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Abstract In this paper, we use the theorem of Burchnall and Shaundy to give the capacity of the spec-
trum σ(A) of a periodic tridiagonal and symmetric matrix. A special family of Chebyshev polynomials
of σ(A) is also given. In addition, the inverse problem is considered: given a finite union E of closed
intervals, we study the conditions for a Jacobi matrix A to exist satisfying σ(A) = E. We relate this
question to Carathéodory theorems on conformal mappings.
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1. Introduction

In this work, a close connection is established between capacities of unions of closed
intervals and Jacobi matrices. The links between the apparently distant themes rely on
the role played by the Green function for multiply connected domains and their critical
points.

Let E be a finite union of n = g + 1 closed intervals of the real line, E = [E1, E2] ∪
[E3, E4] ∪ · · · ∪ [E2n−1, E2n], the capacity C(E) of E is given in the constant term of the
expansion near ∞ by

G(z) = log |z| − log C(E) + o(1),

where G(z) is the Green function of the complement of E in the Riemann sphere Ĉ with
pole at infinity. It soon becomes clear that there are some fundamental principles behind
the question of the evaluation of C(E). We wish to provide several approaches for this
evaluation and to establish connections with other problems and topics.

The capacity of an interval [a, b] is one-quarter of its length and if we scale it to the
interval [−2, 2], we can observe that the theory of the Chebyshev polynomials Tn(X)
with Tn(2 cos θ) = 2 cos(nθ), n ∈ N, is a part of the spectral analysis of the matrix
A = (ai,j)1�i,j , ai,i+1 = ai,i−1 = 1 and ai,j = 0 otherwise. The matrix A is tridiagonal,
symmetric and of period one. The capacity of [−2, 2] is exactly the value of its non-
vanishing entry. One of our objectives here is to develop a similar approach in the case
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of several intervals. First of all, in the case of two intervals, the capacity of E was
given by Achieser in [1,2]. Achieser used a conformal mapping of Ĉ \ E into an annulus
Ar,1 = {r < |z| < 1}, where r is the modulus of the doubly connected domain Ĉ \ E.
The final result is formulated in terms of Jacobi theta functions, but no relation to the
spectral theory is involved. We developed in [11] a method for the configuration of three
intervals of the real line. However, our analysis is different from Achieser’s, because no
explicit conformal mapping is available for the triply connected domain Ĉ \ E. We use
the theory of functions on the hyperelliptic curve associated with the equation

y2 = (z − E1)(z − E2)(z − E3)(z − E4)(z − E5)(z − E6).

This is a genus-two situation and, by means of Rosenhain’s relations, our formula for the
capacity C(E) is quite similar to Achieser’s and we recover it when one interval collapses
to a point or when E possesses some symmetry. In the last case, we have to reduce
hyperelliptic integrals to elliptic integrals. It turns out that Rosenhain’s relations are
specific to the genus-two case. It is difficult to extend our method to get nice formulae
in higher genus. Furthermore, no link to the spectral theory is involved in [11].

If E is a compact set in the complex plane and if Mn is the maximum absolute value on
E of the Chebyshev polynomial of degree n, then, by a transfer theorem of Fekete [12],
the capacity of E is C(E) = limn→∞ M

1/n
n . A very important observation is made by

Robinson in his study of algebraic integers in real point sets in [29] and [30]. It says
that if E consists of a finite number of intervals and if for some positive integer r, the
Chebyshev polynomial of degree r oscillates exactly r times between ±2λ on E, then,
for any positive integer n, the polynomial Fn(X) = λnTn(f(X)/λ) is the Chebyshev
polynomial of degree nr. Hence the capacity of E is just C(E) = λ. In other words, in
order to compute the capacity of a set E, one needs to know only a monic polynomial of
positive degree r that oscillates exactly r times between ±λ for a positive λ.

In this paper, we will explore the algebraic, the analytic and the geometric natures
of this special polynomial for a given compact set of the real line of the form E =
[E1, E2] ∪ [E3, E4] ∪ · · · ∪ [E2n−1, E2n]. More precisely, we will start by looking at the
direct problem. We first consider a Jacobi matrix T = (aj,k)j,k∈Z, aj,k = 0 for |j −k| > 2
and aj,k �= 0 for |j − k| = 1 which is symmetric and N -periodic, that is ai+N,j+N = ai,j

for i, j ∈ Z. The classical theorem of Burchnall and Chaundy asserts that if P and
Q are two commuting differential operators of order p and q, respectively, then they
satisfy identically an algebraic relation of the form F (P, Q) = 0. Here F is of degree q

in P and of degree p in Q. We follow an idea of the almost forgotten paper by Năıman
[21] for an early difference-operators version of the Burchnall–Chaundy Theorem to
obtain an explicit polynomial P (X) ∈ C[X] of degree N such that P (T ) = EN , the
matrix defined by ei,i+N = ei,i−N = 1, ei,j = 0 otherwise. By the Floquet theory,
the spectrum σ of T will be shown to coincide with the inverse image of the interval
[−2, 2] under the polynomial map P (λ) = µ. We show by different arguments that the
polynomial P is, up to a multiplicative factor, the Chebyshev polynomial of degree N

of the compact set E = σ = σ(T ) and that it oscillates N times on σ. From what
we said above, this gives us the capacity C(σ). We will study the metric properties of
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the polynomial P and the lemniscate |P (λ)| = 2 to get bounds on the sizes of the
components of σ. Furthermore, this polynomial will be connected to some universal
differential equations. To deal with the inverse problem, we consider a given subset on the
real line E = [E1, E2]∪[E3, E4]∪· · ·∪[E2n−1, E2n], and, following several authors (see [34]
or [17,18]) in the study of the non-stationary Peierls model, we construct a Jacobi matrix
T with the spectrum σ(T ) equal to E. This problem has been extensively studied and the
results are contained in several articles or books (see [19,32] and the references therein).
Our contribution here is to make this construction more geometric in the following sense:
the constructed operator is always an almost-periodic difference operator in the sense of
Bohr. In [17, 18], Krichever gave necessary and sufficient conditions on T for it to be
periodic. We will show that these conditions are similar to those considered by Robinson
in his study of algebraic points in [29, 30]. This idea will connect the problem of the
approximation of almost-periodic difference operators by periodic difference operators to
a continuity method for conformal mapping in the context of the Carathéodory Kernel
Theorem.

Moreover, the operator T depends on the choice of points P1, P2, . . . , Pn−1 on the
curve associated with the equation y2 = (z − E1)(z − E2) · · · (z − E2n) such that their
projections γ1, γ2, . . . , γn−1 are located in the gaps

γ1 ∈ (E2, E3), . . . , γn−1 ∈ (E2n−2, E2n−1).

The complex Green function with pole at infinity in Ĉ \ E is given by the abelian inte-
gral [11,38]:

G(z) =
∫ z

E2n

h(ζ)q(ζ)−1/2 dζ, (1.1)

where q(ζ) = (ζ−E1)(ζ−E2) · · · (ζ−E2n) and h(ζ) is a monic polynomial of degree n−1
of the form h(ζ) = ζn−1 + hn−2ζ

n−2 + · · · + h0 with coefficients satisfying the following
system of equations (a Jacobi inversion problem):

∑
0�i�n−1

hi

∫ E2j+1

E2j

ζi|q(ζ)|−1/2 dζ = 0, 1 � j � n − 1, (1.2)

hn−1 = 1. (1.3)

It can be seen that the roots γ∗
1 , γ∗

2 , . . . , γ∗
n−1 of the polynomial h(ζ), which will be called

equilibrium points throughout this paper, have the following distribution:

E2 < γ∗
1 < E3 < E4 < γ∗

2 < · · · < E2n−2 < γ∗
n−1 < E2n−1.

