. = A. ( l < i < 8 ) . 

m2 s /T ir.3 = ST ir.„ = /T 
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