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Abstract

In the context of urban traffic control, traffic signal optimisation is the problem of deter-
mining the optimal green length for each signal in a set of traffic signals. The literature has
effectively tackled such a problem, mostly with automated planning techniques leveraging the
PDDL + language and solvers. However, such language has limitations when it comes to spec-
ifying optimisation statements and computing optimal plans. In this paper, we provide an
alternative solution to the traffic signal optimisation problem based on Constraint Answer Set
Programming (CASP). We devise an encoding in a CASP language, which is then solved by
means of clingcon 3 , a system extending the well-known ASP solver clingo. We performed exper-
iments on real historical data from the town of Huddersfield in the UK, comparing our approach
to the PDDL+ model that obtained the best results for the considered benchmark. The results
showed the potential of our approach for tackling the traffic signal optimisation problem and
improving the solution quality of the PDDL + plans.
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1 Introduction

Urban traffic control aims at minimising average traffic delay in a given region or allevi-

ating the extreme delays of traffic exiting due to major city events and passing through

the target area. In this context, traffic signal optimisation is the problem of determining

the optimal green length for each signal in a set of traffic signals, which may be dis-

persed around a region consisting of several spatially close traffic junctions. The problem

is usually structured by grouping sets of green signals into stages: each signal in a stage

shares the same green time, is situated in the same junction, and collectively lets traffic

flow through the junction in a safe manner. This structuring leads to a more convenient

representation to solve the problem of determining the optimal green length for each

stage.

Typical practical approaches in this context consider fixed-time traffic-light phases;

thus, with no information about the actual traffic. Model Predictive Controls (see, e.g.,

Papageorgiou 2013) are hardly used in routine operations, since they are computationally

expensive, complicated when it comes to identify the right numerical parameters, and

usually slow to converge. Traffic-reactive mechanisms are usually deployed in small sets

of neighbouring junctions (between three and nine), and can take decisions in real-time

on how to adapt stage duration based on sensor data (Taale et al. 1998). A major issue

comes from the fact that reactive methods can not leverage on knowledge of incoming

traffic that has not yet hit the controlled region, or on wider information about traffic in

the area. To support this sort of reasoning, the traffic signal optimisation problem has

been more recently tackled in the literature with automated planning techniques (Smith

2020; Vallati and Chrpa 2023) leveraging PDDL + language and solvers (Vallati et al.

2016; Antoniou et al. 2019; Percassi et al. 2023b), then extended to cope with a legacy

traffic control infrastructure taking into account deployment constraints (Kouaiti et al.

2024). The automated planning solutions demonstrated interesting capabilities, and the

generated strategies have been deployed in real-world trials in the Hull city region and

in the Kirklees council area in the United Kingdom.

Despite the successful deployments, PDDL + has limitations when it comes to spec-

ifying optimisation statements and to computing optimal plans, which are particularly

useful in practice to ensure that benefits materialise in the controlled region as soon as

possible. At the state of the art, PDDL + planning engines focus on generating satisfy-

ing solutions, with no guarantees on the quality of the solution found. In practice, this

can lead to traffic signal optimisation plans that show extremely long time horizons –

potentially reducing the ability of plans to cope with identified issues. Considering such

limitations, the nature of the problem and the additional constraints and domain size of

the actual real-world infrastructure of the setting by Kouaiti et al. (2024), in this paper

we present an alternative, novel solution to the traffic signal optimisation problem based

on Constraint Answer Set Programming (CASP) (Mellarkod et al . 2008; Liu et al. 2012;

Balduccini and Lierler 2017; Janhunen et al. 2017), which integrates ASP and Constraint

Programming.

Our encoding can model the same solution space of the PDDL + models from Kouaiti

et al. (2024), but limited up to a certain time horizon. After observing that the (pure)

ASP representation struggles to scale with meaningful horizons for this problem, we
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extend it with CASP statements in order to tackle producing plans of higher horizons. In

particular, we apply the system clingcon 3 (Banbara et al. 2017), which is an implemen-

tation that extends the well-known ASP solver clingo with theory atoms and propagators

for linear constraints. For the experiments, we compare and evaluate our approach with

respect to FiRe, the PDDL + model that obtained the best performance among the

proposed alternatives in (Kouaiti et al. 2024) and that, on average, showed better plans

than the ones used in historical data. The benchmark is drawn from real data and we

analysed two tasks: first, evaluating whether clingcon is capable of finding or improving

solutions with certain restrictions; and second, evaluating the result of clingcon with

optimisation statements. The results showed that our CASP encoding is a promising

approach to tackle the traffic signal optimisation problem with limited horizons.

The paper is structured as follows: Section 2 introduces needed preliminaries about

ASP and clingcon 3 language. Then, Section 3 describes the traffic signal optimisation

problem we address in this paper, while our CASP encoding is presented in Section 4.

Further, Section 5 shows the results of an experimental analysis comparing our new

approach to the best one in (Kouaiti et al. 2024), and proposes possible alternative

objectives that exploit the optimisation capabilities of clingcon. The paper ends in Section

6 and 7 by discussing related literature and drawing final remarks, respectively.

2 Preliminaries

Answer Set Programming (ASP) (Gelfond and Lifschitz 1991; Niemelä 1999; Baral 2003;

Brewka et al. 2011) is a declarative programming paradigm that applies non-monotonic

reasoning and relies on the stable model semantics. In the following, we describe a frag-

ment of the ASP syntax, focusing on the constructs appearing in our encoding. An ASP

programme P is a set of rules r of the form: h:- b1,. . .,bn., where h is an atom and

each bi, for 1≤ i≤ n, is a literal, a comparison, or an aggregate. An atom is an expres-

sion of the form p(t1,. . .,tm), where p is a predicate and ti, for 1≤ i≤m, are terms.

