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We study the dynamics of capillary waves at the interface of a two-layer stratified turbulent
channel flow. We use a combined pseudo-spectral/phase field method to solve for the
turbulent flow in the two liquid layers and to track the dynamics of the liquid-liquid
interface. The two liquid layers have same thickness and same density, but different
viscosity. We vary the viscosity of the upper layer (two different values) to mimic a
stratified oil-water flow. This allows us to study the interplay between inertial, viscous and
surface tension forces in the absence of gravity. In the present set-up, waves are naturally
forced by turbulence over a broad range of scales, from the larger scales, whose size is of
order of the system scale, down to the smaller dissipative scales. After an initial transient,
we observe the emergence of a stationary capillary wave regime, which we study by means
of temporal and spatial spectra. The computed frequency and wavenumber power spectra
of wave elevation are in line with previous experimental findings and can be explained
in the frame of the weak wave turbulence theory. Finally, we show that the dispersion
relation, which gives the frequency (w) as a function of the wavenumber (k), is in good

agreement with the well-established theoretical prediction, w (k) ~ k>/2.

Key words: wave—turbulence interactions, capillary waves, stratified flows

1. Introduction

The flow of two immiscible fluids is often encountered in the petroleum industry, where
crude oil and water, upon extraction from wells, are transported over very long distances
and finally separated in designated process plants. When oil and water flow together inside
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horizontal pipelines and channels, different flow regimes are possible. At low flow rates,
the flow is stratified and the oil-water interface is smooth. At moderate flow rates, the
flow can still remain stratified, but the oil-water interface is characterised by the presence
of waves, which are initially long compared with the pipe diameter/channel height, and
become shorter as the flow rate is increased. At even higher flow rates, waves might break
and generate a dispersed flow in which water drops form inside the oil layer and/or oil
drops form inside the water layer (Al Wahaibi & Angeli 2011; Barral & Angeli 2013).

Owing to the inherent modelling complexity of the flow, literature in the field of
oil-water transportation inside pipes and channels is almost entirely based on experimental
investigations, focused mainly on the evaluation of flow regimes/global flow properties
such as pressure drop and flow rate (Sotgia, Tartarini & Stalio 2008), and on single-point
measurements of the interface deformation (Issenmann, Laroche & Falcon 2016), but also
on analytical investigations of flow stability (Barmak et al. 2016, 2019).

More detailed experimental observations, aiming at characterising the flow structure and
the interface deformation, have become possible in recent years, thanks to the development
of laser-based diagnostic techniques such as planar laser-induced fluorescence (PLIF)
and particle image velocimetry (PIV)/particle tracking velocimetry (PTV). In particular,
PLIF provides information on the scalar distribution of the two phases in the plane of
the laser light, whereas PIV/PTV can provide the corresponding instantaneous velocity
distribution. These techniques are generally applied to cases in which the two fluids
have the same refractive index (RI) (Conan et al. 2007; Morgan et al. 2013), in order to
minimise the optical distortion at the liquid—liquid interface. Similar techniques have also
been applied to gas—liquid systems, including horizontal stratified air—water flow in pipes
(Ayati et al. 2014, 2015, 2016) and even gas-liquid annular flow (Zadrazil & Markides
2014). Very recently, a new simultaneous two-line (two-colour) technique, combining
PLIF and PIV/PTV for non-RI-matched fluids, has been developed (Ibarra et al. 2018;
Ibarra, Matar & Markides 2021), and is expected to contribute further to the research in the
field.

Given the difficulties in obtaining accurate experimental results of interfacial flows,
time and space-resolved numerical simulations, although complex and computationally
expensive to perform, are a valuable tool to provide insightful measurements of the
entire flow field and to offer a corresponding precise characterisation of the liquid-liquid
interface deformation. Compared with the case of gas—liquid flows, in which the number
of accurate simulations is rapidly increasing (Popinet 2018), the case of liquid-liquid
flows has gathered relatively less interest, which is however currently rising thanks to the
renewed interest in the water-lubricated oil pipelines (Xie ef al. 2017; Kim & Choi 2018). In
a series of previous studies (see Ahmadi et al. 2018; Roccon, Zonta & Soldati 2019, 2021),
we have performed computations, based on pseudo-spectral direct numerical simulations
(DNS) of turbulence coupled with a phase field method (PFM), to study the dynamics of
the liquid-liquid flow moving inside a plane channel. However, to the best of the authors’
knowledge, a detailed space—time characterisation of the liquid-liquid interface in such a
configuration is not yet available. This is exactly the aim of the present work. We consider
two immiscible fluid layers that move, under the action of an imposed mean pressure
gradient, inside a plane channel. The two fluid layers have same thickness and same
density, but different viscosity. As in our previous studies, we combine pseudo-spectral
DNS of turbulence with PFM to track the dynamics of the liquid-liquid interface. Upon
application of space and time-resolved flow measurements, we are able to compute the
spectral properties of the liquid-liquid interface and discuss them in the context of wave
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Figure 1. Sketch of the computational domain. Two immiscible fluid layers, with viscosity w; (upper layer)
and po (lower layer) flow inside a plane channel under the action of an imposed pressure gradient. The
instantaneous liquid-liquid interface deformation is shown in white.

turbulence theory (WTT) (Zakharov & Filonenko 1967; Zakharov, L’vov & Falkovich
1992; Newell & Rumpf 2011; Falcon & Mordant 2022).

