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Abstract

We consider the phase-locked solutions of the differential equation governing pla-
nar motion of a weakly damped pendulum forced by a prescribed, vertical accel-
eration eg sin cot of its pivot, where co and t are dimensionless, and the unit
of time is the reciprocal of the natural frequency. Resonance curves and stabil-
ity boundaries are presented for downward and inverted oscillations of periods
T, 27", 47", . . . , where T (= 2n/w) is the forcing period. Stable, downward
oscillations are found to occur in distinct regions of the (co, e) plane, reminiscent
of the regions of stability of the Mathieu equation (which describes the equivalent
undamped, parametrically excited pendulum motion). The regions are dominated
by oscillations of frequencies jco, co, jco, ... , each region being bounded on
one side by a vertical state at rest in stable equilibrium and on the other side by a
symmetry-breaking, period-doubling sequence to chaotic motion. Stable, inverted
oscillations are found to occur also in distinct regions of the (co, e) plane, the
principal oscillation in each region being symmetric with period 27".

1. Introduction

We consider a pendulum forced by a vertical acceleration eg sin cot of its
pivot. The equation of motion is

0 + 286 + sin0 = e sin 0 sin <yf, (1.1)

where 0 is the angular displacement from the downward vertical, S is the
damping ratio (actual/critical), co is the ratio of the forcing frequency to the
natural frequency, and the unit of time is the inverse, natural frequency. We

Department of Mathematics, University of Canterbury, Christchurch, New Zealand.
2 Institute of Geophysics and Planetary Physics, University of California at San Diego, La Jolla,
California 92093, U.S.A.
© Copyright Australian Mathematical Society 1990, Serial-fee code 0334-2700/90

42

https://doi.org/10.1017/S0334270000008201 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008201
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assume 8 <S 1, e = 0(1) and to — 0(1) in the analytic formulation based
on a sinusoidal approximation for 6, and set 6 = 1/8 in the numerical
calculations for the precise variation of 6.

We have previously investigated the phase-locked solutions of a weakly
damped pendulum forced by a periodic torque [2, 10], and by a horizon-
tal periodic displacement of its pivot [3]. The same numerical method is
used here for the vertically forced case. We develop solutions of (1.1) as
truncated Fourier expansions containing a sufficient number of harmonics to
render the numerical error arbitrarily small (< 10~4). In addition, a system-
atic numerical search was made of the asymptotic solutions in time of (1.1),
using step-by-step integration with a local error tolerance of 10~10, to com-
plement the Fourier series method. The chaotic solutions of (1.1) were not
investigated further, since our primary focus is on the bifurcation structure.
Previous numerical [6, 8] and experimental [7] studies of (1.1) have been
concerned primarily with chaotic, rotational solutions of (1.1), whereas we
are concerned primarily with periodic motions and their stability boundaries.

Symmetric and asymmetric swinging oscillations about both the downward
vertical and the upward vertical and running oscillations with a mean angular
velocity (8) ((6}/co is a rational number) are found, with periods that are
multiples of the forcing period T. Resonance curves are denned, as before,
as plots of (E) * vs to, where

E = d2/2+l-cosd (1.2)

is a measure of the energy of oscillation. Stability is determined through the
numerical integration of (1.1) with initial conditions close to those of the
solution to be tested.

For undamped oscillations near the downward vertical (S = 0, \6\ <c 1),
(1.1) may be rewritten as the Mathieu equation [1]

6" + {p - 2qcos2v)d = 0 (1.3a)

where
p = 4/co2, q = 2e/co2, v- cot/2. (1.3b,c,d)

The stability diagram in the qp-plane is sketched by Drazin and Reid [4],
Figure 6.6 (after Abramowitz and Stegun [1], Figure 20.1). Parametric reso-
nance, leading to unstable oscillations, occurs for small values of e at forcing
frequencies co near 2/n , n = 1, 2, ... . A similar pattern occurs in the sta-
bility diagram for weakly damped oscillations (Figure 5), which also divides
into regions associated with the forcing frequencies 2/n , n = 1, 2, ... .