This is just another version of the classical theorem of Gauss–Lucas. This fact will allow
us to choose γj = γ∗

j , 1 � j � n − 1, in the construction of the operator T . We obtain
an interesting relation between the complex Green function of Ĉ \ E and the Green
function of the operator T (resolvent). Different forms of the capacity will be given from
this connection between the two Green functions. Finally, we will consider the case where
everything can be worked out somewhat explicitly, namely when E has two components,
E = [E1, E2] ∪ [E3, E4].
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2. Direct problems

A generalized Jacobi matrix of order 2m is an infinite matrix T = (aj,k)j,k∈Z, aj,k = 0
for |j − k| > 2m and aj,k �= 0 for |j − k| = m. We follow the presentation of [21] and the
notation of [34], where a more general definition is introduced. We consider only the case
where T is symmetric and N -periodic, that is ai+N,j+N = ai,j for i, j ∈ Z. A difference
operator A associated with T is defined in the following way.

Let y be a vector y = t(. . . , y−1, y0, y1, . . . ), and D the shift operator acting on y by
(Dy)k = yk+1. The operator A is given by

(Ay)n =
k=m∑

k=−m

an,n+kyn+k =
( m∑

−m

an,n+kDk

)
yn.

For each positive integer n, we introduce the matrix En = (eij)i,j∈Z, eij = 1 if |i− j| = n

and eij = 0 otherwise. In other words, En = Dn + D−n, ek,k−n = ek,k+n = 1, for k ∈ Z.

2.1. Periodic Jacobi matrices

If A is a generalized matrix of order 2m and period N , then it is permutable with
the matrix EN , and the discrete version of the theorem of Burchnall and Chaundy on
commuting differential operators [16] says there is a polynomial F (X, Y ) ∈ C[X, Y ] of
degree 2N in X and degree 2m in Y such that F (A, EN ) = 0. This result is given in [21]
without proof. The main result of this section is to make explicit the polynomial F when
m = 1 and A is symmetric. We suppose in the following that A is a Jacobi matrix with
period N , so it is tridiagonal and N -periodic.

Theorem 2.1. Let A be a Jacobi matrix, which is symmetric and N -periodic, then
there is a polynomial P̃ (X) in C[X] of degree N , such that P̃ (A) = EN . Furthermore,
the spectrum σ(A) of A is compact in C and the polynomial P̃ (X) is, up to a constant
factor, the Chebyshev polynomial of degree N of σ(A).

Proof. To simplify the notation, we write the operator A as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · · · · · ·
· · a0 b0 · · · · · · · · ·
· · b0 a1 b1 · · · · · · · ·
· · · b1 a2 b2 · · · · · · ·
· · · · · · · · · bN−1 · · ·
· · · · · · · · · aN bN · ·
· · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with ai+N = ai, bi+N = bi, i ∈ Z. From the commutation relation AEN = ENA and from
the fact that the eigenspaces of these two operators are finite dimensional, a common
eigenvector of A and EN , y = (yk)k∈Z, exists. We denote by h and µ the corresponding
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eigenvalues. Hence there exist relations of the form

b0y0 + a1y1 + b1y2 = hy1,

b1y1 + a2y2 + b2y3 = hy2,

...

bN−1yN−1 + aNyN + bNyN+1 = hyN ,

b0yN + a1yN+1 + b1yN+2 = hyN+1,

b1yN+1 + a2yN+2 + b2yN+3 = hyN+2,

...

bN−1y2N−1 + aNy2N + bNy2N+1 = hy2N ,

y0 + y2N = µyN ,

y1 + y2N+1 = µyN+1.

Because these equations must be consistent, the eigenvalues h and µ must satisfy
F (h, µ) = 0, where F (h, µ) is the following determinant of order 2N + 2:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 a1 − h b1

b1 a2 − h b2

. . .
. . .

bN−1 aN − h bN

b0 a1 − h b1

b1 a2 − h b2

. . .
. . .

bN−1 aN − h bN

1 0 0 · · · −µ 0 1
0 1 0 · · · 0 −µ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The coefficient a1 − h in the centre of the determinant is on the (N + 1)th row and on
the (N +1)th column. The polynomial F (h, µ) is of degree 2N in h and of degree 2 in µ.
We would like to compute this polynomial explicitly in order to show that it is a perfect
square in C[h, µ]. First of all, F (h, µ) can be reduced to the determinant of order 2N :

F (h, µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − h b1 µb0 −b0

b1 a2 − h b2

. . .
. . .

bN−1 aN − h bN

b0 a1 − h b1

b1 a2 − h b2

. . .
. . .

bN−1

−bN · · · µbN bN−1 aN − h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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And if

∆(i, j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ai − h bi · · · · · · · · · · · ·
bi ai+1 − h bi+1 · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · bj−2 aj−1 − h bj−1

· · · · · · · · · · · · bj−1 aj − h

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

some long but simple computations yield the following.

Lemma 2.2. If P (h) = ∆(2, N) − b2
0∆(2, N − 1), the polynomial F (h, µ) is given by

F (h, µ) =
(

P (h) + (−1)N+1µ
∏

0�i�N−1

bi

)2

.

Consequently, if we denote by B the product
∏N−1

i=0 bi, the polynomial P̃ (X) in the
statement of the theorem is

P̃ (X) =
(−1)N

B P (X).

We will refer to B =
∏N−1

i=0 bi as the modulus of the Jacobi matrix A and to P (X) as
the Năıman polynomial. From the relation P̃ (A) = EN and the fact that the spectrum
σ(EN ) of EN is the interval [−2, 2], we obtain from the functional calculus that the
spectrum σ(A) of A is the inverse image of [−2, 2] under P̃ . It is a compact set in C

consisting of arcs which may have common endpoints [21, Theorem 3]. According to a
transfer theorem of Fekete [12], we have that

C(σ(A)) = |B|1/N .

We now turn to the last statement of our theorem. We use a result of Ostrovskii, Pakovitch
and Zaidenberg [22]; we first recall some definitions. Let D = D(a, r) be a closed disc
centred at a ∈ C and of radius r. We say that a compact K ⊂ D supports D if D is
the (unique) disc of smallest radius which contains K. For a given compact K ⊂ C,
a monic polynomial p(z) ∈ C[z] of degree n � 0 is called the nth polynomial of least
deviation (from zero) or the Chebyshev polynomial of degree n if ‖p‖K � ‖q‖K for any
monic polynomial q(z) ∈ C[z] of degree n, where ‖p‖K = maxz∈K{|p(z)|}. The classical
inequality of Jung asserts that each compact convex K of diameter δ is contained in a
closed disc D(a, ρ), with 1

2δ � ρ � δ. The following theorem is the main result in [22].

Theorem 2.3. Let ∆r = ∆(0, r) ⊂ C be the disc of radius r centred at the origin,
K ⊂ ∆r be a supporting compact of ∆r, and p ∈ C[z] be a monic polynomial of degree n.
Then p is the unique nth polynomial of least deviation on Kp = p−1(K).

This theorem shows clearly that the polynomial (−1)NP (X) is the Chebyshev poly-
nomial of E = σ = σ(T ), the diameter [−|B|1/N , |B|1/N ] supporting the disc centred at
the origin, with radius |B|1/N . �
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We have thus established, under the preceding conditions, a relation between the the-
orem of Burchnall and Chaundy and the problem of the explicit determination of a
Chebyshev polynomial of some degree and the capacity of some compact sets.

It is perhaps worthwhile noticing that Chebyshev polynomials appear in a different
kind of commutation problem also related to discrete integrable systems. This is the
problem of Fatou and Julia on commuting polynomials [31,36]. There is another analysis
in [34] in their study of difference operators and the associated algebraic curves. It is
possible to compare this analysis with ours by using another interesting result due to
Pakovitch [23], also stated in [22]. We recall that the essential feature of Floquet theory
for periodic difference operators (as for differential operators) is to look for solutions
that are eigenfunctions of the translation (by the period) operator. We use the notation
of [33, § 1] and [32, Chapter 7].