A literal c is either an atom ai or its negation not ai. A comparison is equal to t1 ◦ t2
where t1 and t2 are terms and ◦ ∈ {<=, <, =, >, >=}. An aggregate is of the form

t=#count{t1:c1, · · · ,tn:cn} or t=#sum{v1,t1:c1, · · · ,vn,tn:cn} where t and each vi
are integers, ti are terms and ci are literals, for 1≤ i≤ n. The programme P can also

contain choice rules r of the form: {a1:c1;· · · ;an:cn}=s:- b., where b is an atom,

s is a positive integer and, for 1≤ i≤ n, ai is an atom and ci is a literal. A rule r is called

a fact when n= 0, and a constraint if h is not present. The left side of the symbol :- in

a rule is called head , while the right side is called body . The semantics of an ASP pro-

gramme P is given in terms of the answer sets of its ground instantiation Pgrd, computed

by replacing each (first-order) rule r ∈ P with ground rules obtained by substituting the

variables in r by constants occurring in P and evaluating arithmetical expressions. An

answer-set is a collection of (true) ground atoms such that all rules of Pgrd are satisfied

and allow for deriving each of the ground atoms in the head of some rule whose body

is satisfied. We refer to Calimeri et al. (2020) for more details on the ASP syntax and

semantics.

Clingcon. Among the various CASP dialects, we focus in this paper on the one of

clingcon 3 (Banbara et al. 2017), which is the CASP solver we used in the experiments.
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Fig 1. A diagram of the considered corridor in terms of junctions (circles), links, and
boundaries (rectangles). For readability, the map is not correctly scaled.

It extends the fifth generation of the ASP system clingo by introducing theory atoms in its

language and augmenting the solver with propagators for linear constraints, allowing it to

deal with integer domains of considerable size. Among its language extensions, clingcon 3

defines theory atoms as expressions such as &dom{l..u}=a, where l and u are integers and
a is a constraint variable, or expressions as &sum{t1;t2;. . .;tn}=t0, where each ti for

i∈ [0..n] is a constraint variable or an integer. After grounding, the constraint expressions

of the former type are transformed into domain restrictions, requiring that the value

associated to a is an integer included in [l..u], while the latter become linear constraint

atoms requiring
∑

i∈[1..n]ti=t0. Lastly, expressions as &maximize{a} and &minimize{a}
where a is a constraint variable become directives that define as optimal any answer set

with the maximal or minimal possible assignment for a, respectively.

3 Scenario and problem description

This section describes the elements and constraints considered in the traffic signal opti-

misation problem, in particular using the same formalism and scenario applied in Kouaiti

et al. 2024. It is worth reminding that this formalism is based on a mesoscopic represen-

tation of traffic (Ferrara et al. 2018), in which the number of vehicles in road links are

considered rather than representing individual vehicles. This is a standard approach to

reduce complexity and ensure the solvability of the problems.

The general goal of traffic signal optimisation is to minimise the average traffic delay

for a region of interest. In some cases, it can be more specific and focus on alleviating

the extreme delays of traffic exiting major city events and passing through the region, or

dealing with accidents or unusual events. In this work, we focus on a major corridor in the

Kirklees council area within West Yorkshire, United Kingdom, which is approximately

1.3 km long. The corridor, shown in Figure 1 in a simplified form, allows traffic from
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the Huddersfield ring road (that sits on the left of the corridor) to reach the M62 and

M1 highways (right-hand side), and vice versa. Further, it also serves people joining

or leaving events hosted at the nearby John Smith’s Stadium. The corridor includes 6

junctions and considers 34 road links .

Each junction contains traffic signals, the status of which determines whether vehicles

on certain (incoming) roads are allowed to proceed through to other (outgoing) ones. In

the problem representation, the concept of traffic signals in a junction is abstracted, and

instead we use the concept of the junction’s stage, that is, set of traffic movements that

can be active at the same time on the junction, hence controlling the flows of vehicles

between connected links. A cycle is a complete sequence of all stages, defining their order.

In our scenario, stages are always interleaved by intergreen times, that is, times where

no traffic movement occurs in the junction. This occurs when all the junction’s traffic

signals are on red to allow pedestrians to cross and vehicles still transiting in the junction

to leave the area before the next stage begins. Constraints on the problem include the

legal and practical restrictions on the minimum and maximum duration of each stage,

and the minimum and maximum length of the overall traffic signal cycle. The order of

stages in a cycle can not be modified.

We can then formalise the problem’s objective as optimising the length of traffic signal

stages for each junction in the controlled urban region, to minimise the average traf-

fic delay. In the focus area, the SCOOT (Taale et al. 1998) system is in operation for

performing traffic signal optimisation. SCOOT is a traffic reactive control mechanism

used widely around the world, and is aimed at handling cycle-to-cycle changes in traf-

fic demand. In response to changes in traffic flows, SCOOT would gradually adapt the

traffic signal timings of a set of managed neighbouring junctions. The adapting process

is gradual, in the range of 4–8 s difference per cycle, and naturally discretised: the min-

imum granularity is 1 s. In performing its task, SCOOT is dependent on its own local

data sensors, usually inductive loops embedded in the road surface, and stores sensed

data and operational information in a dedicated database.

Exploiting the architecture proposed by Bhatnagar et al. (2023), we can extract infor-

mation from the SCOOT infrastructure and simulate historical data and generated

solutions. Such architecture allows the use of external tools to perform traffic signal opti-

misation, and to inject the generated strategies to be deployed in the region. To allow

deployment on heritage traffic control infrastructure (Kouaiti et al. 2024), the traffic sig-

nal optimisation problem needs to be redefined by considering the following additional

constraints: (i) the length of the stages can not be modified arbitrarily; instead, for each

junction, the configuration of cycles (i.e., the specification of the length of every stage in

the cycle) can only be selected from a predefined set, and (ii) the cycles considered for

the junctions in the controlled region should have approximately the same duration – to

avoid synchronisation issues and ensure that green waves are preserved.