Resonance in the first region, at a forcing frequency twice the natural fre-
quency, was observed orginally by Faraday for surface waves on a fluid in a
vertically oscillating container. The fluid has an infinite sequence of natural
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frequencies, rather than the single natural frequency of the coplanar pen-
dulum oscillation. For this reason, the more usual description of Faraday
resonance is that the dominant oscillation of the fluid in the container occurs
at half the frequency of the vertical oscillation of the container. Miles [9] de-
veloped an averaged Lagrangian formulation for the slowly varying amplitude
of the primary mode of oscillation in weakly nonlinear Faraday resonance.
The nresent fully nonlinear analysis of a forced pendulum with one degree of
freedom is a first step towards a fully nonlinear analysis of Faraday resonance
with many degrees of freedom, to complement the detailed experimental in-
vestigations by Gollub and Meyer [5], and others.

The oscillations in the first region are dominated by the harmonic with
frequency co/2 (co/2 lies near 1 in this region), equivalent to period 2T.
Also, since (1.1) admits symmetric solutions satisfying

0{t + T) = -6(t), (1.4)

a symmetric, 2r-periodic oscillation is the first motion to occur on cross-
ing the stability boundary from the vertical pendulum in stable equilibrium.
As co is changed further, a symmetry-breaking stability boundary is crossed
to stable, asymmetric, 2r-periodic oscillations, followed by period-doubling
stability boundaries. The period-doubling sequence terminates with a nar-
row band of nearly-periodic oscillations before chaotic oscillations or some
independent periodic oscillations are reached.

The oscillations in the second region are dominated by the harmonic with
frequency co (co lies near 1 in this region), equivalent to period T. Because
(1.1) does not admit symmetric solutions satisfying

f ) =~6{t)'
an asymmetric, T-periodic oscillation is the first motion to occur on cross-
ing the stability boundary from the vertical pendulum in stable equilibrium.
As co is changed further, a period-doubling sequence of stable, asymmetric
oscillations is followed until it terminates in the same manner as the first
region.

The oscillations in the third region have the harmonic with frequency
3co/2 (5co/2 lies near 1 in this region) of comparable magnitude to that
of frequency co/2, with a period 2T. This means that the first oscillations
to occur are symmetric, with properties similar to those of the first region ex-
cept that there are two dominant harmonics. This pattern continues on the
stability diagram, with the odd regions having symmetric, 2r-periodic oscil-
lations on the threshold, and the even regions having asymmetric, T-periodic
oscillations on the threshold.
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The sinusoidal approximation reduces the oscillatory part of 6 to the
dominant harmonic alone, and is applied successfully to the first region of
the stability diagram. It provides a reasonable estimate for at least some of
the resonance curves and stability boundaries.

The dominant regions of inverted oscillations describe motion that is sym-
metric with a period IT, having a mean n and amplitudes near, but less
than, 2n. Each region has a turning-point stability boundary on one side,
and a symmetry-breaking stability boundary on the other side. The turning-
point boundary marks a sudden transition to chaotic motion or some inde-
pendent periodic motion. The symmetry-breaking boundary is followed by
period-doubling boundaries.

A much narrower region of inverted oscillations has been found in which
the motion is symmetric with a period 2T and mean n, but with amplitudes
near zero. This region is bounded on one side by a transition to a stable state
of equilibrium in which the pendulum remains on the upward vertical from
the pivot, and on the other side by a symmetry-breaking, period-doubling
sequence. The region of inverted, stable equilibrium also is narrow, and is
bounded on the other side by a transition to unstable, T-periodic, asymmet-
ric, inverted oscillations with amplitudes near zero.