It is important to note that the waves that form in a stratified oil-water system are
extremely interesting also from a fundamental viewpoint: due to the similar density of the
two fluids, the influence of gravity is ruled out and the entire evolution of the interfacial
waves is dominated by surface tension. This represents a convenient numerical set-up,
which gives us the possibility to challenge current understanding of capillary waves
propagation (Longuet-Higgins 1963; Phillips 1977). Obtaining similar results with larger
density difference fluids would otherwise require complex experimental measurements to
be performed in microgravity conditions (Berhanu et al. 2019).

2. Methodology
2.1. Computational method

We consider two immiscible fluid layers flowing inside a rectangular channel under the
effect of a constant mean pressure gradient. The channel has dimensions L, = 8mh,
Ly =2mh and L, = 2h, along the streamwise (x), spanwise (y) and wall-normal (z)
directions, respectively. The two layers have the same thickness, so that the initially
undeformed interface is located at a distance 4 both from the top and from the bottom wall,
and same density, p; = p» = p, but different viscosity, n; # u2 (and, hence, different
kinematic viscosity, v; #12). The interface between the two fluids has a constant and
uniform surface tension o. A sketch of the domain geometry, along with an instantaneous
visualisation of the interface topology is provided in figure 1. To describe the dynamics
of the two-phase flow system, we use a PFM. This method is based on the introduction
of an order parameter ¢ that is uniform in the bulk phases (¢ = 41 in one phase, and
¢ = —1 in the other phase), whereas it varies continuously over the interface separating
the two phases. Using the half-channel height, A, as the characteristic length scale, and the
shear velocity, u; = 4/t,,/p (with t,, the shear stress at the channel wall), as characteristic
velocity, the governing equations (Navier—Stokes and Cahn—Hilliard) can be expressed in
non-dimensional form as follows:

Veu=0, @.1)

o e Vu=—Vpt+ V@ ) VutVuD =y, @)
ot Re; /8 We

960 A5-3


https://doi.org/10.1017/jfm.2023.189

https://doi.org/10.1017/jfm.2023.189 Published online by Cambridge University Press

G. Giamagas, F. Zonta, A. Roccon and A. Soldati

%_i_u.Vd):i

20,3 4 202
” Pev (¢ ¢ — Ch"V~¢p), (2.3)

where u = (u, v, w) is the velocity vector and Vp is the pressure gradient (whose
mean value is set to Vp = —1), whereas u, = /> is the viscosity ratio. The term
(¢, ) defines the non-dimensional viscosity distribution inside the domain (Ding,
Spelt & Shu 2007; Kim 2012), whereas the term 3Ch/ (\/§W€)V - T, represents the
capillary force per unit mass due to surface tension, with 7', = Vo2 I — V¢ @ V. The
following dimensionless numbers appear in the equations: the shear Reynolds number,
Re; = puh/uy, which is the ratio between inertial and viscous forces (computed using
the viscosity of the more viscous layer, u», as a reference); the Weber number, We =
pu% h/o, which is the ratio between inertial and surface tension forces; the Péclet number,
Pe = u;h/ M, which is a parameter that controls the interface relaxation time and is
defined in terms of the Onsager coefficient, or mobility, M, and of an additional numerical
coefficient, §, used in the non-dimensionalisation of the Cahn-Hilliard equation; and,
finally, the Cahn number, Ch = &/h, which represents the dimensionless extension
of the transition layer between the two phases (whose dimensional value is &). The
governing equations are discretised using a pseudo-spectral method, based on transforming
the field variables into wavenumber space via Fourier representations in the periodic
(homogeneous) directions, x and y, and Chebyshev representation in the wall-normal
(non-homogeneous) direction, z. Periodicity along x and y is assumed for both velocity
u and order parameter ¢, whereas no-slip (#) and no-flux (¢) conditions are imposed at
the two walls. Further details on the numerical method can be found in Soligo, Roccon &
Soldati (2019, 2021).