The problem formalisation applied in (Kouaiti et al. 2024) abstracts the vehicle capac-

ity of all the road links by considering instead the numbers of “passenger car units”

(PCU), which is the standard unit for measuring traffic flows, corresponding to the typ-

ical passenger car. Moreover, it represents with the turnrate the average traffic flows

between links in number of PCU’s per second, that is, the number of vehicles flowing

through a particular junction at a certain time of day, when the corresponding traffic
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signal stage is green. Lastly, to minimise the average traffic delay, the problem formal-

isation uses the concept of counter to measure the number of vehicles that navigated

through the link over a considered period of time, and was introduced in Percassi et al.

(2023a) to support the heuristic reasoning of the planning engine. Increasing the number

of vehicles that navigate the region in a given period of time is a proxy for minimising

average delay, as it aims at increasing the throughput of the network, hence reducing

time wasted queuing. In this work, we follow the same concept.

4 CASP modelling

This section introduces our representation of the traffic signal optimisation problem by

means of ASP and clingcon 3 language. We start by illustrating the facts contained in

each problem instance in Subsection 4.1, and then we introduce our encoding. To improve

the readability, we split it into two parts, first describing the rules where exclusively ASP

is used, followed by the part where clingcon expressions appear. The Subsection 4.2

models the decision points of the solver, that is, the time where a configuration can be

selected for each junction, and the status of the junctions at each time, that is, which stage

or intergreen time is active. On the other hand, Subsection 4.3 uses clingcon expressions

to model the occupancy, that is, the number of PCU present at each moment, and the

counter of each link, that is, the number of PCU entering it. Differently from the PDDL+

models, where the heuristics of the planner are used to return a promising sequence of

configurations to reach a target value for every counter, with our ASP model we can

define an optimisation statement aiming to maximise the values of counters within a

given horizon.

4.1 Problem instances

Problem instances represent the initial setting and status of the corridor to be managed,

containing a set of facts defining the following atoms: controllable(J) identifies every

junction J for which the solver can change its stages’ green light duration, selecting from

the set of available configurations, defined through the atoms available_conf(J,C).

In our encoding, a cycle is represented as a sequence of phases, where a phase is either

a traffic-light stage or an intergreen time. Specifically, for each configuration C the set

of atoms phase_limit(P,C,D) defines the duration D of the phase P (where P is either

a stage or an intergreen). The atoms of the form status(J,P) specify the phases P

occurring in a junction J; the order of phases in a cycle is defined through the atoms

next(P1,P2), where the phase P1 is followed by P2, and end(P) identifies the final

intergreen time. Listing 1 contains a simple example of ASP atoms characterising the

junction cycle in Figure 2.

The atoms of the form link(J1,ID,J2) represent (directed) road links connecting

the junction J1 to J2 and are identified by ID to avoid ambiguities for the same

connections. Thus, we can represent the top left links in Figure 1 as, for example,

link(wrac1,z,hsac1) and link(hsac1,c,wrac1). For the sake of compactness, we

use the unary predicate link(L), where L is equal to link(J1,ID,J2). Moreover, the

atoms precedes(J,L) and follows(J,L) identify the junction J preceding and following
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available_conf(j1,j1_c1). available_conf(j1,j1_c2).
next(stage(j1,1),inter(j1,1)). next(stage(j1,2),inter(j1,2)).
next(inter(j1,1),stage(j1,2)). next(inter(j1,2),stage(j1,2)).
status(j1,stage(j1,1)). status(j1,inter(j1,1)).
status(j1,stage(j1,2)). status(j1,inter(j1,2)). end(inter(j1,2)).
phase_limit(stage(j1,1),j1_c1,12). phase_limit(inter(j1,1),j1_c1,2).
phase_limit(stage(j1,2),j1_c1,7). phase_limit(inter(j1,2),j1_c1,4).
phase_limit(stage(j1,1),j1_c2,8). phase_limit(inter(j1,1),j1_c2,2).
phase_limit(stage(j1,2),j1_c2,11). phase_limit(inter(j1,2),j1_c2,4).

Listing 1. ASP facts describing the cycle in Figure 2.

j1 c1

j1 c2

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

12 13 21 22 23 24

8 9 21 22 23 24

STAGE 1 INTER 1 STAGE 2 INTER 2

STAGE 1 INTER 1 STAGE 2 INTER 2

Fig 2. Example of cycles of 25 seconds with two stages for two configurations, j1_c1 and
j1_c2.

each link L, respectively. Every link L has a maximum capacity and initial occupancy,

contained in the second term of capacity(L,C) and initial_occ(L,O), respectively.

Capacity defines the maximum amount of PCU that can be in the link at the same

time, while occupancy indicates the actual amount of PCU in the link in the beginning

of the simulation. If the atom capacity is not defined for a link, then we assume that

there is no limit for it. Moreover, the atoms turnrate(S,L1,L2,U) contain the PCU

U that transits from a link L1 to link L2 during the stage S per unit of time (i.e., sec-

ond). The capacity, occupancy and turn rate numbers have a precision of five decimal

digits and are normalised by multiplying each number by 105. The initial status of the

corridor (i.e., time 0) is described by (i) the active phase in each junction, entailed by

the second term of the atoms active_p(0,P) (with just one active stage P per junc-

tion), (ii) the amount of time since P is active, entailed by the third term of the atoms

active_t(0,J,T) (note that J is the junction where P is active), and (iii) the active con-

figuration for each junction, defined through the third term of active_c(0,J,A). Lastly,

the atoms initial_count(L,D) contain the links L for which we want to maximise the

flow of vehicles, where D is the initial value that we assign to the counter (by default, it

is equal to zero).