2. Downward oscillations of periods T, IT, . . .

We represent wT-periodic oscillatory solutions of (1.1) by the Fourier
series

N

6 = 60 + ^2[ak cos(k(ot/m) + bk sin(kcot/m)], (2.1)
k=l

where d0 is zero or near zero for downward oscillations, and ak,bk,
k = 1, ... , N, with 0O and N are determined numerically.
2.1. 2 ̂ -periodic oscillations. The sinusoidal approximation for 2T-periodic
oscillations dominated by the lowest harmonic is

0 = d0 + a sin(t/2) (a > 0), x = wt - <f>. (2.2a,b)

When 6 is substituted into (1.1), and moments taken with respect to 1,
COS(T/2) , sin(r/2), we obtain

(70-e./2sin<£)s0 = 0, (2.3a)

da co = 4eJ2c0 cos <f>, (2.3b)

a = -2e/2'c0 sin <j>, (2.3c)
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where c0 = cos 0O , s0 — s e 60, fl - 2 / , / a , and the Bessel functions Jn are
functions of a . Equations (2.3a,b,c) admit five possibilities:

(i) Qo = a — 0 , downward vertical equilibrium;
(ii) 60 = 0, a > 0, 2r-periodic, symmetric, downward oscillations;

(iii) 60 ̂  0 , a > 0, 2T-periodic, asymmetric, downward or inverted os-
cillations;

t;,r\ a -r „. rv , , n . . ,o .^ ,„•._•: i :i:i :
\* ' / WQ /b , U V/j UpVTCllU V b l U ^ a i CC{U111U11U111,

(v) 60 = n, a> 0, 2r-periodic, symmetric, inverted oscillations.

The only question for (i) and (iv) concerns their stability. The inverted forms
(iii) and (v) are described in Section 3, and attention here is directed first to
(ii).

Setting 6Q = 0 and eliminating <f> between (2.3b,c), we obtain

i
(2.4)

where

and
af2 Jx -J3

?
a

?.
a

4
a

4
a

Both Q and X are positive within the domain of the present approximation.
The radical in (2.4) is real for 0 < a < am where am is the smallest root of

<Ja2(Q - d2X2)*/(2J2) = e (a = am). (2.6)

The left side of (2.6) increases monotonically from £0 at a = 0 to et at
2a = at = 2.1 A + 0(d2), where

(2.7a,b)

and then decreases to zero at Q = S2X2. It follows (as is well known) that
symmetric, 2T-periodic oscillations are impossible if e < e0.

The boundary between 2!T-periodic, symmetric oscillations and the down-
ward vertical equilibrium state is given by the limit a —* 0 in (2.4),

(a>/2)2=\-2d2±(e2-e2
0)l/2. (2.8)

The exact boundary obtained from a full Fourier series expansion is com-
pared with (2.8) in Figure 1, where S = 1/8 , e0 = 0.496. The Fourier expan-
sion for the 2T-periodic symmetric oscillations is given by (2.1) with m = 2,
60 — 0 , and a2k = b2k — 0 for all k. The right, solid section of the exact
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FIGURE 1. The stability boundary between the stable, downward vertical equilibrium state
and the 27"-periodic, symmetric oscillations. The oscillations are stable on the solid numerically
calculated curves, unstable on the dotted numerically calculated curves, and the dashed curve is
the approximate analytical result (2.8).

curve is a stability boundary between the stable, downward vertical equilib-
rium state on the right, and stable, 2r-periodic, symmetric oscillations on the
left, while the left, dotted section is a stability boundary between the stable,
downward vertical equilibrium state on the left and unstable, 2r-periodic,
symmetric oscillations (coinciding with the unstable, downward equilibrium
state) on the right. The approximate, dashed curve (2.8) provides a good fit
to the stable section, but not to the upper part of the unstable section where
higher harmonics become significant. The boundary equation (2.8) may be
calculated also by a stability analysis of the downward vertical equilibrium
state, using the Floquet method described previously ([10], Appendix A).