Now a given Jacobi matrix A defines a difference operator T of period N with a, b ∈
l∞R (Z), an �= 0, and an+N = an, bn+N = bn, n ∈ Z. We put

B =
N−1∏
n=0

bn =
N−1∏
n=0

bn+n0 , S =
N−1∑
n=0

an =
N−1∑
n=0

an+n0 , n0 ∈ Z,

and we consider the solutions of the eigenvalue problem

Tψ(z, n) = zψ(z, n). (2.1)

The operator T is given in terms of the shift operator D, and for convenience with a
change in sign of the main diagonal, by T = bD+ + b−D− − a, b−

n = bn−1, z denotes the
eigenvalue.

As usual, let c(z, n, n0), s(z, n, n0), z ∈ C, be a fundamental system of solutions to
(2.1) satisfying

c(z, n0, n0) = s(z, n0 + 1, n0) = 1,

c(z, n0 + 1, n0) = s(z, n0, n0) = 0.

The fundamental matrix is

φ(z, n, n0) =

(
c(z, n, n0) s(z, n, n0)

c(z, n + 1, n0) s(z, n + 1, n0)

)

=

⎧⎪⎨
⎪⎩

Un(z) · · ·Un0+1(z), n � n0 + 1,

1, n = n0,

U−1
n+1(z) · · ·U−1

n0
(z), n � n0 − 1,

where

Um(z) =
1

bm

(
0 bm

−bm−1 z + am

)
,

Um(z)−1 =
1

bm−1

(
z + am −bm

bm−1 0

)
.

https://doi.org/10.1017/S0013091502001141 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502001141


726 A. Sebbar and T. Falliero

The Wronskian of two solutions f , g is defined by W (f, g)n = bn(fngn+1 −fn+1gn). Thus

W (c(z, ., n0), s(z, ., n0)) = bn0 .

The most general solution ψ(z) of (2.1) is

ψ(z, n) = ψ(z, n0)c(z, n, n0) + ψ(z, n0 + 1)s(z, n, n0),

or (
ψ(z, n)

ψ(z, n + 1)

)
= φ(z, n, n0)

(
ψ(z, n0)

ψ(z, n0 + 1)

)
.

Furthermore,

det(φ(z, n, n0)) =
bn0

bn
,

φ(z, n, n0) = φ(z, n, n1)φ(z, n1, n0),

φ(z, n, n0)−1 = φ(z, n0, n).

The monodromy matrix M(z, n) is defined by the fundamental matrix

M(z, n) = φ(z, n + N, n).

It follows that M(z, n) = φ(z, n, n0)M(z, n0)φ(z, n, n0)−1 and det(M(z, n)) = 1. Finally,
the Floquet discriminant ∆(z) is given by

∆(z) = 1
2 tr(M(z, n)). (2.2)

It is independent of n. Similarly, the Floquet multipliers m±(z) are the eigenvalues of
M(z, n). They are given by m±(z) = ∆(z) ± [∆(z)2 − 1]1/2 and are independent of n.
They verify

m+(z)m−(z) = 1, m+(z) + m−(z) = 2∆(z).

Following the presentation of [34], the periodicity of the Jacobi matrix A is expressible
by the commutation relation ADN = DNA and the eigenvalues z and h associated with
a common eigenvector f are elements of the curve

R0 = {(z, h) ∈ C × C∗ | Lf = zf, DNf = hf, f �= 0}
= {(z, h) ∈ C × C∗ | det(Ch − zI) = F (h, h−1, z) = 0},

where

Ch − zI =

⎛
⎜⎜⎜⎝

a1 − z b1 · · · · · b0h
−1

b1 a2 − z b2 · · · · ·
· · · · · · · bN−1

bNh · · · · · bN−1 aN − z

⎞
⎟⎟⎟⎠ .

It is easy to see that

F (h, h−1, z) = (−1)N+1
{ N∏

i=1

bi(h + h−1) − R(z)
}

,
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where R(z) is a polynomial of degree N . We also have

R0 = {(z, h) ∈ C × C∗ | (h + h−1) − 2∆(z) = 0}.

An important remark can be made at this point: if Vz = {f, Tf = zf}, then Vz is a
vector space over C of dimension two on which DN acts, and ∆(z) = 1

2 trDN
|Vz

is just the
monodromy matrix. From the commutation relation DNf = hf we get D−Nf = h−1f

and then R0 ⊂ R̃0, where

R̃0 = {(z, h) ∈ C × C∗, Lf = zf, ENf = (h + h−1)f, f �= 0}.

This means that for each (z, h) ∈ R0, P (z) = h+h−1 or for each z such that (z, h) ∈ R0,
we have P (z) = 2∆(z). From [33, p. 48] we know that the 2N eigenvalues of

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1 · · · · · · · · · · · · · · · aN

b1 a2 · · ·
· · · · · · bN−1

bN−1 aN bN

bN a1 b1

b1 · · · · · ·
· · · · · · bN−1

aN · · · · · · · · · · · · · · · aN−1 aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are such z. Thus we have proved the following proposition.

Proposition 2.4. The Năıman polynomial and the Floquet discriminant are related
by P̃ (z) = 2∆(z). Consequently, the Riemann surfaces R̃0,R0 are identical.

We wish to point out that the result of the preceding proposition can also be obtained
by using another interesting theorem of [22], which we cite for completeness.

Theorem 2.5. Let K ⊂ C be a compact set that contains at least two points. Suppose
that p, q ∈ C[z] are two polynomials of the same degree n such that p−1(K) = q−1(K).
Then p = α(q), where α(z) is a rotation of C which preserves K.

In fact, the polynomial T (z) = 2B∆(z) is the Chebyshev polynomial of degree N of
σ(A), with T−1([−2|B|, 2|B|]) = σ(A). But if T̃ = P̃ , P is the Năıman polynomial, then
T̃−1([−2|B|, 2|B|]) = σ(A). By the preceding theorem, we get again P̃ (z) = 2∆(z).

2.2. Metric properties of polynomials

In this section, we wish to discuss some metric properties of the spectrum σ(A) of a
Jacobi matrix A that can be derived directly from results of the preceding section. Our
first observation is that the polynomial F (h, µ) is a determinant, and, for a fixed µ in
[−2, 2], h appears as a zero of a relatively simple determinant ∆. We recall a classical
result of Hirsch [14] and Bendixon [3]. If s is an eigenvalue of (aλ,ν)0�λ,ν�n and if a
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is the maximum of |aλ,µ|, b is the maximum of 1
2 |aλ,ν + āν,λ| and c is the maximum of

1
2 |aλ,ν − āν,λ|, then

|s| � na, |Re(s)| � nb, |Im(s)| � nc.

We return to the determinant ∆, of order 2N , and we denote by

ã = max(|aν |, |bν |, |µ| |b0|, 0 � ν � N − 1),

b̃ = max(|Re aν |, |Re bν |, 1
2 |µ| |b0|, 0 � ν � N − 1),

c̃ = max(|Im aν |, |Im bν |, 1
2 |µ| |b0|, 0 � ν � N − 1).

Proposition 2.6. Let A be a Jacobi matrix with complex coefficients, symmetric and
of period N . The elements h of the spectrum σ(A) are such that

(1) |h| � 2Nã,

(2) Re(h) � 2Nb̃,

(3) Im(h) � 2Nc̃.

In particular, the arclength L(A) of the convex hull of σ(A) satisfies

L(A) � 2π max(|aν |, |bν |, 0 � ν � N − 1; 2|b0|).