4.2 ASP encoding

Our ASP representation simulates the status of the corridor at every second, from time 0

up to the horizon. The unique choice rule in our encoding selects the active configuration

for each junction. The decision points can be precomputed since changing configuration

during a cycle is not allowed and the length of different configurations must coincide, as

specified in Section 3. Listing 2 contains the rules to determine the decision points and

configuration for every junction. The rule in line 1 computes in cycle(J,D) the duration

D of a cycle for a junction J. The atoms prev_status(P,P1) enumerate, for each phase

P, all its previous phases P1 up to the beginning of the cycle. The rule in line 6 calculates
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1 cycle(J,D) :- available_conf(J,C), D=#sum{T,P: phase_limit(P,C,T)}.
2
3 prev_status(S,S1) :- next(S1,S), not endcycle(S1).
4 prev_status(S,S2) :- prev_status(S,S1), next(S2,S1), not end(S2).
5
6 sub(J,T+M):- active_conf(0,J,A), status(J,S), active_t(0,J,T), active_p(0,S),
7 M=#sum{L1,S1: prev_status(S,S1), phase_limit(S1,A,L1)}.
8 step(J,1,D-M) :- controllable(J), cycle(J,D), sub(J,M), D-M<=horizon.
9 step(J,C,T+D) :- step(J,C-1,T), cycle(J,D), T+D<=horizon, C>1.

10
11 {conf(J,C,T,A): available_conf(J,A) } = 1 :- step(J,C,T).
12 conf(J,0,0,A) :- active_c(0,J,A).
13
14 change(J,C,T,A) :- conf(J,C,T,A), 0<C, not conf(J,C-1,_,A).
15 :- conf(J,0,0,A), count_c(J,I), C=1..k-I-1, not conf(J,C,T1,A), step(J,C,T1).
16 :- change(J,C,T,A), I=1..k-1, not conf(J,C+I,T1,A), step(J,C+I,T1).

Listing 2. Encoding part 1 - Define decision points and set configuration.

time

active t

active p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 480 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 480 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

4

S1

5

S1

6

S1

7

S1

8

S1

9

S1

10

S1

11

S1

0

I1

1

I1

0

S2

1

S2

2

S2

3

S2

4

S2

5

S2

6

S2

0

I2

1

I2

2

I2

3

I2

0

S1

1

S1

2

S1

3

S1

4

S1

5

S1

6

S1

7

S1

8

S1

9

S1

10

S1

11

S1

0

I1

1

I1

0

S2

1

S2

2

S2

3

S2

4

S2

5

S2

6

S2

0

I2

1

I2

2

I2

3

I2

0

S1

1

S1

2

S1

S1 I1 S2 I2 S1 I1 S2 I2 S1

cycle 1 cycle 2
conf(j1,0,0,j1 c1) conf(j1,1,21,j1 c1)

step(j1,1,21)
conf(j1,2,46,j1 c2)

step(j1,2,46)

Fig 3. Example of simulation of junction j1 from Figure 2, with horizon = 48,
active_p(0,stage(j1,1)), active_t(0,j1,4) and active_c(0,j1,j1_c1)). S and I are

shorthand representations of stages and intergreen times, respectively.

with the atoms sub(J,S) the seconds S since the current cycle in J was active, up to the

point where the simulation has begun. The rules in lines 8 and 9 use these atoms to derive

step(J,C,T), which identifies for each controllable junction J the time point T in which

the C-th cycle ends; in other words, T is the C-th time point where the configuration

of J can be changed. Lastly, line 11 contains the choice rule for conf(J,C,T,A) that

selects the active configuration A for each atom step(J,C,T), while its value at time 0

is defined in line 12. Figure 3 illustrates a possible example of the predicates conf and

step. Our encoding can model the solution space up to a specific horizon of the three

models presented in Kouaiti et al. (2024), namely CbC, FiRe, and VaRe. Their difference

regards the restrictions on forcing to keep the same configuration for at least a certain

number of cycles. We define a constant k representing this restriction. The rule in line 14

detects with change(J,C,T,A) the time T (i.e., end of C-th cycle) when the configuration

for J is changed to A; these atoms are then used in the constraints in lines 15 and 16 to

rule out unwanted solutions (the term I in count_c(J,I) is the number of J’s completed

cycles at time 0 since its configuration was changed).

Once the atoms of the predicate conf are defined, the rules in Listing 3 are applied

to compute the active predicates for the interval of time points ranging from 1 to

horizon, entailed by time in line 17. The rule in line 18 defines the auxiliary atoms

range(S,A,B,E), computing for each configuration A the terms B and E, which represent

the starting and ending time (relative to the cycle) for each phase S. For instance, for
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17 time(1..horizon).
18 range(S,A,M,M+L-1):- available_conf(J,A), phase_limit(S,A,L),
19 M=#sum{L1,S1: prev_status(S,S1), phase_limit(S1,A,L1)}.
20 active_p(T,S) :- conf(J,0,0,A), sub(J,M), range(S,A,B,E), M<E, B<=M, T=1..E-M.
21 active_p(T,S) :- conf(J,0,0,A), sub(J,M), range(S,A,B,E), M<B, T=B-M..E-M.
22 active_p(T,S) :- conf(J,C,T1,A), C>0, range(S,A,B,E), T=T1+B..T1+E, time(T).
23
24 active_t(X,J,X+M-B):- conf(J,0,0,A),sub(J,M),range(S,A,B,E),M<E,B<=M,X=1..E-M.
25 active_t(X,J,X+M-B):- conf(J,0,0,A),sub(J,M),range(S,A,B,E),M<B,X=B-M..E-M.
26 active_t(T+X,J,X-B):- conf(J,C,T,A),C>0,range(S,A,B,E),X=B..E,time(X).
27
28 active_c(1..horizon,J,A):- conf(J,0,0,A), not step(J,1,_).
29 active_c(1..T,J,A) :- conf(J,0,0,A), step(J,1,T).
30 active_c(T..T1-1,J,A) :- conf(J,C,T,A), step(J,C+1,T1), C>0.
31 active_c(T..horizon,J,A):- conf(J,C,T,A), not step(J,C+1,_), C>0, horizon>=T.