The resonance curve for symmetric 2T-periodic oscillations with e = 0.6,
(5=1/8 is plotted in Figure. 2a. The exact resonance curve describes stable
oscillations on the solid section to the turning point, and unstable oscilla-
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FIGURE 2a. The resonance curves for the 22r-periodic, symmetric oscillations with e = 0.6 ,
S = 1/8 . The oscillations are stable on the solid numerically calculated curves, unstable on
the dotted numerically calculated curves, and the dashed curves are the approximate analytical
result (2.4).

tions on the following dotted section. The symmetric oscillations have an
amplitude 0J3n at the turning point. The approximate, dashed resonance
curve is calculated from (1.2) with (2.4). The agreement is reasonable on the
lower part of the curves, but fails on the upper part where higher harmonics
become significant.

When e is increased from the value 0.6 of Figure 2a, the oscillations
become unstable on the right part of the resonance curve before the turning
point is reached. Change of stability occurs at a symmetry-breaking point, the
stable state being asymmetric, 23r-periodic oscillations in a neighbourhood
beyond the point. An example of such a resonance curve a t e = 1 . 0 , < $ =
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Eps i l on = 1 .0
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FIGURE 2b. The resonance curves for the 27"-periodic, symmetric oscillations with e = 1.0 ,
($= 1/8.

is shown in Figure 2b. The right part of the exact resonance curve describes
stable oscillations on the solid section to the symmetry-breaking point at co =
1.735, (£)* = 1.227, where the symmetric oscillations have an amplitude
0.647T. The approximate, dashed resonance curve from (1.2) and (2.4) agrees
only with the lower part of the exact curves.

Multiple resonance curves appear as e is increased further from the value
1.0 in Figure 2b. The resonance curves at e = 2.0, 3 = 1/8 are sketched
in Figure 2c. Stable sections are shown on the first and third curves from
the right, in each case bounded above by a symmetry-breaking point. The
approximate resonance curve (not drawn) agrees with the lower part of the
first curve only.
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FIGURE 2C. The resonance curves for the 2r-periodic, symmetric oscillations with e = 2.0 ,
6 = 1.8.

We obtain asymmetric, 2r-periodic oscillations by eliminating <j> among
(2.3a,b,c) on the hypothesis that s0 ^ 0 when

2 fda'coV 2
-r + (2.9a)

C0 ~ A, 2,
4XJ0)

(2.9b)

The symmetry-breaking bifurcation {cQ = 1, /0+e./2sin</> = 0) is determined

0) ( a ,_
( 2 1 O a )
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FIGURE 3. The symmetry-breaking curves for 27~-periodic oscillations. The oscillations are
stable on the solid numerically calculated curves, unstable on the dotted numerically calculated
curves, and the dashed curve is the approximate analytical result (2.10).

_
a

(a = a.). (2.10b)

Equation (2.10) is compared in Figure 3 with the exact symmetry-breaking
curve for the right part of the resonance curves. The fit is excellent at the
larger values of co, where 6 is dominated by the first harmonic, but fails at
smaller co where higher harmonics are significant.

2.2. T-periodic oscillations. The full Fourier expansion for T-periodic,
asymmetric oscillations is given by (2.1) with m = 1, 6Q near zero, and
both even and odd harmonics present. If the Fourier expansion is substi-
tuted into (1.1) for solutions satisfying |0| < 1 when e = 0(1), it may be
shown that the mean 0O and the second harmonic are of comparable mag-
nitude, although dominated by the first harmonic. This means that there is

https://doi.org/10.1017/S0334270000008201 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008201


52 Peter J. Bryant and John W. Miles [11]

no simple sinusoidal approximation like (2.2), with 0O ^ 0, from which the
principal results for r-periodic asymmetric oscillations may be estimated
with reasonable accuracy using the moment method. Equation (1.1) does
not admit symmetric, r-periodic solutions satisfying (1.5), leaving 4 rele-
vant possibilities:

(i) 0 = 0, all l , downward vertical equilibrium;
(ii) r-periodic, asymmetric, downward oscillations (0O near zero);

(iii) r-periodic, asymmetric, inverted oscillations (0O near n);
(iv) 0 = n , all t, upward vertical equilibrium.

