CHARACTERIZATIONS OF QUASI-METRIZABLE BITOPOLITICAL SPACES

T. G. RAGHAVAN and I. L. REILLY

(Received 15 September 1986)

Communicated by J. H. Rubinstein

Abstract

In this paper we prove that a pairwise Hausdorff bitopological space \((X, \mathcal{T}_1, \mathcal{T}_2)\) is quasi-metrizable if and only if for each point \(x \in X\) and for \(i, j = 1, 2, \) \(i \neq j\), one can assign \(\mathcal{T}_i\) nbd bases \(\{S(n, i; x) | n = 1, 2, \ldots\}\) such that (i) \(y \notin S(n - 1, i; x)\) implies \(S(n, i; x) \cap S(n, j; y) = \emptyset\), (ii) \(y \in S(n, i; x)\) implies \(S(n, i; y) \subset S(n - 1, i; x)\). We derive two further results from this.

Keywords and phrases: quasi-metric, quasi-uniformity, bitopological space.

The concept of quasi-metric spaces was first introduced by Wilson [11]. The fact that a quasi-metric gives rise to a conjugate quasi-metric was noticed by Kelly [1], thus leading to the study of bitopological spaces. Since then one of the main problems in this area has been to find necessary and sufficient conditions for quasi-metrization. This problem was considered by Kelly [1] Patty [5], Lane [2], Reilly [6], Salbany [9] and later by Pareek [4] and Romaguera [7, 8].

The related notion of quasi-uniform spaces and their properties have been discussed in great detail in Murdheswar and Naimpally [3] and Stoltenberg [10]. In the proof of Theorem 1 we make use of the quasi-uniform analogue of the metrization theorem of Alexandroff and Urysohn, namely, a pairwise Hausdorff quasi-uniform space \((X, \mathcal{V}_1, \mathcal{V}_2)\) is quasi-metrizable if and only if \(\mathcal{V}_1\) has a countable base. From Theorem 1 we derive Theorems 2 and 3 as corollaries. It must be noted that Theorem 2 has been proved by Pareek [4].

We write nbd for neighbourhood. If \(A\) is a subset of \(X\) and \(\mathcal{T}_i\) is a topology on \(X\), then \(\mathcal{T}_i \text{ cl } A(\mathcal{T}_i \text{ int } A)\) is the closure (interior) of \(A\) in the space \((X, \mathcal{T}_i)\).
The letters \(m, n, n_i, m_j, n_j \) represent positive integers. The letters \(i, j \) always take the values \(i, j = 1, 2; \ i \neq j \). \(S(n, i; x) \) represents a \(\mathcal{T}_i \) nbd of \(x \) where \(n \) is a positive integer.

1. **Theorem.** A pairwise Hausdorff bitopological space \((X, \mathcal{T}_1, \mathcal{T}_2)\) is quasi-
 metrizable if and only if for each point \(x \in X \) one can assign \(\mathcal{T}_i \) neighbourhood bases \(\{S(n, i; x) \mid n = 1, 2, \ldots \} \) such that

 (i) \(y \notin S(n - 1, i; x) \) implies \(S(n, i; x) \cap S(n, j; y) = \emptyset \),
 (ii) \(y \in S(n, i; x) \) implies \(S(n, i; y) \subset S(n - 1, i; x) \) (\(i, j = 1, 2; \ i \neq j \)).

Proof. To prove that the conditions are sufficient, we show first that
\((X, \mathcal{T}_1, \mathcal{T}_2)\) is pairwise regular. If \(S(n, i; x) \ni y \) \(\neq \emptyset \), then \(\mathcal{T}_i \) cl\(S(n, i; x) \) \(\subset X - \mathcal{T}_j \) int\(S(n, j; y) \). Thus if \(y \notin S(n - 1, i; x) \), then \(y \notin \mathcal{T}_j \) cl\(S(n, i; x) \) so that
\[
x \in S(n, i; x) \subset \mathcal{T}_j \text{ cl} S(n, i; x) \subset S(n - 1, i; x).
\]