There is a completely different approach to this question leading to another kind of
result. Cartan’s Lemma [4] says that if p(z) is a monic polynomial of degree N ,

p(z) =
∏

1�i�N

(z − αi),

then the inequality |p(z)| > M holds for z outside discs, the sum of their radii being
at most 2eM1/N . There is also a formulation in terms of Hausdorff measures, which we
formulate in the following way [9]: for positive ε and α, the set E(p, ε) = {z ∈ C | |p(z)| �
εN} can be covered by at most N discs Dj such that the diameters d(Dj) satisfy∑

1�j�l

d(Dj)α � e4αεα.

The constant e4α is not sharp and it is conjectured that if α = 1, the best constant is 4
instead of 4e. The spectrum σ(A) is mapped into the closed disc {|w| � 2|B|}. These
facts applied to the Năıman polynomial with εN = 2|B| and Theorem 3 of [21] lead to
the following result.

Theorem 2.7. Let A be a Jacobi matrix, real, symmetric and N -periodic with mod-
ulus B =

∏N−1
i=0 bi. Let Ii = [E2i−2, E2i−1], i = 1, . . . , N , be the components of the

spectrum σ(A) and let li be the length of Ii. Then for each positive α,

(1)
∑

1�j�N lαj � e4α(2|B|)α/N ,

(2) C(σ(A)) � 1
4

∑
1�j�N lj � e(2|B|)1/N .
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It follows from this result, from the equality C(σ(A)) = |B|1/N and the subadditivity
of the capacity that the following inequalities hold:

C(σ(A)) �
∑

1�i�N

C(Ii) � e21/NC(σ(A))

or

C(σ(A)) � 1
4

∑
1�i�N

(E2i−1 − E2i−2) � e21/NC(σ(A)).

Another kind of result is given by the next theorem.

Theorem 2.8. Let σ = σ(A) be the spectrum of a real, symmetric and N -periodic
Jacobi matrix A with modulus B. The arclength L(A) of the convex hull of σ(A) satisfies

L(A) � π(
√

10 − 3
√

2 + 4)N |B|1/N � 9, 173N |B|1/N .

Proof. We adapt ideas of Pommerenke [28] and Eremenko and Hayman [10]. The
main goal here is to see (as we will do in several places in this paper) that methods of
conformal mapping theory can be used in problems on Jacobi matrices. We begin with
a lemma.

Lemma 2.9. For a connected compact set K in C of capacity C(K), the perimeter
L0 of the convex hull of K is at most π(

√
10 − 3

√
2 + 4)C(K).

To prove this lemma, we proceed as in [28, Satz 5]. We consider the map f sending
{|z| > C(K)} onto the complement of K in the Riemann sphere Ĉ. The map g(u) =
f(C(K)u) has the expansion

g(u) = C(K)u + a0 +
a1

u
+ · · ·

and g maps {|u| > 1} onto the complement of K. We apply Pommerenke’s methods [28,
Hillfssatz 3, p. 63] to f̃ , f̃(u) = C(K)−1g(u). Let c ∈ K be a given point. Then the
function φ defined by

φ(ξ) =
(

f̃(ξ−1) − c

C(K)

)−1

= ξ + · · ·

is one to one in the unit disc {|ξ| < 1} and satisfies |φ(ξ)| � (|ξ|/(1 − |ξ|)2). This
implies that C(K)(|z| − 2 + (1/|z|)) � |f(C(K)z) − c|, and, if r � C(K) and L(r) =
r
∫ 2π

0 f ′(re2iπθ) dθ is the length of the image of the circle {|z| = r} under f , L0 � L(r) −
2πr(r − 2+ (1/r)). Now as in Pommerenke’s arguments [28, pp. 68, 69], we write f(z) =
z +

∑∞
0 anz−n and we have

f(C(K)u) = g(u) = C(K)u +
∞∑
0

anC(K)−nu−n
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defined for |u| > 1. It follows that if R > 1 is given and r = RC(K), then

L(r) � 2πC(K)
(

R2 +
∞∑
1

n|an|2nC(K)−2nR−2n

)1/2

.

For R =
√

2 or r =
√

2C(K), we get

L0 � (π
√

10 − 2π(
√

2 − 2 + 1
2

√
2))C(K).

This proves the lemma.
To complete the proof of the theorem, we consider a general monic polynomial p(z) of

degree d, we denote by E(p, c) the lemniscate E(p, c) = {z ∈ C | |p(z)| = c} and we denote
by |E(p, c)| its arclength. Here we adapt an argument of Eremenko and Hayman [10].
If d is a given positive integer, we call an extremal polynomial p∗ any polynomial that
maximizes |E(p, c)| in the set of all monic polynomials of degree d. For such a polynomial
p∗, the lemniscate E(p∗, c) = {z ∈ C | |p∗(z)| = c} is a connected set. By the transfer
theorem of Fekete used earlier, the capacity C(E(p, c)) is c1/d. By the preceding lemma,
we conclude that the arclength LẼ(p, c) of the convex hull Ẽ(p, c) of E(p, c) is at most
π(

√
10 − 3

√
2 + 4)c1/d. For each real x, let NE(θ, x) be the number of common points of

E(p, x) with the line {z ∈ C, Re(ze−iθ) = x}. The integral-geometric formula (see [5]
and [10, p. 144]) gives the length of the lemniscate E(p, c) as

|E(p, c)| = |{z ∈ C | |p(z)| = c}| = 1
2

∫ π

0

∫ ∞

−∞
NE(p,c)(θ, x) dxdθ.

Now it is clear that if N
Ẽ(θ,x)

is the number of common points of Ẽ(p, c) with the line
{z ∈ C, Re(ze−iθ) = x}, then dNE(θ, x) � N

Ẽ(θ,x)
and so

|E(p, c)| � d|Ẽ(p, c)| � dc1/dπ(
√

10 − 3
√

2 + 4) < 9.173dc1/d.

The proof of the theorem is complete. �

It seems that the results of this theorem are of different character to those of the
preceding proposition.

2.3. Differential equations and oscillations

In the present section, we wish to provide three approaches for obtaining a Chebyshev
polynomial of some degree of a finite union of closed intervals. In [23], Pakovitch defines
the notion of an elliptic polynomial and proves that, up a multiplicative factor, an elliptic
polynomial is the Chebyshev polynomial of a union of two intervals. For a similar presen-
tation and a modular interpretation see Hirzebruch, Berger and Jung [15, pp. 107, 187].
In some sense, this is a genus-one situation. We will extend this notion to the hyper-
elliptic case and this will be our first approach. The second approach will show how
oscillation properties of a polynomial can make it a Chebyshev polynomial. Finally, the
third approach will explain the differential equation character of being a Chebyshev
polynomial. We start by an illustrating connection.
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Theorem A. Let E = [E1, E2]∪[E3, E4]∪· · ·∪[E2g+1, E2g+2] be a finite union of closed
intervals, there exists a Jacobi matrix A, real, symmetric and N -periodic, g + 1 � N ,
with the spectrum σ(A) equal to E if and only if the Nth Chebyshev polynomial of E

oscillates N times over E.

We recall that a polynomial P (x) with real coefficients oscillates N times between ±M

on an interval E′ if |P (x)| = M has N + 1 solutions on E′ with alternating signs. The
proof of Theorem A becomes apparent after the introduction of the following notion,
which extends the definition of elliptic polynomials of [23].

Definition 2.10. A real polynomial P of degree n is called g-hyperelliptic if and only
if it satisfies a differential equation of the form

P 2(z) −
[

P ′(z)
n(z − x1) · · · (z − xg)

]2

R2g+2(z) = 1, (2.3)

with x1, . . . , xg ∈ C, and if R is a polynomial of degree 2g +2 with simple and real roots.

From (2.3), we see that x1, . . . , xg are zeros of the derivative P ′. There is a deep
link between the extremal properties of the Chebyshev polynomial and their oscillations
properties. In the case of one interval, this is contained in the Equal Ripple Theorem,
essentially due to Chebyshev, which concerns the quantity

µ = min
{p}

max
−1�x�1

|f(x) − p(x)|,

where f is continuous on the interval [−1, 1] and p(x) is an arbitrary polynomial of degree
at most N .