Listing 3. Encoding part 2 - Define active predicates from time 1 to horizon.

the configuration j1_c1 in Figure 2, we get range(stage(j1,1),j1_c1,0,11), range

(inter(j1,1),j1_c1,12,13), range(stage(j1,2),j1_c1,14,20) and range(inter

(j1,2),j1_c1,21,24). Then, lines 20-22 define at each time T the atoms active_p

(T,P), containing in P the active phase for each junction. The rules in lines 24-26 define

the atoms active_t(T,J,TS), containing in TS the amount of time since P (phase of J)

is active, at time T, and lastly, lines 28-31 define with the atoms active_c(T,J,A) the

active configuration A for junction J at time T. Lines 20-21, 24-25, and 28-29 compute

the values for the time points included in the first cycle, while the other lines compute

the values for the subsequent ones. The last two timelines in Figure 3 represent the

pointwise values for active_t and active_p; while the atoms of active_c have the

configuration j1_c1 active for every time point ranging between 1 a 45, and j1_c2 from

46 to 48.

4.3 Encoding with CASP atoms

To decide a promising configuration assignment, the number of PCU transiting in the

corridor during the considered interval must be taken into account. To compute this

information, we need to evaluate at each time point the unit of vehicles transiting in

each link, considering the active stage of the adjacent junctions and the number of cars

in each link (no cars can transit from one link, if its occupancy is negative, and no cars

can transit in one link, if it has already reached its capacity). Because of the size of

the grounding when considering a horizon greater than 100 seconds, it was necessary

to extend the ASP encoding with CASP language (in particular, clingcon). In the fol-

lowing, we directly describe this reformulation using clingcon expressions (described in

Section 2). The theory atoms consider the predicates occ(T,L) and counter(T,L), asso-

ciated respectively to an integer number representing the occupancy and the number of

cars reaching the link L at time T. The theory atoms &dom{Lo..Up}=occ(T,L) defines

the minimal and maximal number that can be assigned to each occ(T,L), where Lo and

Up are the value zero and the corresponding link’s capacity (or a default value if the

latter is not specified) plus an approximation error.
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32 full(T,L,0) :- &sum{occ(T,L)}>=C, time(T), capacity(L,C).
33 full(T,L,1) :- time(T), link(L), not full(T,L,0).
34 empty(T,L,0) :- &sum{occ(T,L)}<=0, time(T), link(L).
35 empty(T,L,1) :- time(T), link(L), not empty(T,L,0).
36
37 in_ord(L,L1,N) :- turnrate(_,L1,L,_), N=#count{L2: turnrate(_,L2,L,_),L2<=L1}.
38 out_ord(L,L1,N):- turnrate(_,L,L1,_), N=#count{L2: turnrate(_,L,L2,_),L2<=L1}.
39 last_in(N,L) :- link(L), N=#count{L1: in_ord(L,L1,M)}.
40 last_out(N,L) :- link(L), N=#count{L1: out_ord(L,L1,M)}.
41
42 delta(T,0,L,0) :- time(T), link(L).
43 delta(T,N,L,D+R*E*F) :- time(T), precedes(J,L), status(J,S), active(T-1,S),
44 delta(T,N-1,L,D), in_ord(L,L1,N), turnrate_z(S,L1,L,R),
45 empty(T-1,L1,E), full(T-1,L,F).
46 delta(T,M+N,L,D-R*E*F) :- time(T), follows(J,L), status(J,S), active(T-1,S),
47 delta(T,M+N-1,L,D), last_in(M,L), out_ord(L,L1,N),
48 turnrate_z(S,L,L1,R), empty(T-1,L,E), full(T-1,L1,F).
49 &sum{D}=occ(0,L) :- initial_occ(L,D).
50 &sum{occ(T-1,L);D}=occ(T,L) :- delta(T,I+O,L,D), last_out(O,L), last_in(I,L).
51 &sum{D}=counter(0,L) :- initial_count(L,D).
52 &sum{counter(T-1,L);D}=counter(T,L) :- delta(T,O,L,D), last_in(O,L).
53 :- initial_count(L,_), &sum{counter(horizon,L) } < bound.
54 &maximize{counter(horizon,L) : initial_count(L,_)}.

Listing 4. Encoding part 3 - Theory atoms for occupancy and counter.

Listing 4 contains the rules used to define the theory atoms and their auxiliary pred-

icates. The rules in lines 32 and 33 define the auxiliary atoms full(T,L,B) where B is

equal to 1 if L has not reached its capacity at time T and 0 otherwise. Similarly, lines 34

and 35 define the auxiliary atoms empty(T,L,B) where B is 1 if L is not empty at time T

and 0 otherwise. The rule in line 37 defines in_ord(L,L1,N) that contains, for each link

L, its incoming link L1, where N is its rank according to the lexicographic order; similarly,

in line 39, the atoms out_ord(L,L1,N) contains the same information, but for the outgo-

ing links of L. Lines 39 and 40 define, respectively, last_in(N,L) and last_out(N,L),

two auxiliary predicates containing the number N of incoming and outgoing links for

each L. All these atoms are used to compute, for each link L and time T, a set of N atoms

delta(T,N,L,D), incrementally computing the value that must be summed to the theory

atoms with occ(T-1,L) to obtain occ(T,L). Each delta starts from zero (line 42), then,

following the lexicographic order of its incoming links (thanks to the predicate in_ord),

it incrementally adds to the previous delta the turn rates of the current active phase,

only if the incoming link is not empty and L is not full (rule in line 43). Note that we use

the predicate turnrate_z, which is not included in the listing but generalises turnrate

by adding the case when the turn rate is zero (i.e., not defined by the original turnrate).