Furthermore the space is pairwise normal. Indeed, if \(A \) and \(B \) are \(\mathcal{T}_1 \) closed and \(\mathcal{T}_2 \) closed subsets (of \(X \)) respectively such that \(A \cap B = \emptyset \) and \(y \in B \), then there exists a positive integer \(n(y) \) such that \(A \cap \mathcal{T}_2 \text{ cl} S(n(y), 1; y) = \emptyset \). Since \(x \notin S(n(y), 1; y) \) for each \(x \in A \), \(S(n(y) + 1, 1; y) \cap S(n(y) + 1, 2; x) = \emptyset \) for all \(x \in A \). If \(Q_n(y) = \{S(n(y) + 1, 2; x) \mid x \in A \} \), then \(Q_n(y) \supseteq A \) and \(Q_n(y) \cap \mathcal{T}_2 \text{ cl} S(n(y) + 1, 1; y) = \emptyset \). If we write \(\bigcup \mathcal{T}_2 \text{ int} S(n(y) + 1, 1; y) \cap n(y) = k \} = W(k, 1) \), then \(\mathcal{T}_2 \text{ cl} W(k, 1) = \emptyset \) so that we get a \(\mathcal{T}_1 \) open covering \(\{W(k, 1) \mid k = 1, 2, \ldots \} \) of \(A \) such that \(A \cap \mathcal{T}_2 \text{ cl} W(k, 2) = \emptyset \) for each \(k \). Then a standard argument produces disjoint sets \(W_1 \subset \mathcal{T}_1 \) and \(W_2 \subset \mathcal{T}_2 \) such that \(W_1 \supset B \) and \(W_2 \supset A \).

Let \(\mathcal{K}(m, i) = \{S(m, i; x) \mid y \in X \} \). Let \(\mathcal{J}(x, \mathcal{K}(m, i)) = U\{\mathcal{T}_i \text{ int} S(m, i; y) \mid y \in X \} \). Let \(\mathcal{B}(i; x) = \{S(x, \mathcal{K}(m, i)) \mid m = 1, 2, \ldots \} \). We claim \(\mathcal{B}(i; x) \) is a \(\mathcal{T}_i \) local base at \(x \). If \(x \) is fixed initially and \(U(i; x) \) are arbitrary \(\mathcal{T}_i \) nbds of \(x \) then there exists \(n_i \) such that \(x \in S(n_i - 1, i; x) \subset U(i; x) \). Consider \(m = \max(n_1 + 1, n_2 + 1) \). Then clearly \(S(m, i; x) \subset S(n_i, i; x) \). In order to avoid confusion, let us now prove specifically \(\mathcal{B}(2; x) \) is a \(\mathcal{T}_2 \) local base at \(x \). Let \(y \) be such that \(x \in \mathcal{T}_1 \text{ int} S(m, 1; y) \). Then \(S(m, 1; y) \cap S(m, 2; x) \neq \emptyset \) so that \(y \in S(m - 2, 2; x) \subset S(n_2, 2; x) \). Hence \(S(n_2, 2; y) \subset S(n_2 - 1, 2; x) \). Since \(m = \max(n_1 + 1, n_2 + 1) \), \(\mathcal{T}_2 \text{ int} S(m, 2; y) \subset S(n_2, 2; y) \subset S(n_2 - 1, 2; x) \subset U(2; x) \). Thus \(\mathcal{B}(2; x) \) is a \(\mathcal{T}_2 \) local base at \(x \).

If \(x \in \mathcal{T}_1 \text{ int} S(n + 2, 1; y) \), then \(S(n + 2, 1; y) \cap S(n + 2, 2; x) \neq \emptyset \) so that by (i) \(y \in S(n + 1, 2; x) \). Hence \(S(n + 2, 2; y) \subset S(n, 2; x) \) so that \(\mathcal{T}_2 \text{ int} S(n + 2, 2; y) \subset \mathcal{T}_1 \text{ int} S(n + 1, 1; y) \subset \mathcal{T}_2 \text{ int} S(n, 2; x) \). If we define \(\mathcal{L}(m, i) = \{S(x, \mathcal{K}(m, i)) \mid x \in X \} \), then \(\mathcal{L}(n + 2, i) \subset \mathcal{L}(n, i) \) for all
n = 1, 2, 3 \ldots \text{ If we write } V(m, i) = \bigcup \{ \mathcal{S}_j \text{ int } S(m, j; y) \times \mathcal{S}_i \text{ int } S(m, i; y) \mid y \in X \}, \text{ then } (x, y) \in V(m + 2, i) \ast V(m + 2, i) \text{ implies, for some } z \in X \text{ that } (x, z) \in V(m + 2, i) \text{ and } (z, y) \in V(m + 2, i).