Theorem 2.11 (the Equal Ripple Theorem [8]). There is a unique polynomial
of best approximation to f(x) in [−1, 1] and it is characterized by the existence of a
sequence of at least N +2 points at which the error function e(x) = f(x)− p(x) assumes
the values ±µ, the signs alternating.

If f(x) = xN is approximated by polynomials of degree less than or equal to N − 1,
we obtain the Nth Chebyshev polynomial TN (X) or the Zolotarev polynomial. This
equioscillation property, combined with the fact that all critical values are equal up to
signs, is converted into a differential equation. We wish to explain briefly what happens
for several intervals. We refer to [29] and [30] for the details. If E = [E1, E2]∪ [E3, E4]∪
· · · ∪ [E2g+1, E2g+2], we can no longer say that the Chebyshev polynomial of degree
N oscillates N times on E between ±M , but we can find N + 1 special points of E

where TN (X) takes the values ±M with alternating signs. If two consecutive points of
this special set are contained in the same component of E, then TN (X) oscillates from
+M to −M or from −M to +M , but if they are in different components, then various
behaviours are possible on the finite gaps (bounded components of R \ E). If we require
that in R \ E, |TN (x)| > M , then TN (X) will be the Nth Chebyshev polynomial of E

because it oscillates N times between ±M . These remarks motivate Equation (2.3). In
fact the roots of TN (X) = ±M are all double roots, except for the ends Ei, 1 � i � 2g+2.
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There are N − g − 1 of these double roots which are also roots of T ′
N (X) and this last

equation has g additional roots c1, c2, . . . , cg localized in the gaps, so that

E1 < E2 < c1 < E3 < E4 < c2 < · · · < cg < E2g+1 < E2g+2.

This leads to the identity

N2[TN (x)2 − M2]
(x − E1)(x − E2) · · · (x − E2g+1)(x − E2g+2)

=
T ′

N (x)2

(x − c1)2(x − c2)2 · · · (x − cg)2
.

This is Equation (2.3), a nonlinear differential equation of first order, which admits the
solution

f(z) = M cosh
(

N

∫ z

E2g+2

√
Q(t) dt

)
, (2.4)

where for E2g+2 � z = x ∈ R, the positive square root is used and

Q(t) =
(t − c1)2(t − c2)2 · · · (t − cg)2

(t − E1)(t − E2) · · · (t − E2g+1)(t − E2g+2)
.

Now we are able to formulate the important result of Robinson [29,30].

Theorem 2.12. In order that the function f(z) given by (2.4) should be single valued,
it is necessary that ∫ E2k+1

E2k

√
Q(t) dt = 0, k = 1, 2, . . . , g. (2.5)

Further, in order that f(z) oscillates nk times between ±M in the kth interval, it must
satisfy

∫ E2k

E2k−1

√
Q(t) dt = ±nkπi

N
, k = 1, 2, . . . , g + 1, n1 + n2 + · · · + ng+1 = N. (2.6)

If these conditions are satisfied, then the function f(z) = TN (z) is the Nth Chebyshev
polynomial of E = [E1, E2] ∪ [E3, E4] ∪ · · · ∪ [E2g+1, E2g+2].

The origin of the present work was the desire to understand the connection between
the works of Robinson [29] and Krichever [18]. It is remarkable that Theorem 2.12 and
Definition 2.10 appeared recently and in another context in Peherstorfer [24–27]. We
now give another formulation of Theorem A.

Theorem B. Let P (z) = anzn + · · · + a1z + a0 be a g-hyperelliptic real poly-
nomial such that R2g+2(z) = (z − E1)(z − E2) · · · (z − E2g+2). Then the polynomial
P̃ (z) = (1/|an|)P (z) is of least deviation from zero among all the monic polynomials of
degree n. The modulus of this deviation is 1/|an| and P̃ is the Chebyshev polynomial of
degree n of E = [E1, E2] ∪ [E3, E4] ∪ · · · ∪ [E2g+1, E2g+2].
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The proofs of Theorem A and Theorem B depend on the crucial observation that
the Floquet discriminant ∆(z) given by (2.2) of a real N -periodic Jacobi matrix is an
N -hyperelliptic real polynomial. More precisely, we denote by {Ẽl}1�l�2N the zeros of
∆(z)2 − 1 and we write

∆(z)2 − 1 =
1

4A2

2N∏
l=1

(z − Ẽl),

∆(z) ∓ 1 =
1

2A

N∏
j=1

(z − E±
j ). (2.7)

According to [6,33], the zeros {E+
j }1�j�N and {E−

j }1�j�N are, respectively, the eigen-
values of the periodic Jacobi matrix H̃+

n0
and the anti-periodic Jacobi matrix H̃−

n0
given

by

H̃±
n0

=

⎛
⎜⎜⎜⎜⎜⎝

−an0+1 bn0+1 ±bn0+N

bn0+1 −an0+2

· · ·
−an0+N−1 bn0+N−1

±bn0+N bn0+N−1 −an0+N

⎞
⎟⎟⎟⎟⎟⎠ .

If N is even, we have

E+
1 < E−

1 � E−
2 < E+

2 � E+
3 � · · · � E+

N−1 < E−
N−1 � E−

N < E+
N ,

while if N is odd,

E−
1 < E+

1 � E+
2 < E−

2 � E−
3 � · · · � E−

N−2 < E+
N−2 � E+

N−1 < E−
N−1 � E−

N < E+
N .

The set {Ẽl}1�l�2N coincides with the corresponding sequence (E±
j ). The spectrum σ(H)

of H is characterized by

σ(H) = {λ ∈ R, |∆(λ)| � 1} =
N⋃

j=1

[Ẽ2j−1, Ẽ2j ].

When the spectral gaps of H are open, we have g = N − 1,

[2N∏
l=1

(z − Ẽl)
]1/2

= R
1/2
2g+2(z) = 2A[∆(z)2 − 1]1/2.

When the spectral gaps of H are closed, we introduce

J ′ = {1 � j′ � N − 1, Ẽ2j′ = Ẽ2j′+1}, J = {1, 2, . . . , 2N}\{j′, j′ + 1, j′ ∈ J ′}

and define

Q(z) =
1

2A

∏
j′∈J′

(z − Ẽ2j′−1), R2g+2(z) =
∏
j∈J

(z − Ẽj).
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We identify {Ẽj}j∈J and {Em}1�m�2g+2 and we get the important relation

[∆(z)2 − 1]1/2 = R
1/2
2g+2(z)Q(z), (2.8)

with g = N − 1 − |J ′| = N − 1 − deg(Q) = (|J | − 2)/2. The relation (2.8) says that the
Floquet discriminant ∆(z) is a real N -hyperelliptic polynomial. One can check that

Q(z) =
∆′(z)

N(z − x1) · · · (z − xg)
,

where x1, . . . , xg are zeros of ∆′(z), xi ∈ [E2i, E2i+1] and the zeros Ẽ2j′ , j′ ∈ J ′, of Q(z)
are double roots of ∆(z)2 = 1. Furthermore, deg Q = N − 1 − g, deg ∆′ = N − 1 and at
the relative maxima and minima of ∆(z), ∆′(z) = 0. Finally, we have |∆(z)| � 1 on the
gaps.

3. Inverse problems

3.1. Statements of the inverse problems

In our formulation of the inverse problem, we closely follow the presentations of [6]
and [32], where a complete list of references is given. The principal topic of this section
is to associate with a finite union of intervals E a Jacobi matrix A whose spectrum is E.

We start with a union of N = g+1 intervals E = [E1, E2]∪[E3, E4]∪· · ·∪[E2g−1, E2g]∪
[E2g+1, E2g+2] and we consider the hyperelliptic curve Xg associated with the equation

y2 = R2g+2(z) =
2g+2∏
m=1

(z − Em).