Lastly, line 46 incrementally diminishes the value of delta, considering the turn rates of

each outgoing link, similarly to the rule above. Lines 49 define the theory atoms with

occ for each link at time 0, initialising them with their initial occupancy; subsequently,

line 50 computes each link’s occupancy at time T by adding the value of the link’s last

delta to its occupancy at time T-1. Lines 51 and 52 define the theory atoms for counter,

which is computed similarly to occ, but without considering the outgoing links (thus,

it sums the value of delta obtained up to the last incoming link). Similarly to the goal

restrictions of the PDDL + models, the constraint in line 53 removes solutions with a

value counter lower than bound at the time corresponding to horizon. Additionally,
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we add the optimisation objective in line 54, that is, maximising the number of cars

transiting in the links contained in initial_count.

5 Experiments

This section describes the experiments we conducted to evaluate the performance of

our approach and discusses possible applications. In Subsection 5.1, we detail the char-

acteristics of the problem instances introduced in (Kouaiti et al., 2024) considered

for our experiments. Then, Subsection 5.2 details the experiments we run, compar-

ing the performance of our suggested approach with the PDDL + version. Lastly, in

Subsection 5.3, we highlight the optimisation capabilities of clingcon, by suggesting pos-

sible alternative objectives and a way to combine PDDL + with our model to guarantee

that a solution is always found.

5.1 Benchmark

The benchmark contains six situations in two distinct days on the corridor discussed

in Section 3, and shown in Figure 1: the 26th, which is a Wednesday, and the 30th, a

Sunday, both in January 2022. Each day was examined at three different time slots: the

morning peak hour at 8:30 am, noon at 12:30 pm, and the evening peak hour at 4:30 pm.

This provides variability in terms of traffic volumes, directions, and conditions. Further,

an additional situation is considered, involving exceptional traffic circumstances, that

is, a concert held at John Smith’s Stadium on Tuesday the 20th of June 2023, which

attracted an approximate audience of 30, 000 people. The time considered is 4:00 pm,

which is before the start of the concert. This is interesting because there is a clash

between commuters leaving the town and spectators arriving at the concert, creating

two opposed traffic demands. For each junction, six different cycle configurations are

available, generated according to historical data. Two different sets of cycle configurations

are considered, according to the historical data used for their extrapolation, for a total

of 14 scenarios (7× 2).

Five instances are produced for every scenario by consistently increasing the number

of links in the corridor considered in the goal, starting from link(wrac1,y,wrbc1),

till considering link(wrec1,y,wrfc1). For each scenario, we identify the instances as

pi for i∈ [1..5] where i represents the number of goals. The different numbers of goals

correspond to different requirements and behaviours in the region. Focusing on one or two

links in the goal can lead to flushing vehicles out of them as soon as possible, potentially

congesting nearby ones. When larger chunks of the corridor are considered, there is the

need to ensure traffic remains smoothly moving in the whole area. Overall, we consider

70 problem instances.

5.2 Experiment setting and results

We run our experiments on an AMD EPYC 9354 (4) @ 3.2 GHz machine with 32 GB

of memory under Linux (Ubuntu 22.04.5 LTS), using the system clingcon (v5.2.1) with

the libclingo v5.8.0. To run the PDDL + solver, enhsp (Scala et al. 2020), we use java
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openjdk (v21.0.6). The instances, ASP and clingcon encoding, as well as the experiment

setup can be found at this link https://github.com/altarzariol/traf sign casp.

Our clingcon encoding models the same solution space (up to a certain horizon) of the

PDDL + models from Kouaiti et al. (2024), in particular, in the experiments we focus

on FiRe (i.e, setting the limit k= 4 for every junction) since it is the model obtaining

the best performance among the proposed PDDL + alternatives and that, on average,

showed better plans than the ones used in historical data. In the paper, the authors

set a threshold of 350 vehicles in every goal, and evaluate the plans found by cutting

their horizons up to 900 s (i.e., 15 min). Limiting the plan’s horizon for the evalua-

tion was necessary in order to consider only simulations consistent with the real-world;

indeed, when considering horizons greater than 15 minutes, the results diverge from the

simulations because of the shifting of underlying turn rates (Bhatnagar et al. 2022b).

Therefore, for our clingcon encoding, we set the constant horizon up to 900. Moreover,

while state-of-the-art PDDL+ approaches for traffic signal optimisation can generate

solutions quickly, in many cases, strategies are generated in advance, and validated and

tested before being deployed in the controlled region – effectively enabling the use of

approaches that could generate higher quality solutions more slowly. For this reason, in

the following experiments, we set a timeout of 10 minutes for every run.

To validate the simulation obtained with our clingcon encoding, we compare the status

of the corridor and decision points with respect to FiRe, using the pps simulation tool

https://github.com/hstairs/pps: this approach demonstrated to support simulations that

are close to real-world traffic evolution within 15 minutes time windows (Bhatnagar et al.

2022a). We evaluate two tasks: in the former, we compare our encoding to the PDDL +

model FiRe on a similar setting, that is, the decision version of the problem; while, in

the latter, we compare the result of FiRe with the optimisation version of our clingcon

encoding. For both tasks, we run clingcon with the flag --config=crafty since this is

the option that obtained the best performance in our experiments.