2.2. Simulation set-up

We consider two different cases. Both cases are characterised by the same value of
the reference shear Reynolds number, Re; = 300, and Weber number, We = 1.0. The
viscosity ratio between the two fluids is u, = 1.00 for the first case and u, = 0.25 for
the second case. The values of the physical parameters are chosen to mimic a situation
in which a light industrial oil (Exxon Mobil Solvesso 200 ND) with p = 980kg m~—3,
> =3.85 x 1073 Pasand 0 = 0.044 N m~! flows together with water inside a channel
of height 24 = 6 x 1072 m, at a reference shear velocity of u; = 3.8 x 102 ms~!. Note
that the reduction of the viscosity in the upper layer leads to a corresponding increase of
the local Reynolds number, which can be estimated as Re; joc =~ Re; /i, (Roccon et al.
2021). As a consequence, the number of grid points N, x Ny X N, must increase for
decreasing ., in order to maintain a suitable resolution. To ensure a correct representation
of the interface dynamics, all simulations are run for Ch = 0.02 and Pe = 3/Ch = 150
(Jacgmin 1999). For both simulations, the initial condition is taken from a preliminary
simulation of a single phase flow at Re; = 300, on top of which we properly define the
initial distribution of the phase field ¢ so that the liquid-liquid interface is at the beginning
flat and located at the channel centre. The main simulation parameters are summarised in
table 1.

3. Results
3.1. Statistics of the turbulent flow field

We first look at the flow statistics for the different cases considered in this work.
In figure 2, we show the mean streamwise velocity, (u(z)/u;), as a function of the

960 A5-4


https://doi.org/10.1017/jfm.2023.189

https://doi.org/10.1017/jfm.2023.189 Published online by Cambridge University Press

Capillary waves in two-layer oil-water turbulent flow

Simulation Re; We Ny N, Ny L, L, L, oy/h oy K Uc/ug

ur=100 300 10 1024 513 256  8mh 2mh 2h 0136 0374 05 19.0
unr=025 300 10 2048 513 1024 8mh 2mh 2h 0116 0350 0.5 210

Table 1. Overview of the main simulation parameters.
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Figure 2. Mean streamwise velocity profiles, (u(z)/u;), as a function of the wall-normal distance z/h, for the
three different cases: u, = 1.00 (blue line), u, = 0.25 (green line), single phase flow (SP, black line). Also
shown (horizontal dashed lines, z,,,,,) is the location at which the mean streamwise velocity profiles have a
maximum.

wall-normal coordinate. Results for the two-layers configuration at different viscosity ratio
(ur = 1.00 and p, = 0.25) are shown together with the reference single-phase (SP) case.
When the two layers have the same viscosity (u, = 1.00), the mean velocity profile is
only slightly modified by the presence of the liquid-liquid interface. However, when the
upper layer has a lower viscosity (1, = 0.25) the mean streamwise velocity is consistently
increased, and its shape much more modified. This reflects into an overall flow rate
increase of about 11 % (see table 2), which can be traced back to a corresponding drag
reduction (because our simulations are all run at the same pressure gradient). Note also
that the location at which the streamwise velocity has a maximum (represented by the
dashed horizontal lines in figure 2) is changed. In particular, for u, = 0.25, the maximum
is shifted upwards with respect to the channel centre, and indicates the tendency for the
streamwise velocity profile to be skewed when the two layers have different viscosity.

Considering the key role of the layer viscosity on the overall flow field, it is also
interesting to show the behaviour of the mean streamwise velocity profiles in wall units.
This can be done via a semi-local scaling (Pecnik & Patel 2017; Roccon et al. 2019, 2021),
which makes use of the local value of the friction velocity,

2|Tw,1|

> 3.1
|Tw,11+1Tw 2]

Ur,loc = Ut
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Simulation  Q1/Qsp  Q2/0sp  0:/Osp  AQ %

Sp — — 1.0000 —
ur = 1.00 0.5035 0.5034 1.0069 00.69
ur =025 0.5807 0.5316 1.1123 11.23

Table 2. Mean flow rates for the different simulations. Here Q1, Q> and Q, correspond to the mean flow rates
of the upper layer (oil), the lower layer (water) and the total mean flow rate over the whole channel height,
respectively, whereas Qgsp is the mean flow rate of the reference single phase flow. The quantity AQ % stands
for the percentage increase in mean flow rate between the multiphase and the single-phase flow simulations.

(a) (b)
25 25
Single phase SP ——
Matched viscosity 41, = 1.00 ——
20 Different viscosity u, = 0.25 —— 20
R 15
N
3
S 10 10
5 5
0 0
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Figure 3. Mean streamwise velocity profiles (a) at the lower layer and (b) at the upper layer rescaled in wall
units using the local friction velocity at the corresponding wall. Also shown (dashed line) is the classical law
of the wall: u™ = z+ and u™ = (1/k) log(z") + 5 (where k = 0.41 is the von Kdrman constant).

to rescale the different profiles, as shown in figure 3. Note that 7,, 1 and 7,, 2 are the values
of the shear stress at the two walls. The wall-normal coordinate in wall units reads as z+ =
2(uz 10c/ V). Figure 3(a) refers to the lower layer, whereas figure 3(b) refers to the upper
layer. The classical law of the wall, u™ = z* and ut = (1/k) log(z") + 5, with k = 0.41
the von Kdrméan constant, is also shown by a dashed line for comparison purposes. At the
lower layer (figure 3a), all the velocity profiles follow the classical law of the wall. This
indicates that the presence of the interface induces only negligible effects on the near-wall
turbulence cycle. A similar situation is also observed at the upper layer (figure 3b), with
all numerical results following fairly well, when rescaled in local wall-units, the law of the
wall. Naturally, for u, = 0.25, the outer layer is extended compared with p, = 1.00.