There is a natural projection

π̃ : Xg → Ĉ,

P = (z,±R2g+2(z)1/2) → z,

∞1,∞2 → ∞.

For an arbitrary n0 in Z, we consider, as in [6, p. 14], g points in Xg,

{µ̂j(n0)}1�j�g ⊂ Xg, π̃(µ̂j(n0)) = µj(n0) ∈ [E2j , E2j+1], 1 � j � g, (3.1)

and we introduce the polynomials Fg(z, n0) =
∏g

j=1(z − µj(n0)),

Gg+1(z, n0) = −
g∑

j=1

R
1/2
2g+2(µ̂j(n0))

g∏
k=1, k �=j

z − µk(n0)
µj(n0) − µk(n0)

− (z + an0)Fg(z, n0),

where

an0 =
g∑

j=1

µj(n0) − 1
2

2g+2∑
m=1

Em.
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Next, we define Fg(z, n0 + 1) by

Gg+1(z, n0)2 − 4b2
n0

Fg(z, n0)Fg(z, n0 + 1) = R2g+2(z),

where the constant b2
n0

�= 0 is such that Fg(z, n0 + 1) is a monic polynomial in z. We
observe that

b2
n0

Fg(z, n0)Fg(z, n0 + 1) � 0 (3.2)

for z = E2j , E2j+1, E2g+1. The right-hand side of the preceding inequality has two zeros
in [E2j−1, E2j ]. Hence Fg(z, n0 + 1) is of the form

Fg(z, n0 + 1) =
g∏

j=1

(z − µj(n0 + 1)), µj(n0 + 1) ∈ [E2j , E2j+1], 1 � j � g.

By using (3.2) with z = E2g+1, we see that b2
n0

�= 0 and then bn0 > 0. Furthermore,

b2
n0

= 1
2

g∑
j=1

R
1/2
2g+2(µ̂j(n0))

g∏
k=1, k �=j

(µj(n0) − µk(n0))−1 − 1
4 (a2

n0
+ a(2)

n0
) > 0,

where

a(2)
n0

=
g∑

j=1

µj(n0)2 − 1
2

2g+2∑
m=1

E2
m, k ∈ N.

We have thus obtained a set {µ̂j(n0 + 1)}1�j�g from {µ̂j(n0)}1�j�g. Thus we can define
recursively the sets {µ̂j(n)}1�j�g for all n ∈ Z, as these calculations can also be made in
the opposite direction. Summing up, we have the following.

Lemma 3.1. Given a sequence {µ̂j(n0)}1�j�g satisfying (3.1) as initial data, one can
define {µ̂j(n)}1�j�g for every n ∈ Z still satisfying (3.1), that is

π̃(µ̂j(n)) = µj(n) ∈ [E2j , E2j+1], 1 � j � g, n ∈ Z.

Moreover, one obtains two sequences {an}n∈Z, {bn}n∈Z belonging to the space l∞R (Z)
and given by

b2
n = 1

2

g∑
j=1

R
1/2
2g+2(µ̂j(n))

g∏
k=1, k �=j

[µj(n) − µk(n)]−1 − 1
4 [a2

n + a(2)
n ] > 0,

an =
g∑

j=1

µj(n) − 1
2

2g+2∑
m=1

Em,

a(2)
n =

g∑
j=1

µj(n)2 − 1
2

2g+2∑
m=1

E2
m, k ∈ N.

Remark 3.2. The sign of bn is not well defined by this process, and can be arbitrarily
chosen. The sequences of the preceding type a = {an}n∈Z, b = {bn}n∈Z are called g-
gap sequences. They are built on the trace formula of Gelfand–Levitan–Dikii. The left-
hand side can be expressed in terms of the Riemann theta function associated with the
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curve Xg, because they can be regarded as solutions to the Jacobi inversion problem
(see [17, Formulae (13a), p. 252, and (13b), p. 253], [6, Formulae (5.9), p. 29, and (5.24),
p. 31] and [34, Theorem 7]).

We would like to investigate the difference operator L = bD+ + bD− − a with a, b ∈
l∞R (Z), bn �= 0, n ∈ Z, (D±f)(n) = f(n ± 1), n ∈ Z, f ∈ l∞(Z), b−

n = bn−1, n ∈ Z. The
following Jacobi operator H, acting on l2(Z) and defined by

Hf = Lf, f ∈ D(H) = l2(Z),

is the unique self-adjoint extension of L to l2(Z). The two restrictions H±,n0 of H to the
spaces l2([n0 + 1, +∞)) and l2((−∞, n0 − 1]) with the Dirichlet condition at n0 are now
defined by

H+,n0f = Lf, f ∈ D(H+,n0) = {f ∈ l2([n0 + 1, +∞)) | f(n0) = 0}.

H−,n0f = Lf, f ∈ D(H−,n0) = {f ∈ l2((−∞, n0 − 1]) | f(n0) = 0}.

We denote by σ(·), σac(·), σsc(·) and σp(·) the spectrum, the absolutely continuous
spectrum, the continuous singular spectrum and the point spectrum, respectively [32,
pp. 41, 45]. The following result is known.

Theorem 3.3 (see Theorem 4.2 in [6]). Suppose that g-gap sequences a, b ∈ l∞R (Z)
with associate operators H, H±,n, as previously defined, are given. Then

σ(H) = σac(H) =
g+1⋃
j=1

[E2j−1, E2j ], σsc(H) = σp(H) = ∅

and for each n in Z,

σ(H−,n ⊕ H+,n) = σ(H) ∪ {µj(n)}1�j�g, σac(H±,n) = σ(H),

σsc(H±,n) = ∅, σp(H−,n ⊕ H+,n) = {µj(n)}1�j�g ∩
{ g⋃

k=1

(E2k−1, E2k)
}

.

The next result is crucial for our purposes. It is one of the important results in [34]
and also in [18]. It is a consequence of the Riemann–Roch Theorem. We outline the proof
for the reader’s convenience.

Proposition 3.4. Given a finite union of intervals

Σ = [E1, E2] ∪ [E3, E4] ∪ · · · ∪ [E2g+1, E2g+2] with E1 < E2 < · · · < E2g+1 < E2g+2,

to any set of points {γj , j = 1, . . . , g}, γj ∈ [E2j , E2j+1] corresponds a Jacobi operator
T unique up to a right composition by a shift operator having

σ(T ) =
g+1⋃
j=1

[E2j−1, E2j ].

Moreover, this operator is almost periodic in the sense of Bohr.
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Proof. In order to prove the existence of the operator T for given Ei, i = 1, . . . , 2g+2,
we choose {γj , j = 1, . . . , g}, γj ∈ [E2j , E2j+1]. By the Riemann–Roch Theorem, one
can find a meromorphic function ψn on the curve Xg, associated with the equation

y2 = R2g+2(z) =
2g+2∏
m=1

(z − Em)

unique up a multiplicative factor which has g poles at γj , j = 1, . . . , g, and which
has a pole of order n at ∞1 and a zero of order n at ∞2. We normalize ψn(P ),
P = (z,±R2g+2(z)1/2) by requiring that the product of the coefficients of z±n in the
expansion of ψn near ∞1 and ∞2 is 1. So we can write

ψ±
n (z) = e±xnz±n

(
1 +

∞∑
s=1

ξ±
s (n)z−s

)
. (3.3)

It follows, from the Riemann–Roch Theorem for example, that Tψn(P ) = π̃(P )ψn(P ) =
zψn(P ), where T is the difference operator associated with the coefficients

cn = exn−xn+1 ,

vn = ξ+
1 (n) − ξ+

1 (n + 1),

that is Tψn = cnψn+1 + vnψn + cn−1ψn−1. This gives the existence of T . An alternative
construction of T can be made by using Lemma 3.1 as in [6, p. 29, Formulae 5.9 and 5.10;
p. 31, Formula 5.24]. We choose µj(n0) = γj , j = 1, . . . , g, and Lemma 3.1 gives two
sequences an and bn that can be expressed with the help of the theta function of the
curve Xg. This shows that the spectrum σ(T ) is E.

