## ON THE DENSEST PACKING OF SPHERES IN A CUBE

J. Schaer

(received February 22, 1965)

How many spheres of given diameter can be packed in a cube of given size? Or: What is the maximum diameter of k identical spheres if they can be packed in a cube of given size? These questions are obviously equivalent to the following problem:

Let  $d(P_i, P_j)$  denote the distance between the points  $P_i$ and  $P_j$ , and  $\Gamma_k$  the set of all configurations of k points  $P_i(1 \le i \le k)$  in a closed unit cube C. For which configuration  $S \in \Gamma_k$  is  $m_k(S) = \min_{\substack{1 \le i < j \le k \\ 1 \le i < j \le k \\ S \in \Gamma_k}} d(P_i, P_j)$  as large as possible, and how large is  $m_k = \max_k m_k(S)$ ? The maximum exists  $S \in \Gamma_k$ because of the compactness of  $\Gamma_k$ .

We shall call a <u>best configuration</u> any configuration for which the maximum is attained. In any dimension d we have the following Lemma:

BASIC LEMMA. Any best configuration contains at least one point on every face of C. The same is true not only for a cube, but also for any parallelotope.

Here we shall prove the lemma for right parallelotopes. For skew ones a simple modification of the proof would be needed.

In a suitably chosen Cartesian coordinate system a d-dimensional right parallelotope  $\Pi$  may be defined by  $0 \le x^i \le a^i$   $(1 \le i \le d)$ . If a configuration S of k points  $P_j(x^1_j, \ldots, x^d_j)$   $(1 \le j \le k)$  contains no point of the face  $x^1 = a^1$ ,

Canad. Math. Bull. vol. 9, no. 3, 1966

say, then it cannot be a best configuration. Numerate the points  $P_i$  according to non-decreasing first coordinate:

$$\begin{split} & 0 \leq x_1^1 \leq x_2^1 \leq \ldots \leq x_k^1 = a^1 - \varepsilon \ (\varepsilon > 0). \ \text{Then the } k \text{ points} \\ & Q_j \ (x_j^1 + \frac{j-1}{k-1}\varepsilon \ , \ x_j^2 \ , \ \ldots \ , \ x_j^d) \ (1 \leq j \leq k) \ \text{are also all in } \Pi \ , \ \text{but} \\ & d(Q_i, Q_j) > d(P_i, P_j) \ (1 \leq i < j \leq k), \ q. e.d. \end{split}$$

For k = 2 clearly  $m_2 = \sqrt{d}$ , d denoting the dimension of the cube. The points of a best configuration lie in opposite vertices.

The determination of a general formula for  $m_k$  is a difficult problem. It seems that each value of k must be treated individually.

In d = 2 dimensions it has been solved [1] for  $2 \le k \le 9$ .

In this paper we shall give the solutions for k = 2, 3, 4, 8, and 9 in three dimensions. The cases k = 5 and k = 6 are treated in separate papers. Fig. 1 displays these known solutions.\*

The case 
$$\underline{k=2}$$
 is trivial,  $m_2 = \sqrt{3}$ .

The cases k=3 and k=4 may be treated together, since we can assert  $m_3 = m_4 = \sqrt{2}$ . The configuration of four points is an inscribed regular tetrahedron, and for three points simply one of its four vertices is omitted.

For the proof let us consider any set S of three points  $P_i(1 \le 3)$  of C with

(1.3) 
$$d(P_i, P_j) \ge \sqrt{2} = m_3 \quad (1 \le i \le j \le 3).$$

We shall show that up to symmetric ones the only such set is the indicated one.

If no point of S would lie in a vertex of C, then according to the basic lemma the three points would have to lie on mutually orthogonal non-intersecting edges. With respect to suitably chosen coordinates we might therefore assume them to be  $P_1(x_1, 0, 1)$ ,  $P_2(1, x_2, 0)$ , and  $P_3(0, 1, x_3)$ , with

\* In the meantime the author has found the solution for k=7 as well.

(2) 
$$0 < x_i < 1 \quad (1 \le i \le 3)$$
.

Now by (1.3)

a

$$d^{2}(P_{1}, P_{2}) = (1 - x_{1})^{2} + x_{2}^{2} + 1 \ge 2,$$
  

$$d^{2}(P_{2}, P_{3}) = 1 + (1 - x_{2})^{2} + x_{3}^{2} \ge 2,$$
  
and 
$$d^{2}(P_{3}, P_{1}) = x_{1}^{2} + 1 + (1 - x_{3})^{2} \ge 2.$$

Adding these inequalities we would obtain

$$x_1^2 + x_2^2 + x_3^2 \ge x_1 + x_2 + x_3$$

in contradiction to (2).