The first two possibilities are described here and the other two in Section 3.
Calculations with full Fourier expansions show that the minimum value of
e for r-periodic oscillations when (5 = 1/8 is 1.0002, and that co = 0.915
at this point.

Eps i l o n = 1 .05
1 .6

1 .4 -

.60 .65 .70 .75 .80 .85 .95 1.00

FIGURE 4a. The resonance curve for the T-periodic, asymmetric oscillations with e = 1.05 ,
8= 1.8.
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Eps i 1 o n = 2 . 0
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FIGURE 4b. The resonance curves for the 7"-periodic, asymmetric oscillations with e = 2.0 ,
<$ = 1.8.

The resonance curve for F-periodic, asymmetric oscillations when
e = 1.05, 8 = 1/8 is sketched in Figure 4a, which has a similar form to
Figure 2a. The oscillations are stable on the right solid section, to the turn-
ing point, and are unstable on the left, dotted section. Like the 27"-periodic
oscillations, there are an increasing number of resonance cuves as e is in-
creased beyond the value in Figure 4a. The resonance curves for e = 2.0,
<5= l /8 are drawn in Figure 4b. As in Figure 2c, each of the stable, solid
sections of the resonance curves is bounded by a point where the 7*-periodic
oscillations become unstable. However, unlike Figure 2c, these points are
period-doubling points, dividing the stable, T-periodic, asymmetric oscilla-
tions from stable, 2r-periodic, asymmetric oscillations.

2.3. Stability. The regions of stability for the 2r-periodicand T-periodic os-
cillations described above, and their descendants, are summarised in Figure 5.
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FIGURE 5. The stability diagram for T, IT, 47", ...-periodic oscillations, with S = 1/8.
The notation is described in Section 2.3.

Stability is determined for any particular solution by calculating numerically
the asymptotic solution of (1.1) from initial conditions in the neighborhood
of the solution. Attention is drawn to the similarity in structure from right to
left across the figure, reminiscent of the similarity in structure of the stability
diagram for the Mathieu equation (1.3), illustrated in [4], Figure 6.6. This is
to be expected, since the Mathieu equation describes the undamped form of
the present forced pendulum motion for small oscillations.

The curve C,, in the right region is the same as that in Figure 1, dividing
the symmetric 2r-periodic oscillations on the inside from the stable, down-
ward vertical equilibrium state on the outside of the curve. The part of the
symmetric, 27"-periodic oscillations on the inside of the left, dotted section
of Cy, is unstable, shown as the first dotted curve rising from (E) * = 0 in
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Figures 2a,b,c. When the stable part that begins on the right solid section of
C,, is followed to the left in the figure, it is terminated either at the turning-
point curve C10, as for the solid curve rising from (E)1 — 0 in Figure 2a,
or at the symmetry-breaking curve C12, as for the first solid curve rising

from (E)5 = 0 in Figures 2b,c. In the lower triangular section between the
C12, C10, and dotted C1( cuves, symmetric, 2 T-periodic oscillations and
the downward vertical equilibrium state are both stable.

The symmetry-breaking curve C12 is the same as that in Figure 3. It is
followed by a narrow band of stable, asymmetric, 2T-periodic oscillations,
which become unstable in turn on the period-doubling curve C14 . This curve
is a stability boundary for asymmetric, 4r-periodic oscillations, bounded on
the other side by the next period-doubling curve Clg . The period-doubling
sequence degenerates into a band of nearly-periodic motion as co is decreased
further, merging into either an independent periodic motion or chaotic mo-
tion. All the oscillations within the first region of Figure 5 are dominated by
the harmonic of frequency co/2, where a> lies near 2.