To prove uniqueness, suppose that J is a Jacobi operator with spectrum σ(J) = E and
γj , j = 1, . . . , g, are points as in Proposition 3.4 defining J . Then we know an and bn

defining J : J = bD+ + b−D− − a, with σ(H−,n ⊕ H+,n) = σ(H) ∪ {µj(n)}1�j�g, so that
the µj(n) are also known. Suppose that for each j = 1, . . . , g, µj(n0) = γj , and consider
ψ(P, n, n0) the stationary Baker–Akhieser function [6]. We denote by (ψ(·, n, n0)) the
associate divisor. It satisfies [6, p. 17, 3.25 and 3.33]

(1) Jψ = π̃(P )ψ;

(2) (ψ(·, n, n0)) = Dµ̂(n) − Dµ̂(n0) + (n − n0)(D∞1 − D∞2);

(3) ψ(∞1, n, n0)ψ(∞2, n, n0) = 1.

From the existence part, we have ψ(·, n, n0) = ψn−n0(·). If J̃ = J − T ◦ D−n0 , then
J̃ψ = 0 and J̃ = 0 due to the fact that the point spectrum of a non-vanishing Jacobi
operator is empty. �

Now we give an alternative formulation of Theorem A and Theorem B.
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Theorem C. Let

E = [E1, E2] ∪ [E3, E4] ∪ · · · ∪ [E2g−1, E2g] ∪ [E2g+1, E2g+2]

be a given union of intervals and

R2g+2(z) =
2g+2∏
m=1

(z − Em).

The two g-gap sequences {an}n∈Z and {bn}n∈Z are periodic if and only if there exist two
polynomials Q(z) and ∆(z) such that R2g+2(z)Q(z)2 = ∆(z)2 − 1. If this last condition
is fulfilled, the period N is given by N = deg(Q) + g + 1.

Proof. First we introduce a very important notion, following [17]. We write for short
R(z) =

∏2g+2
m=1 (z − Em). The quasimomentum is by definition the meromorphic differen-

tial form dp defined on the curve Xg given by

idp =
zg +

∑g−1
k=0 ckzk√

R(z)
dz

normalized by the conditions∫ E2i+1

E2i

dp = 0, i = 1, . . . , g.

We would like to make precise the link between the quasimomentum and the com-
plex Green function G(z) of Ĉ \ E, with pole at ∞ ∈ Ĉ, given by (1.1) with the con-
ditions (1.2). The Green function can be described in terms of abelian differentials in
the following way. If R is a planar region with g boundary components Γ1, Γ2, . . . , Γg, its
Schottky double R̂ is a compact Riemann surface of genus g admitting an anti-conformal
involution φ fixing the boundary ∂R. We use the classical notation z̄ = φ(z). For a, b ∈ R̂,
let ωa−b denote the abelian differential of the third kind on R̂ with poles of residues 1 and
−1 at a and b, respectively. If g(a, z) is the Green function of R with logarithmic singular-
ity at a, then the differential on R, dg(z, a)+d∗g(z, a), extends to an abelian differential
of the third kind ωā−a [11]. It is crucial here that if Γi = [E2i−1, E2i], 1 � i � g + 1,
then the Schottky double R̂ is the hyperelliptic curve Xg associated with the equation
y2 =

∏2g+2
i=1 (z − Ei) [11], where it was shown that

G(z) =
∫ z

E1

idp (3.4)

=
∫ z

E1

ω∞+,∞−.

Now the normalization conditions on the quasimomentum dp are exactly those in (1.2)
or (2.5). But Krichever [18] proved that the polynomial condition on R(z) in Theorem C
is equivalent to the conditions

1
2π

∫ E2j+1

E2j

dp =
mk

N
, mk ∈ N,
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and this is exactly the condition (2.6). The final conclusion at this point is that the
existence of a periodic Jacobi matrix that is real, symmetric and N -periodic having
a union of intervals E as spectrum is equivalent to the fact that the Nth Chebyshev
polynomial oscillates exactly N times on E. �

In the rest of this section, we give more details on the last connection involved in the
proof of Theorem C.

3.2. Green functions, capacities and a new look at a theorem of Walsh

Definition 3.5. A compact set E = [E1, E2] ∪ [E3, E4] ∪ · · · ∪ [E2n−1, E2n] of the real
line is calibrated if the complex Green function G(z) of Ĉ \ E with pole at infinity given
by (1.1) satisfies the conditions (2.5) and (2.6)∫ E2k+1

E2k

√
Q(t) dt = 0, k = 1, 2, . . . , n − 1,

and ∫ E2k

E2k−1

√
Q(t) dt = ±rkπi

N
, k = 1, 2, . . . , n,

where

Q(t) =
(t − c1)2(t − c2)2 · · · (t − cn−1)2

(t − E1)(t − E2) · · · (t − E2n−1)(t − E2n)
= h(t)2

and r1, . . . rn, N ∈ N, r1 + · · · + rn = N .

We observe that if a compact E is calibrated with respect to r1, r2, . . . , rn, N , then it is
also calibrated with respect to kr1, kr2, . . . , krn, kN , k ∈ N∗. Now we give an illustration
of this definition.

Theorem 3.6. If E is calibrated, then a sequence of integers (mk)k∈N exists such that
the mkth Chebyshev polynomial is

Tmk
(z) = 2C(E)mk cosh(mkG(z)).

Proof. We take the determination of
√

Q(t) that corresponds to the simply connected
domain Ĉ \ ] − ∞, E2n] that is positive for real x > E2n. If E is calibrated with respect
to r1, r2, . . . , rn, N , with r1 + r2 + · · · + rn = N , the function

TN (z) = MN cosh
(

N

∫ z

E2n

√
Q(t) dt

)
(3.5)

is an entire function which behaves on circles {|z| = r} like

TN (z) ∼ rN , r �→ ∞.

TN (z) is then a polynomial and it is the Chebyshev polynomial of degree N of E, the
constant MN is such that TN (z) is a monic polynomial. As we observed, the function

TkN (z) = MkN cosh
(

kN

∫ z

E2n

√
Q(t) dt

)
(3.6)
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is also the Chebyshev polynomial of E of degree kN if the constant MkN is such that
TkN (z) is a monic polynomial. Now, if tN (z) is the Nth Chebyshev polynomial of the
interval [−2, 2], then

TkN (z) = 2−kMk
N tk

(
cosh

(
2
TN (z)
MN

))
= zkN + · · · , (3.7)

and TkN (z) oscillates kN times between ±Mk
N on E and so it is the (kN)th Chebyshev

polynomial of E. It follows that

MkN = 21−kMk
N , k ∈ N, (3.8)

or
C(E) = ( 1

2MN )1/N , (3.9)

giving

TkN (z) = 2C(E)kN cosh
(

kN

∫ z

E2n

√
Q(t) dt

)
. (3.10)

To compare Equations (3.6) and (3.7), we use the classical identity

tN (2 cosh(θ)) = 2 cosh(Nθ)

to transform the formula (3.6) into

TkN (z) = 1
2MkN tN

(
2 cosh

(
N

∫ z

E2n

√
Q(t) dt

))

and by (3.5) and (3.8), we obtain the formula (3.7). This proves the theorem. �

For the special case of calibrated E, the theorem gives an exact relation between the
complex Green function of Ĉ \ E and a special family of Chebyshev polynomials of E. In
this case, we have a precise formulation of a result of Widom [38, Formulae 2.5 and 2.7]
which asserts that

lim
n→∞

Tn(z)C(E)−nΦ(z)−n = 1

uniformly on compact sets of the complement of E. Here Φ(z) is the exponential of the
Green function of the complement of E. Moreover, it has been proved by Walsh [37,
pp. 72, 73, 157, 158] that if G(z) is the Green function with pole at infinity of an
unbounded region of finite connectivity Ω, whose boundary consists of a finite num-
ber of non-intersecting analytic Jordan curves, then there exist points z1, z2, . . . in the
complement E of Ω such that

lim
n→∞

|(z − z1)(z − z2) · · · (z − zn)|1/n = C(E) exp(G(z)),

the convergence being uniform on compact sets of Ω. From (3.6), (3.7) and (3.8) we have
for calibrated E a precise statement of Walsh’s result.