Therefore at least one point of S lies in a vertex of C, say  $P_1 = A_1$ . (See fig. 2) Then by (1.3),  $P_2$  and  $P_3$  have to lie in the pyramid  $A_3A_6A_7A_8$ . This set assumes its diameter  $m_3 = \sqrt{2}$  only between the vertices of the equilateral triangle  $A_3A_6A_8$ . Thus for k = 3 points without loss of generality  $P_2 = A_3$ , and  $P_3 = A_6$ . q.e.d.

A set of k = 4 points with

(1.4) 
$$d(P_i, P_j) \ge \sqrt{2} = m_4 \quad (1 \le i < j \le 4)$$

contains of course a subset of three points with (1.3). With the indicated solution for k = 3, the solution for k = 4 is therefore obvious:  $P_4 = A_8$ .

The case k = 8. It looks obvious, and is indeed readily proved, that the best configuration consists of the eight vertices of C. Consider any set S of eight points

(1.8)  $P_i(1 \le i \le 8)$  of C with min  $d(P_i, P_j) \ge 1 = m_8$ .  $1 \le i \le j \le 8$ 

We shall prove that there is just one such set; namely the conjectured one, for which in (1.8) equality holds. Consider C as the union of eight closed cubes  $C_i$  of side 1/2. Enumerate them such that the vertex  $A_i \in C_i$   $(1 \le i \le 8)$ . Their diameter is

 $\sqrt{3/2} < 1$ , such that in every cube  $C_i$  by (1.8) there can be at most one point of S. And since there are as many points  $P_i$  as cubes  $C_i$ , in every  $C_i$  there must lie exactly one point of S, say  $P_i \in C_i$  ( $1 \le i \le 8$ ).

We shall now show how the location of every  $P_i$  may be restricted to a smaller cube  $C_i^1 \subset C_i$ . Iterating the process we find for every i a sequence of cubes  $C_i \supset C_i^1 \supset C_i^2 \supset \ldots$ , all containing  $A_i$  and  $P_i$ . Then we shall show that the sequence of the sides  $s_n$  of these cubes  $C_i^n$  approaches 0 as n tends to infinity, proving  $P_i = A_i$ . The process leading from  $C_i^n$  to  $C_i^{n+1}$  consists of the following: Consider the right square prism of side  $s_n$  and diagonal 1 which fully contains a closest neighbour cube  $C_j^n$  and as much as possible of  $C_i^n$  (see fig. 3). Excluding its face which lies entirely in  $C_i^n$ , by (1.8) it cannot contain more than one point of S. And because it contains already  $P_j \in C_j^n$  its intersection with  $C_i^n$  is excluded as a possible location of  $P_i$ . Every  $C_i^n$  may be truncated in that manner by its three closest neighbours. What is left as a possible location of  $P_i$  is the cube  $C_i^{n+1}$  of side  $s_{n+1}$ .

Now  $(1-s_{n+1})^2 = 1-2s_n^2$  and therefore

$$s_{n+1} = 1 - \sqrt{1-2s_n^2} = 2s_n^2 (1 + \sqrt{1-2s_n^2})^{-1}$$
.

Thus for  $s_n \le s_0 = 1/2$ ,  $s_{n+1}(s_n)^{-1} = (1 + \sqrt{1/2})^{-1} < 1$ . This proves  $s_n \rightarrow 0$   $(n \rightarrow \infty)$  and hence  $P_i = A_i$   $(1 \le i \le 8)$ .

For the case  $\underline{k=9}$  the best configuration is also easily guessed: It contains the eight vertices  $A_i$  and the center M of C. We have to prove that this is the only configuration S of nine points  $P_i(1 \le i \le 9)$  in C for which

(1.9) min 
$$d(P_i, P_j) \ge \sqrt{3/2} = m_9$$
.  
 $1 \le i \le j \le 9$ 

As in the case k = 8 we may write  $C = \bigcup_{i=1}^{9} C_i$ , where  $C_9$  consists of M alone, and the  $C_i(1 \le i \le 8)$  are cubes of side 1/2. But now we don't take them closed, but let each of their 26 vertices besides M belong to one  $C_i$  only in such a manner that no  $C_i(1 \le i \le 8)$  contains a pair of opposite vertices. This may be achieved easily in many different ways. Then by (1.9) each  $C_i(1 \le i \le 9)$  can contain at most one point of S, and because there are as many points in S as there are sets  $C_i$ , every  $C_i(1 \le i \le 9)$  contains exactly one point of S, say  $P_i \in C_i(1 \le i \le 9)$ . Now  $P_9 \in C_9$  means  $P_9 = M$ , and by (1.9) we deduce immediately  $P_i = A_i(1 \le i \le 8)$ .













Figure 1.

269



Figure 2.



Figure 3.

## REFERENCES

1. J. Schaer, The densest packing of nine circles in a square.

University of Alberta, Calgary