The influence of the viscosity ratio on the near-wall turbulence structure becomes rather
apparent by looking at the fluctuations of the streamwise velocity, u’, on x—y planes located
near the top and bottom walls. Results are presented in figure 4. In particular, figure 4(a)
refers to a distance of z© = 30 from the bottom wall, whereas figure 4(b) refers to a
distance of z™ = 30 from the top wall. We note the presence of regions with higher
(blue) and lower (red) than mean streamwise velocity, called high- and low-speed streaks,
respectively. It is apparent that, as viscosity is decreased, turbulence structures become
finer and their distribution more complex.
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Figure 4. Contour maps of streamwise velocity fluctuations, #’, on wall—parallel x—y planes located at z™ =
30 from the walls, for the case u, = 0.25: (a) x—y plane near the bottom wall; (b) x—y plane near the top
wall.

3.2. Forcing of the liquid-liquid interface by turbulence

The liquid-liquid interface is naturally forced by turbulence over a broad range of scales,
from the larger scales, whose size is of order of the channel height, down to the smaller
dissipative scales. An example of the spatial distribution of the wall-normal velocity w’
on two x—y parallel planes for the case p, = 0.25 is shown in figure 5. The two planes
are located at z/h = —0.3 (below the minimum wave trough, figure 5a), and at z/h =
0.3 (above the maximum wave crest, figure 5b), so that statistics represent the turbulence
activity around the interface. Regions of positive and negative velocity fluctuations, of
different size and shape, populate the region near the interface. As expected, the size of
the structures in the upper layer, where viscosity is lower, is smaller.

A quantitative measure of such spatial distribution can be obtained by looking at the
power spectra of the vertical velocity fluctuations at the two parallel planes. This is shown
in figure 6; figure 6(a) refers to the plane below the waves, whereas figure 6(b) refers to the
plane above the waves. Also shown in this figure (gray area) is the forcing range of scales,
going from largest, energy-injection scales, indicated as kzrs and corresponding to channel
height 24, downwards. We observe that, below the interface (figure 6a), the forcing applied
by turbulence does not change with w,, and is consistent with literature results (Iwamoto,
Suzuki & Kasagi 2002). Above the interface, turbulence forcing at large scales (around
kgs) does not change significantly as well, even when we decrease u,. What changes is
the forcing at small scales. The influence of turbulence forcing on wave propagation are
discussed in more detail in §§ 3.4 and 3.5.

3.3. Characterisation of the wave field

The dynamics of the interface separating the two fluid layers depends on the competition
between two opposite effects: the destabilising effect of shear and turbulence, and the
stabilising effect of surface tension (we recall that gravity does not play a role here
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Figure 5. Contour maps of wall-normal velocity fluctuations, w’, on wall-parallel x—y planes located near the
interface, for the case pt, = 0.25: (a) x—y plane below the interface, in the lower layer, at z/h = —0.3; (b) x—y
plane above the interface, in the upper layer, at z/h = 0.3.
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Figure 6. Streamwise wavenumber spectrum of the vertical velocity fluctuations, E\,,, averaged in time,
computed on wall-parallel planes x—y below the interface (at z/h = —0.3, panel a) and above the interface
(at z/h = 0.3, panel b). Results for ;, = 1.00 and u, = 0.25 are shown together with the results obtained for
the reference single phase flow.

because the two fluid layers have the same density). The outcome of this competition
determines the behaviour of the interface evolution, which is ultimately characterised
by the propagation of waves with different amplitudes and wavelengths. This is well
represented by the instantaneous interface shape shown in figure 1. For a time-resolved
rendering of the interface dynamics, we refer the reader to the animation included in the
supplementary movie, which is available at https://doi.org/10.1017/jfm.2023.189.

. . ————1/2
We measure the root mean square of the interface elevation, o, = n%(x,y, 1), and

the typical wave steepness, oy = (\/ 1/S f sVl |2(x, y, ) dx dy), where 7 is the amplitude
960 A5-8
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of the interface elevation and S is the surface area of the interface. Overbars indicate
averaging in space along the two homogeneous directions x and y, whereas angular
brackets indicate average in time. After a transient in which waves grow starting from the
initial flat interface, o, and oy reach the statistically steady value reported in table 1. Also
listed in table 1 is the value of the non-dimensional depth parameter x = k,h, where k,
corresponds to the wavenumber of the most energetic wave (discussed in the following).
Reportedly, the wave propagation can be considered a linear process if oy < 1 (Stokes
1847). As this condition is not met in the present case, nonlinear effects can be significant.
In addition, the influence of the fluid layer depth is negligible when « >> 1 (deep water
approximation). Even in this case, since the condition is not fulfilled, we cannot a priori
exclude some influence of the top and bottom wall on the dynamics of interfacial waves.
From the results summarised in table 1, we note that the reduction of w, (i.e. reduction
of the viscosity of the upper layer) has a significant effect on the interface elevation (o,
reduces by =~ 15 %), but only a small effect on the wave steepness (o, reduces by ~ 5 %).