Task 1: decision problem with bound. The horizon of the plans returned by FiRe with

goals of 350 vehicles is higher than 15 minutes. Thus, to provide a fair ground to com-

pare the two approaches, we set the constant bound for each instance in the benchmark

by considering the minimal counter observed in the plans of FiRe at 10, .., 15 minutes

(namely, 600, .., 900 seconds) and setting the constants bound and horizon accordingly.

Figure 4 shows the aggregated improvement of the values counter in the corresponding

horizon, considering only the instances for which clingcon managed to find a plan within

a timeout of 10 minutes. In the axis “Horizon,” we report the value horizon used by

clingcon and the limit used for the evaluation of the plan found by FiRe, while in paren-

theses we specify the number of considered instances (i.e, those for which clingcon found

a solution equal or better than the given bound within the timeout). The results indi-

cate that, despite the struggle with the grounding size, clingcon can be used to improve

PDDL+ solutions. Moreover, although for 43 instances with an horizon of 900 seconds we

get a timeout, the solutions found for the remaining 27 instances obtained a considerable

improvement.

Task 2: optimisation problem without bound. Subsequently, we evaluate our encoding

by running it with the optimisation statement in line 54 of Listing 4. We set a time limit
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Fig 4. Task 1 - decision version with bound.

of 10 minutes, no request on the bound (thus, bound = 0 and horizon = 900), and the

results considered are derived from the best solution obtained within the time limit.

Figure 5a shows the aggregated improvements observed for the 70 instances of the

benchmark, by projecting the plan of the two approaches at different time points.

Although not every clingcon’s plan improves the quality of the solutions returned by

FiRe, the overall improvement from its successful runs overcomes the one of FiRe. The

only exception can be seen at 720 seconds. One possible explanation for this observation

is that, in that moment or slightly before, most of FiRe solutions maximise the flow in

the corridor, possibly penalising neighbouring links, and subsequently leaving the corri-

dor with low occupancy, thus requiring more time to increase the counter consistently.

Figure 5b, on the other hand, projects the aggregated result at horizon 900, dividing it

by type of instances. Here we can observe that the majority of clingcon improvements

derive from instances with three, four or five goals. One reason for this observation is

that, by focusing on one or two links, it is easier to congest the link below, and then

get worse overall results. Lastly, in both tasks, we observe that clingcon struggles with

returning a solution when many decision points occur in the simulated horizon.

5.3 Alternative optimisations and combination

Thanks to its optimisation capabilities, clingcon can express alternative optimisation

goals, making the suggested model modular and capable of adapting to different targets.
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Aggregated results projecting horizon. Aggregated results at horizon 900.

(a) (b)

Fig 5. Task 2: optimisation version without bound.

Indeed, one may want to increase the occupancy of a link as much as possible – a

proxy for reducing vehicles’ speed on that link. Another goal can be to reduce the occu-

pancy of a link as much as possible, to optimise the flow of traffic from a specific entry

point/direction. In both cases, the most effective way to indirectly express the optimisa-

tion statement is to maximise/minimise the values computed with the predicates delta,

which represent the increment/decrement in the occupancy of a link at every time. This

allows for reducing the size of the values considered, which can quickly become intractable

when considering the difference between occupancy and capacity. To do that, we can sim-

ply add the following clingcon expressions to define a new theory atom increments(T,L)

that represents the total PCU that entered in/exited from the link L identified by the

input atoms max_occupancy(L) (if we consider maximisation) at time T:

&sum{0}=increments(0,L):- max_occupancy(L).

&sum{increments(T-1,L);D}=increments(T,L):-
delta(T,I+O,L,D), last_delta_out(O,L), last_delta_in(I,L),

max_occupancy(L).

Then, we maximise the occupancy of the target links with the following optimisation

statement:

&maximize{increments(horizon,L) : max_occupancy(L)}.
If, on the other hand, we aim to minimise the occupancy of target links, we can simply

add the same rules but instead of max_occupancy(L), we represent the target with

min_occupancy(L) and then, instead of &maximize we write an optimisation statement

with &minimize.

It is also possible to encode goals where counters on exit links have to be minimised –

to represent cases where we want to reduce traffic pressure on a nearby region by slowing

down vehicles in the controlled one. Similarly to the previous case, to achieve this, we

can simply replace the directive &maximize with &minimize in line 54 of Listing 4.

Lastly, more complicated goals can be used to represent traffic accident management,

where traffic before the accident has to be slowed down (minimise counter value), while

traffic on that link and subsequent ones has to be flushed away as soon as possible
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(maximise corresponding counters). To model this, we can identify the links before and

after the accident, for example, with slow_traffic(L) and flush_traffic(L), and

write the following optimisation statements:

&maximize{counter(horizon,L) : flush_traffic(L)}.
&minimize{counter(horizon,L) : slow_traffic(L)}.
As long as all these optimisation statements do not aim to pursue contrast-

ing objectives, for example, by specifying the same link for max_occupancy(L) and

min_occupancy(L), we can include more than one optimisation target in the encoding

and even specify the priority level, similarly to weak constraints for ASP.

Combining PDDL + and CASP. The clingcon encoding can also be used to improve the

quality of solutions returned by the PDDL + approach, hence combining the strengths of

the approaches. From the solution found by the PDDL + planner, the values of counter

at a given horizon of each target link can be extracted. This information can be encoded

in atoms of the form pddl_solution(L,C), where L is a target link for the optimisation

and C is the value of counter obtained by the PDDL + plan. Then, by including in

our encoding the following constraint, we can force clingcon to return a solution that is

strictly better than the PDDL + one:

:- &sum{counter(horizon,L) : pddl_solution(L,_)} <= S,

S=#sum{B,L: pddl_solution(L,B)}, pddl_solution(_,_).