The curve C2l in the next region of Figure 5 divides the asymmetric, T-
periodic oscillations on the inside from the stable, downward vertical equi-
librium state on the outside of the curve. The stable and unstable sections
of the curve C21 have the same function as in the first region, except that
the oscillations inside are asymmetric and 7^-periodic, rather than symmet-
ric and 2r-periodic, and are described by the first two curves rising from
(E) * = 0 on Figures 4a,b. C22 is a period-doubling curve, followed by the
period-doubling sequence C24 , C28, . . . . All the oscillations within this sec-
ond region of Figure 5 are dominated by the frequency co, where co lies
near 1.

The third region is like the first region in Figure 5, with the curve C31

dividing symmetric, 2!T-periodic oscillations on the inside from the down-
ward vertical equilibrium state on the outside of the curve, and the remaining
curves having the same roles as in the first region. The difference from the
first region is that the harmonic with frequency 3co/2 is of comparable mag-
nitude to that of frequency co/2, where 3a>/2 lies near 1. The fourth region
is like the second region in Figure 5, with 7"-periodic, asymmetric oscillations
inside the cure C41, and the harmonic with frequency 2w of comparable
magnitude to that of frequency co, where 2co lies near 1.

The regions in Figure 5 continue to alternate between 2r-periodic and T-
periodic oscillations as the threshold oscillating state, for decreasing co across
the figure, with the harmonic of frequency nco/2 having an important role in
the n th region, where nco/2 lies near 1. The closer proximity of successive
regions below co = 0.4 in Figure 5 makes the calculation of precise stability
boundaries more difficult there.
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3. Inverted oscillations of periods T, 2T, ...

We represent raT-periodic, inverted, oscillatory solutions of (1.1) by the
Fourier series (2.1) with 80 equal to n or near n .

3.1. 2 T-periodic oscillations. The stability diagram for inverted, 2r-periodic
osciiiations and their descendants is sketched in Figure 6. The boundary
curve Co on each band is a turning-point curve, on which the amplitude
of oscillation is much larger than zero. In the first band, the 2r-periodic,
stable, symmetric oscillation on the turning-point boundary Co at e - 1.5,
co = 0.855 , has an amplitude 1.4571, oscillating between -0.457T and 2.457t.
When co is decreased, the symmetry-breaking curve C2 is reached, beyond
which the stable, asymptotic state is 2r-periodic, asymmetric oscillations. As
co is decreased further, the period-doubling sequence C4, Cg, . . . is followed
before nearly-periodic, inverted oscillations are reached, then an independent
periodic motion or chaotic motion. At e = 1.5, for example, 4!T-periodic,
inverted oscillations extend from co = 0.782 to 0.779, an 8r-periodic,
inverted oscillation occurs at co = 0.778, then nearly-periodic, inverted os-
cillations extend from co = 0.777 to 0.770, followed by chaotic motion.

The same form of symmetry-breaking, period-doubling sequence is fol-
lowed in the second band of inverted, 2T-periodic oscillations in Figure
6. The symmetric oscillation on the turning point boundary Co at e = 1.5,
co = 0.418, has an amplitude 1.36s , oscillating between -0.367T and 2.36ft .
It has a second minimum and maximum within each period, where 6 is equal
to -0.2371 and 2.237T respectively. There is a third band of inverted, 2T-
periodic oscillations to the left of Figure 6. The symmetric oscillation on the
turning point boundary Co at e = 1.5, co = 0.238, has three maxima and
minima in each period, the three maxima being 2.3l7r, 2A6n, 2A2n .