Before continuing further, we wish to recall some definitions that will be needed. Given
a bounded set E in the complex plane, we denote by E(r) the r-neighbourhood of E .
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G(cg)

G(E2g + 2) = 0

G(E1)

Figure 1.

Definition 3.7. If E1 and E2 are two bounded sets in C, the difference between E1 and
E2 is the smallest r such that E1(r) contains E2 and E2(r) contains E1.

We will denote this difference by δ(E1, E2). It is small if and only if E1 and E2 are
(almost) superimposable. If E is a compact set and (Eν) a family of sets such that δ(E , Eν)
tends to zero as ν tends to ∞, we will say simply that (Eν) tends to E . The following
lemma is important for our needs [7].

Lemma 3.8. If (Eν) tends to E , then for a fixed n, the Chebyshev polynomials
Tn(z, Eν) tend to the Chebyshev polynomials Tn(z, E) as ν tends to ∞, uniformly on E .

The main result of this section is the following approximation theorem, the first part
of which was proved implicitly by Robinson in [29]. The main idea here is to exhibit
the connection between the difference operators attached to Jacobi matrices and the
Carathéodory Kernel Theorem for conformal mappings. The reason is that, as in the
continuous case [20], the Floquet exponent is related to the Schwarz–Christoffel formula,
which is in turn related to the complex Green function.

Theorem 3.9. Let E = [E1, E2] ∪ [E3, E4] ∪ · · · ∪ [E2g+1, E2g+2] be a finite union of
closed intervals. There exists a family of calibrated sets Eν = [E1,ν , E2,ν ] ∪ [E3,ν , E4,ν ] ∪
· · ·∪[E2g+1,ν , E2g+2,ν ] tending to E. Consequently, each real and symmetric Jacobi matrix
whose spectrum is a finite union of disjoint closed intervals is a limit of real, symmetric
and periodic Jacobi matrices.

Proof. For a given E = [E1, E2]∪ [E3, E4]∪· · ·∪ [E2g+1, E2g+2] and cj ∈ [E2j , E2j+1],
1 � j � g, the function z �→ w = G(z) maps the upper half-plane onto a polygon of the
type in Figure 1.

From the solution of the Jacobi inversion problem, there is a unique set

{cj ∈ [E2j , E2j+1], 1 � j � g}

such that the polynomial

h(ζ) = ζg + hg−1ζ
g−1 + · · · + h0 = (ζ − c1)(ζ − c2) · · · (ζ − cg)

satisfies the system (1.2). In this situation,

G(E2j) = G(E2j+1), 1 � j � g, G(E1) = iπ, G(E2g+2) = 0.
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G(E2g + 2) = 0

G(E1) = iπ

Figure 2.

The map z �→ w = G(z) sends the upper half-plane onto the polygon Γ of the form in
Figure 2.

The calibration of E means that the slits have heights of the form q/rπ, q, r ∈ N∗.
If a finite union of intervals E = [E1, E2] ∪ [E3, E4] ∪ · · · ∪ [E2g+1, E2g+2] is given, its
image Γ under the map z �→ w = G(z) with G(z) satisfying (1.2) does not necessarily
satisfy the second condition in the definition of calibration. But we can find a sequence
(Γν) of polygons tending to Γ as ν tends to ∞ in the sense that limν→∞ δ(Γ, Γν) = 0,
where (Γν) is bounded horizontally by the two half lines Imw = 0, Im w = iπ and
vertically by the imaginary axis. Finally, it has g horizontal slits with heights equal to
rational multiples of π. From the definition of the difference δ(Γ, Γν) we see that Γ is the
kernel of the family (Γν), in the sense that Γ is the largest domain D containing ∞, and
each compact set K of D is contained in Γν for ν � ν0(K). By the Riemann mapping
theorem, there is a unique conformal mapping gν of the slit domain Γν onto the upper
half-plane, which, by another theorem of Carathéodory, can be extended continuously
and homeomorphically up to the boundary. The image gν([0, iπ]) is a calibrated set
Eν = [E1,ν , E2,ν ] ∪ [E3,ν , E4,ν ] ∪ · · · ∪ [E2g+1,ν , E2g+2,ν ] tending to E as ν tends to ∞,
by the Carathéodory Kernel Theorem [13]. We have thus proved that any finite union E

of closed intervals can be approximated in the difference topology by a calibrated finite
union Eν of closed intervals. By (3.8), any Chebyshev polynomial Tn(z, E) is a limit of
a uniformly convergent sequence on E of Chebyshev polynomials Tn(z, Eν) of calibrated
Eν .

To conclude this proof, we add one more remark. The universal covering of Ĉ \ E and
Ĉ \ Eν is the upper half-plane H. From [13, Theorem 1], the universal covering maps
ην : H �→ C \ Eν converge uniformly on compact sets of H to the universal covering map
η : H �→ C \ E. �

To close this section, we wish to point out a relation between the resolvent of a real
symmetric and periodic Jacobi matrix of spectrum E and the complex Green function
of Ĉ \ E. We write

G′(λ) dλ = i dp(λ) = ω
(3)
∞+,∞−(λ)

=

∏g
j=1(λ − λj)√
R2g+2(λ)

dλ =
P (λ)√

R2g+2(λ)
dλ,
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where ω
(3)
∞+,∞−(λ) is the normalized differential of the third kind with poles at ∞+,

∞− and λj ∈ [E2j , E2j+1], j = 1, . . . , g. We choose µj(n0) = λj , j = 1, . . . , g. By
(3.3), to each µj(n0), j = 1, . . . , g, there corresponds a unique Jacobi operator H(n0) of
spectrum Σ =

⋃g
j=0[E2j+1, E2j+2]. Denoting the Green function (resolvent) of H(n0) by

G(n0)(z, n, m), the diagonal Green function is given by [6]

G(n0)(z, n0, n0) =

∏g
j=1[z − µj(n0)]√

R2g+2(z)
.

In other words, we have the identity

G(n0)(z, n0, n0) = G′(z).

Now, for every n, µj(n) is defined from µj(n0), as is (G(z, n, n))n.

3.3. Example

For a fixed a > 1 the compact set Σa = [−a − 1,−a + 1] ∪ [a − 1, a + 1] is mapped
under z �→ z2 onto the interval [(a−1)2, (a+1)2] of capacity a. By the transfer theorem,
the capacity of Σa is

√
a. As is shown in [35], a Jacobi matrix J of period 2 and whose

spectrum is exactly Σa is, for instance, given by

Jn,n = an = an+2, Jn,n+1 = Jn+1,n = bn = bn+2,

with

a0 + a1 = 0, b0b1 = a,

a2 + 1 = a2
0 + b2

0 + b2
1.

This shows again that the capacity of Σa is
√

b0b1 =
√

a. Furthermore, the complex plane
slit along [−1, α] ∪ [β, 1] is conformal to the complex plane slit along [−1,−a] ∪ [a, 1],
where

a =
1 − k′

1 + k′ , k′2 + k2 = 1, k2 =
2(β − α)

(1 + α)(1 + β)
.
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