3.4. Frequency spectra
To characterise the propagation of waves at the liquid-liquid interface, we look at the

frequency power spectrum of wave elevation, (S, (f)). Spectra are averaged in space, over
all points of the interface, and in time, over Ny = 14 independent realisations sampled by
the same probe. Results are shown in figure 7 for both u, = 1.00 and p, = 0.25. The
frequency axis is normalised by the frequency f, at which the peak of the spectra is
observed ( f, does not change by changing ;). The lower boundary in the frequency range
reported in the plot corresponds to the inverse of the channel crossing time, t. = Ly/u,,
where u, is the mean streamwise velocity at the channel centre (i.e. the velocity at which
the interface is advected by the bulk fluid motion) for the case u, = 1.00. Note that u,
(whose value is reported in table 1) is slightly higher for p, = 0.25, due to the viscosity
reduction in the upper layer. The upper boundary in the frequency range reported in the
plot is the frequency at which the interface elevation signal is sampled. Also shown in
figure 7 are the theoretical predictions (solid and dashed lines) obtained in the context
of WTT. In particular, assuming weak nonlinearities and negligible dissipation, WTT
predicts, for pure capillary waves, a steady-state regime in which energy is transferred from
the injection scale down to the dissipation scale (Zakharov et al. 1992; Monin & Yaglom
2007). Far from the injection and the dissipation scales, an inertial regime with scaling
Sp(f) ~f~ 17/6 (dashed line) is predicted. This scaling has been previously observed in
experiments performed using a mechanical wave maker, characterised by a narrow-band
low-frequency forcing and by a large-scale separation between the low-frequency forcing
and the high-frequency dissipation region (Falcon, Laroche & Fauve 2007), but also
in numerical simulations under similar conditions (Deike et al. 2014). Note that, for
two immiscible fluids of same density, WTT predicts in the inertial regime the scaling
Sp(f) ~ £78/3, and not Sp(f) ~ £~17/6_ as a result of four-wave interactions instead of
three-wave interactions (Diiring & Falcon 2009). In our simulations, a wide inertial
regime with scaling S, (f) ~ f —8/3,is not clearly observed, for different reasons. First, as
mentioned previously, the influence of nonlinearities and dissipation cannot be excluded
a priori. However, also, and perhaps of greater importance, in our system we do not have
a clear scale separation between the scale of energy injection (forcing) and the scale of
energy dissipation. Energy is injected at the interface by turbulent fluctuations over a
broad range of scales, from the larger scales, which scale with the channel height, down to
the smallest scales, which include also the smallest scales at which energy is dissipated.
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Figure 7. Frequency power spectrum of wave elevation, (S,(f)), averaged in space and time (over 14
independent realisations sampled by the same probe). Results are shown for p, = 1.00 (blue triangles) and

i, = 0.25 (green bullets). The theoretical scalings proposed in literature for the inertial range, f~5/3 (dashed
line), and for the low-frequency, large-scale, range, f_1 (solid line), are also shown for comparison. The
behaviour of the interface deformation in time, recorded at a given location in space, is shown in the inset.

At low frequencies (in the region f /f, < 7), and before the frequencies of energy injection,
the spectrum is compatible with the scaling S, (f) ~ f ~1, which is expected in case of
energy equipartition among large scales (Balkovsky et al. 1995; Michel, Pétrélis & Fauve
2017), and corresponds to a vanishing average energy flux through scales. An experimental
confirmation of this scaling has been obtained only recently, via measurements in the
absence of gravity (Berhanu et al. 2019). Therefore, the present numerical configuration
seems to offer a convenient setting for the assessment of important theoretical predictions.

3.5. Wavenumber spectra

Wavenumber power spectra of wave elevation computed along the streamwise direction,

and averaged in space (only along the spanwise direction, y) and in time, (S, (ky)), are
shown in figure 8. We refer the reader to Appendix A for a discussion on the behaviour of
the spanwise spectra, and for corresponding considerations on the wave field isotropy. As
done for the frequency spectrum, we normalise the wavenumber axis by the wavenumber
k, at which the peak of the spectra is observed (k, = 4m/L, for both values of ).
In figure 8, the wavenumber axis ranges between a lower boundary, which corresponds
to the entire domain length, and an upper boundary ky/k, (highlighted by a vertical
dotted line), which corresponds to the shortest wavelength that can be captured. From
geometrical considerations, and recalling that the extension of the transition layer between
the two phases is 4Ch, this wavelength is Ay = 8Ch (corresponding to a completely bent
interface), hence giving a wavenumber ky = 7/(4Ch). Theoretical predictions, mostly
derived in the context of WTT (solid, dashed and dashed-dotted lines) are also shown
in figure 8. For the reasons already presented (see the discussion about the frequency
spectra), even in this case we do not observe a wide inertial range with scaling S, (k) ~