Indeed \(x \in V(m + 2, j)[z] \subset \mathcal{S}_j \text{ int } S(m, j; z) \) and \(y \in V(m + 2, i)[z] \subset \mathcal{S}_i \text{ int } S(m, i; z) \) so that \((x, y) \in V(m, i)\). Also notice that \((V(m, i))^{-1} = V(m, j)\).

Thus the conditions are sufficient.

The necessity is proved as follows. Let \(p_1 \) be the quasi-metric that induces \(\mathcal{S}_1 \) and \(\mathcal{S}_2 \) be induced by its conjugate \(p_2 \). Let us write \(S(n, i; x) = \{ y \mid p_i(x, y) < (\frac{1}{2})^n \} \). If \(x \not\in S(n - 1, i; x) \) and \(S(n, i; x) \cap S(n, j; y) \neq \emptyset \), then there exists \(y \in X \) such that \(p_i(x, y) < (\frac{1}{2})^n \) and \(p_j(z, y) < (\frac{1}{2})^n \). Hence \(p_i(x, z) \leq p_i(y, z) < (\frac{1}{2})^{n-1} \), a contradiction. Also, if \(y \in S(n, i; x) \) and \(z \in S(n, i; y) \), then \(p_i(x, y) < (\frac{1}{2})^n \) and \(p_j(y, z) < (\frac{1}{2})^n \) so that \(p_i(x, z) < (\frac{1}{2})^{n-1} \) and hence \(z \in S(n - 1, i; x) \).

2. \textbf{Theorem.} A pairwise Hausdorff space \((X, \mathcal{S}_1, \mathcal{S}_2)\) is quasi-metrizable if and only if for each \(x \in X \) one can assign \(\mathcal{S}_i \) nbd bases \(\{ S(n, i; x) \mid n = 1, 2, \ldots \} \) such that

(i) \(y \not\in S(n - 1, i; x) \) implies \(S(n, i; x) \cap S(n, j; y) = \emptyset \),

(ii) \(y \in S(n, i; x) \) implies \(x \in S(n, j; y) \) (\(i, j = 1, 2; i \neq j \)).

\textbf{Proof.} We have to verify only condition (ii) of Theorem 1. Now

\(y \not\in S(n - 1, i; x) \)

implies \(S(n, i; x) \cap S(n, j; y) = \emptyset \) so that if \(z \in S(n, i; x) \), then \(z \not\in S(n, j; y) \).

Thus \(y \not\in S(n, i; z) \). The necessity is obvious.

3. \textbf{Theorem.} A pairwise Hausdorff space \((X, \mathcal{S}_1, \mathcal{S}_2)\) is quasi-metrizable if and only if for each \(x \in X \) one can assign \(\mathcal{S}_i \) nbd bases \(\{ S(n, i; x) \mid n = 1, 2, \ldots \} \) such that

(i) \(y \in S(n, i; x) \) implies \(S(n, i; y) \subset S(n - 1, i; x) \),

(ii) \(y \in S(n, i; x) \) implies \(x \in S(n, j; y) \) (\(i, j = 1, 2; i \neq j \)).

\textbf{Proof.} We only have to verify condition (i) of Theorem 1. If

\(S(n, i; x) \cap S(n, j; y) \neq \emptyset \),

then there is a point \(z \in S(n, i; x) \) and \(z \in S(n, j; y) \) so that \(S(n, i; z) \subset S(n - 1, i; x) \) and \(y \in S(n, i; z) \). Thus \(y \in S(n - 1, i; x) \).

The necessity is obvious.

\textbf{References}

Department of Mathematics
University of Auckland
Private Bag, Auckland
New Zealand