3.2. Upward vertical equilibrium state. Equation (1.1) admits vertical solu-
tions for which 6 — n for all / . It also admits T-periodic, asymmetric,
inverted, oscillatory solutions for which m = 1 and 8Q lies near n in (2.1).
A systematic search of the asymptotic solutions to (1.1) did not find any sta-
ble, !T-periodic, inverted, oscillatory solutions, but it did find a very narrow
band in which the upward vertical equilibrium state is stable. Curiously,
this stable band is bounded on one side by unstable, T-periodic, inverted
oscillations of small amplitude. A narrow band of stable, symmetric, 2T-
periodic, inverted oscillations of small amplitude is found on the other side
of the equilibrium region, followed by a very narrow symmetry-breaking and
period-doubling sequence of stable, inverted oscillations of small amplitude.
The location of this region is shown in Figure 7.
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FIGURE 6. The stability diagram for 27", AT, ...-periodic inverted oscillations, with S
1/8 . The notation is described in Section 3.1.
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FIGURE 7. The stability diagram for the stable, inverted equilibrium state and for the
27", 47", ...-periodic inverted oscillations with amplitudes near zero. The equilibrium state
occurs between the dotted curve and the first solid curve.

4. Further stable oscillations

Like the other two cases of forced, weakly damped pendulum oscillation [2,
3], there is a wide range of stable, oscillatory motions that occur here. A broad
region of stable, running, r-periodic oscillations with mean angular velocity
o) exists, for example, bounded on one side by a turning-point stability curve,
and on the other side by a period-doubling sequence. Typical of the more
unusual running oscillations is a 3r-periodic oscillation with a mean angular
velocity co/3.

One noticeable feature in comparing this case with the previous two cases
of forced pendulum motion is the scarcity of stable oscillations with peri-
ods that are odd multiples of T, the main exceptions being the r-periodic
asymmetric oscillations described in Section 2.2 and the r-periodic running
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oscillations mentioned above. In these previous cases, there were broad re-
gions of 3r-periodic, swinging oscillations, both downward and inverted. A
systematic search of the stable, oscillatory motions in the present case did not
find a single example of a 3r-periodic, swinging oscillation, although (1.1)
does admit 3r-periodic, asymmetric, swinging oscillatory solutions.

5. Summary

Small amplitude periodic oscillations of a damped pendulum are symmetric
about the vertical when the pendulum is torque-driven (Part 1) or forced
horizontally (Part 2). If it is driven vertically (Part 3) with a force of small
amplitude, any initial motion is damped to leave the pendulum in verti-
cal equilibrium. This stable vertical state exists with, or is replaced by,
either symmetric or asymmetric oscillations once the vertical driving am-
plitude passes a threshold (Part 3, Figure 5). Symmetric oscillations lose
stability to asymmetric oscillations when the forcing amplitude is increased,
these in turn lose stability to asymmetric oscillations of twice the period at a
greater forcing amplitude, and so on in period-doubling sequences. No exam-
ples were found of period-doubling occurring before symmetry-breaking, and
when stable symmetric oscillations of twice the period do exist, they appear to
be independent of the single period symmetric oscillations. Period-doubling
sequences were found to terminate in a small interval in which the oscilla-
tions are nearly-periodic, with (0 , 0)-orbits close to those in the sequence.
This property persisted for numerical solutions of the governing differential
equation to large times even when the local error tolerance was reduced to
10~" , but it may need higher precision than this to be understood fully.

The remarkable feature of the three cases of forced, damped, coplanar pen-
dulum motion examined here is the kaleidoscope of different stable, periodic
oscillations that can occur. Stable oscillations can be found with periods at
all low integer multiples of the forcing period, with symmetric or asymmetric
motion about the vertical, with downward or inverted means, and with zero
or nonzero mean angular velocities (an integer number of rotations over suf-
ficient forcing periods). Each periodic oscillation is determined by the values
of amplitude and frequency at which the pendulum is forced, and by the
initial state of the pendulum. All these different periodic oscillations occur
for the coplanar pendulum with only one degree of freedom, anticipating an
even greater variety of periodic oscillations for dynamical systems with many
degrees of freedom.
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