We implemented an automated pipeline to exploit the synergies of the two approaches

and tested it on the same benchmark and settings used for our experiments. We

considered horizons of 10, . . . , 15 minutes. By combining PDDL + with ASP, we man-

aged to improve the quality of almost half of the solutions. The automated pipeline

and the results of the experiments can be found at this link https://github.com/

altarzariol/traf sign casp.

6 Related work

A large number of planning and scheduling-based approaches have been developed for

traffic signal optimisation. Gulić et al. (2016) proposed a system that integrates an

AI planning engine with the Sumo simulator (López et al. 2018) via an “Intelligent

Autonomic System” module. Their pddl2.1 model utilises relative density descriptors

(e.g., “low,” “medium”) to represent traffic concentration on road links, abstracting

away from individual vehicle counts. This approach enables scalability to regions with

thousands of vehicles. The work by Pozanco et al. (2021) builds upon this approach,

introducing also the ability for continuous learning and knowledge model evolution for

improved network adaptation. The preliminary work by Ivankovic et al. 2022 performs

traffic signal optimisation by leveraging on planning techniques that reason with global

state constraints (Haslum et al. 2018), which can provide valuable insights into the

broader impact of light changes.

On a different line of work, (Vallati et al. 2016 and McCluskey and Vallati 2017)

exploits PDDL + for encoding a flow model of vehicles through traffic-light controlled

junctions. Those initial works have then been extended in (Percassi et al. 2023b and

Kouaiti et al. 2024), where the proposed approaches have been extensively validated with

historical data from urban regions in Manchester and Huddersfield, from the northern
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part of the United Kingdom. These most recent works take into account the constraints

of the existing infrastructure and are hence suitable for deployment. Finally, Percassi

and Vallati (2025) assesses the suitability of LLMs to generate valid and effective traffic

signal configurations from scratch, and Percassi and Vallati (2024) demonstrates how to

perform a what-if analysis on the basis of the engineered knowledge models.

From a different perspective, the SurTrac system leverages a decentralised scheduling

technique for urban traffic signal control (Xie et al . 2012; Hu and Smith 2019; Smith

2020). Each intersection acts as an autonomous scheduling agent, collaborating with

neighbouring intersections to predict future traffic demand and minimise expected vehicle

wait times at their respective signals. This distributed approach exhibits good potential

for scalability due to its localised decision-making, but may exhibit reduced flexibility in

achieving specific system-wide goals compared to centralised methods.

Instead, there are far fewer approaches to problems related to traffic signal optimisation

that use ASP. Eiter et al. (2020) introduces an approach to optimise the coupling of traffic

movements at junctions, according to expected traffic demand in the area, and to simulate

using a mesoscopic-level representation. The experiments considered a realistic area with

two junctions and are compared to the microscopic traffic simulator SUMO (López et al.

2018). In the wider area of traffic control, Cardellini et al . (2024) deals with the problem of

dynamic traffic distributions in urban areas. As a part of a framework defined for solving

such problem, they employed ASP for the computation of the best possible routes for

all the vehicles in the network, starting from a set of candidate routes for all vehicles

within the framework. On other directions in traffic research, ASP has been employed by

Beck et al. (2012a,b) to manage the inconsistency in traffic regulations in Smart Cities,

and by Vaseqi and Delgrande (2013) as a component in a situation awareness system for

maritime traffic control.

7 Conclusion

In this paper, we presented a novel approach to the traffic signal optimisation problem

leveraging CASP. By encoding the problem within a bounded time horizon, our method

addresses a key limitation of existing PDDL + solutions, which do not properly support

the specification of optimisation criteria. Our empirical evaluation, conducted on real-

world historical traffic data for a range of traffic conditions, highlighted the capabilities

of the proposed approach and its benefits over the PDDL + state of the art, as well as

the potential of combining the approaches. Future work will focus on further improving

the solving phase by tackling the limitations of one-shot search by adapting multi-shot

techniques, and by defining and implementing domain heuristics, possibly extending the

approach to larger urban regions. We are also interested in exploring the use of ASP-

based approaches for identifying suitable traffic signal cycle configurations to be used

according to the expected traffic conditions to be dealt with.
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Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4, 241–273.

Papageorgiou, M. 2013. Concise Encyclopedia of Traffic and Transportation Systems. Vol. 6.
Elsevier.

Percassi, F., Bhatnagar, S., Guo, R., Mccabe, K., Mccluskey, T. L. and Vallati, M.
2023a. An efficient heuristic for AI-based urban traffic control. In 8th International Conference
on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2023a, IEEE,
1–6.

Percassi, F., Scala, E. and Vallati, M. 2023b. A practical approach to discretised pddl+
problems by translation to numeric planning. Journal of Artificial Intelligence Research 76,
115–162.

Percassi, F. and Vallati, M. 2024. Leveraging ai planning in a what-if analysis framework for
assessing traffic signal strategies. In 2024 IEEE 27th International Conference on Intelligent
Transportation Systems (ITSC) 2024 , IEEE, 1330–1335.

Percassi, F. and Vallati, M. 2025. Automated planning for urban traffic control
with LLM-generated configurations. In Proceedings of the International Florida Artificial
Intelligence Research Society Conference, FLAIRS 2025 , Vol. 38, LibraryPress@UF. URL:
https://journals.flvc.org/FLAIRS.

Pozanco, A., Fernández, S. and Borrajo, D. 2021. On-line modelling and planning
for urban traffic control. Expert Systems 38. URL: https://onlinelibrary.wiley.com/

doi/epdf/10.1111/exsy.12693.
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