k—*, as predicted by WTT. We recall here that, as already mentioned, capillary wave
960 A5-10
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Figure 8. Streamwise wavenumber power spectra of wave elevation, (S, (ky)), averaged in space (over the
spanwise direction) and in time. Results are shown for 1, = 1.00 (blue triangles) and u, = 0.25 (green bullets).
Theoretical scalings proposed in literature for the inertial range, k—*, for the low-wavenumber, large-scale
range, k!, and for the high-wavenumber regime, k= are also shown for comparison. The three vertical dotted
lines correspond to the large-scale forcing, ks, to the critical wavenumber, k., at which surface tension and
inertial forces are balanced and to the numerical cut-off, ky, which identifies the highest wavenumber that
can be captured. The behaviour of the instantaneous interface deformation along the streamwise direction,
monitored at a given spanwise position, is shown in the inset.

turbulence between two immiscible fluids of same density is the result of four-wave,
and not three-wave, interactions, therefore leading to S, (k) ~ k=% instead of Sy (k) ~
k=15/4_ In addition, at high wavenumbers, we observe a steeper slope, which follows
the scaling k=, as indicated by the dot-dashed line in figure 8. A similar scaling was
reported in previous experimental observations of wave dynamics at the free surface of a
turbulent open-channel flow (Savelsberg & Van De Water 2008). This sharp decay of the
wavenumber spectrum was ascribed by the authors to the non-negligible effects of wave
nonlinearities and dissipation that, even though neglected by the theory, can play a role in
the propagation of small-scale waves in many cases of practical interest.

The observed behaviour can be physically explained by looking at the dynamics of wave
generation by turbulence. We recall that the dynamics of waves is driven by the balance
between destabilising and stabilising forces. Waves are generated and sustained by vertical
velocity fluctuations w’ (Hoepffner, Blumenthal & Zaleski 2011; Zonta, Soldati & Onorato
2015), whereas they are stabilised by surface tension. At the channel centre, the energy of
velocity fluctuations is distributed among eddies of different sizes, from the largest, with
size of the order of the channel height, to the smallest, with size of the order of the small
dissipative scales. The larger eddies are also the most energetic, and thus induce, upon
impact on the interface, the larger deformation. On the other hand, surface tension forces
act to restore the interface back to its equilibrium position and, being proportional to the
curvature of the interface, are stronger for shorter waves. Therefore, assuming that the
generation of a wave with wavelength A is triggered by a turbulent eddy of equal size, a
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critical Weber number exists, We., = pwzzlcr /o, at which surface tension and inertial
forces are balanced. The critical wavelength, A.., marks the threshold between longer
waves that can grow in amplitude due to the strong inertial forces, and shorter waves that
do not grow because of the overwhelming effect of the restoring surface tension forces and
of the increasing role of dissipation at large wavenumbers (Deike, Berhanu & Falcon 2012;
Deike et al. 2014; Issenmann et al. 2016; Falcon & Mordant 2022). This consideration is
similar to that postulated by Kolmogorov (1949) and recalled by Hinze (1955) to estimate
the maximum size of a drop/bubble that will not break in a given turbulent flow, i.e.
D = 0.725(p/0)~3/3|e.|~?/3, with .. the turbulent kinetic energy dissipation. Using this
semi-empirical prediction, and applying it to the present case in which the characteristic
size is the wavelength and not the drop diameter, we obtain the following estimate for the
dimensionless critical wavelength:

Aoy = 0.725We ™3 Re 2| |75, (3.2)

where the value of €., which is evaluated at the channel centre, is extracted from literature
data at the reference Reynolds number (Iwamoto et al. 2002). The critical wavenumber,

ker = 271/ Aer, 1s indicated in figure 8 by a vertical dotted line. Assuming Wz ~ u%, the
critical wavelength (sketched in figure 1) corresponds to We., = 0.71. According to (3.2),
the local increase of the Reynolds number in the upper layer for u, = 0.25 would lead to
a slightly different critical wavelength. This difference is however negligible, because the
critical wavelength is evaluated based on the balance between inertia and surface tension,
therefore implying that a change in We is much more effective than a change in Re.. Note

indeed that the influence of Re; on A, is not only explicit, via the term Re; 2/ 5, but also

implicit, via €.. As €, decreases for increasing Re;, the two terms, Re; 2/5 and |€C|72/ 3
balance each other.

The estimated critical wavelength lies between the characteristic large scale and the
dissipation scale. Indeed, the tendency to depart from the theoretical prediction, k~#, and
to follow the scaling k=, starts around k,,. Further investi gations at different values of the
flow parameters would be required to fully confirm present predictions. We finally observe
that at low wavenumbers, and consistently with what was observed for the frequency
spectra, the numerical results show also a nice agreement with the prediction S, (k) ~ k!
(Michel et al. 2017). To the best of the authors’ knowledge, the coexistence of these
two different scalings, one for the small scales and one for the large scales, and the
characterisation of the transition region from one scaling to the other, was never reported
before in a single experiment/simulation.

3.6. Frequency-wavenumber spectra

Combining the temporal and the spatial analysis of the wave field discussed previously,
we can obtain the frequency—wavenumber spectra, S, (f, ky), shown in figure 9, a quantity
that allows us to characterise the wave propagation process (dispersion relation of waves).
According to the classical wave theory (Lamb 1932), capillary wave propagation occurs at
velocities that do depend on the wavelength of each individual wave and on the magnitude
of surface tension. In addition, the liquid-liquid interface in our experiments is also
advected by the mean bulk velocity at the centre of the channel and therefore the wave
frequencies are Doppler shifted. To isolate the wave velocity, a shift n'(x, 1) = n(x +
dxgpifr, t) 1s applied to the interface signal in the physical space, where dxgpifr = tte /dfsamp
and dfsamp is the frequency at which the interface elevation is sampled. By removing
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Figure 9. Frequency—wavenumber spectra of wave elevation, S, (f, ky), (a) for , = 1.00 and (b) for p, =
0.25. Dashed white line in both panels corresponds to the linear dispersion relation (LDR) for capillary waves,
(3.4). The black crosses corresponds to the maxima of the numerical results, whereas the red cross indicates
the critical scale, (fer, kcr), beyond which surface tension dominates over inertia.

the Doppler shift, the interface motion is characterised only by the wave velocities,
c(k) = w(k)/k, where w = 27tf is the angular frequency.

The theoretical dispersion relation for pure capillary waves in a finite-depth domain,
including also the nonlinear correction (Crapper 1957), yields

~1/4

5 o 3 ak\?
wk)=—Kk |14+ | — tanh(kh), 3.3)
P14+ p2 4

in which o3, can be used instead of the wave amplitude a (Berhanu & Falcon 2013). In the
present case, finite-depth and nonlinear corrections are found to play a minor role, and the
linear counterpart of the dispersion relation (Lamb 1932),

02(k) = —2 43, (3.4)
p1+ P2

is proven accurate. This is shown in figure 9, where the theoretical prediction given by
(3.4) is plotted by a dashed line and compared with the numerical results (contour maps).
Local maxima of the numerical results are rendered by black crosses.

Present findings indicate that, regardless of the value of u,, spectral energy is focused
around the theoretical prediction, (3.4). In addition, the critical scale (red cross) is localised
near the point where the spectral energy starts decreasing sharply, in agreement with the
previous observations that the energy of waves drops significantly at wavenumbers larger
than the critical wavenumber, k.. Current results are consistent with the behaviour of the
time scales of wave motions shown in Appendix B.
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4. Conclusions

We have reported computational results on the propagation of capillary waves travelling
at the interface between two immiscible fluid layers that flow inside a plane channel.
Simulations are based on a combined pseudo-spectral method/PFM, which gives us the
possibility to describe the action of surface tension forces, and therefore to track the
dynamics of the two different liquid layers and of the separating interface. The two
liquid layers, which are driven by an imposed pressure gradient, have same thickness
and same density, but different viscosity. We have focused, in particular, on the full
space- and time-resolved spectrum of wave elevation. Our results show that the frequency
spectra exhibit only a short inertial regime characterised by the scaling S, (f) ~ f —8/3,
as predicted by the WTT. The main reason for the short inertial regime is the adopted
computational set-up, which is characterised by realistic flow conditions that are different
from the simplified assumptions set in the context of WTT (for example, the absence
of a clear scale separation between energy injection and dissipation, and the importance
of wave nonlinearity, which is considered weak in the context of the theory). At lower
frequencies, and confirming recent theoretical and experimental observations, we find a
scaling S, (f) ~ f ~1, compatible with the large-scale energy equipartition assumption.
Even the streamwise wavenumber spectrum, for the same reasons already mentioned,
does exhibit only a short inertial regime with scaling S, (k) ~ k=4, as predicted by the
theory (WTT). Interestingly, we find a much steeper scaling, S, (k) ~ k~©, at wavenumbers
beyond a critical scale k.., which corresponds to the characteristic wave size at which
surface tension and inertial forces balance. Preliminary results, not shown here, suggest
that the increase of k.- by means of an increased Weber number (for instance, caused by
the addition of surfactant agents), can indeed broaden the inertial range. However, this
remains to be confirmed by further investigations. At low wavenumbers, the theoretical
scaling S, (k) ~ k=1, consistent with the large-scale energy equipartition assumption, is
recovered. Finally, joint frequency—wavenumber spectra have shown that the dispersion

relation is in good agreement with the theoretical prediction, w (k) ~ k3/2.
Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.189.
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Figure 10. Spanwise wavenumber power spectra of wave elevation, (S, (ky)), averaged in space (over the
streamwise direction) and in time. Results are shown for p, = 1.00 (blue triangles) and p, = 0.25 (green
bullets). Theoretical scalings proposed in literature are also shown for comparison. The three vertical dotted
lines correspond to the large-scale forcing, kzs, to the critical wavenumber, k.., at which surface tension and
inertial forces are balanced, and to the numerical cut-off, ky, which identifies the highest wavenumber that
can be captured. The behaviour of the instantaneous interface deformation along the streamwise direction,
monitored at a given spanwise position, is shown in the inset.

Appendix A. Isotropy of the wave field

In figure 10 we show the behaviour of wavenumber power spectra of wave elevation
computed along the spanwise direction, and averaged in space (along the streamwise
direction, x) and in time, (S, (ky)). The wavenumber axis, as done for the streamwise
spectra, is normalised by the wavenumber k, = 47t/L, (for both values of ). Indication
of the wavenumber corresponding to the large-scale forcing kg, to the Hinze—Kolmogorov
scale, k.-, and to the minimum resolved wavelength, ky, is given by the vertical dashed
lines. Also given are the theoretical predictions for the low-wavenumber regime, k~!, for
the inertial regime, k~* and for the high-wavenumber regime, k~%. The close similarity
between the behaviour of the spanwise and of the streamwise spectra (see § 3.5), with
perhaps only a minor influence of the domain size that is smaller along y, shows that
the wave field is essentially isotropic. This is also confirmed by the behaviour of the
time-averaged two-dimensional wavenumber spectra, (S, (ky, ky)), shown in figure 11.
In this figure, the x axis represents the normalised wavenumbers in the streamwise
direction, k./k,, whereas the y axis represents the normalised wavenumbers in the
spanwise direction, ky/k,. The two-dimensional spectra show that, for both u, = 1.00
and u, = 0.25, wave energy is concentrated in a circular-like region of radius k =

\/ (ky/kp)? + (ky/kp)? < 20, only slightly elongated along the k, axis. This is a further
indication that wave propagation does not have a clear preferential direction.
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Figure 11. Two-dimensional wavenumber spectra of wave elevation, (S,(ky, ky)), averaged in time, for
(@) ur=1.00 and (b) p, =0.25. The black dashed line refers to circles of radius equal to the
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Figure 12. Behaviour of the different time scales for waves motion as a function of the wavenumber. The
nonlinear interaction timescale, 7,;, obtained from current simulations is shown by the symbols (triangles for
nr = 1.00 and circles for p, = 0.25). The solid black line refers to the linear propagation time, 7;, whereas
the dot-dashed lines refer to the dissipation time, 745 (evaluated as tgi5s = [K2(v; + vz)]*l, and particularised
here for the two cases with u, = 1.00 and u, = 0.25). The theoretical prediction for the nonlinear interaction
timescale, 7,y ~ k3/4, is shown by the black dashed line. The time scale corresponding to large-scale forcing,
115 = 2h/uz, is also indicated on the y axis of the figure. The vertical dotted lines, from left to right, indicate
the wavenumber associated with (i) the large-scale forcing, kg, (ii) the critical Kolmogorov-Hinze scale, k.,

and (iii) the numerical cut-off, ky.
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Appendix B. Time scales of the wave motion

In this appendix, we describe and quantify the time scales of wave motions, namely the
time scale of linear wave oscillations, t; = 1/w; the time scale of the nonlinear interactions
among waves, T,;; and the dissipative time scale of waves, Tgiss = [K2(v; 4+ v2)]~ ! (Kumar
& Tuckerman 1994). Note that, in addition to being useful to characterise and parameterise
the wave field, this analysis serves also the purpose to establish the possibility of applying
the WTT, which is based on the assumption of the time scale separation, 7; < T,y <K Tgiss»
to the present case.

To estimate the nonlinear time scale, we follow the approach suggested in previous
literature studies (Lamb 1932; Miquel & Mordant 2011; Nazarenko 2011; Deike et al.
2014), and based on the evaluation of the broadening of the frequency—wavenumber
spectrum (figure 9) around the linear dispersion relation (LDR): 7,; = 1/Aw(k*), with
Aw (k*) the spectrum width at the given wavenumber k*. In particular, Aw (k*) is obtained
based on the root-mean-square value of a Gaussian fit used to approximate the behaviour
of S, (f, k*) (Deike et al. 2014). Repeating this calculation for all k, we obtain 7,;(k). The
behaviour of the different time scales is shown in figure 12. The assumption 7; <K T,,
between the linear (blue solid line) and the nonlinear (circle symbols) time scales, is valid
for moderate values of k. The two time scales are of the same order of magnitude only for
large-scale motions (k/k, < 3). In the inertial range, 7, follows the scaling 7, ~ k=3/4
(dashed line), as predicted by the WTT for capillary waves. Regarding the dissipative time
scale (dot-dashed lines), we observe that it is, in general, larger than t,;, but it becomes
comparable around k/k, > 20 (i.e. about the Hinze—Kolmogorov scale). This is a further
indication that in the present case the theoretical power law scaling predicted by WTT
cannot be observed over a broad range of wavenumbers.
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