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Abstract

A finite group is called repetition-free if its conjugacy classes have distinct sizes. It is known
that a supersolvable repetition-free group is necessarily isomorphie to Sym(3). the symmetric
group on three symbols. Thus the question arises as to whether Sym (3) is the only repetition-free
group. In this paper it is proved that if mk denotes the minimum of the orders of the centralizers
of elements of a repetition-free group G and mk § 4 then G is isomorphie to Sym (3).

1. Introduction

Let G be a finite group. Let k = k(G) denote the number of conjugacy
classes of G, and let

1 \_

mk

be the centralizer equation of G, where if 1 = x,. x2, • • •, xk are chosen from

the k conjugacy classes of G, then m, = \Ca(x,)\. We assume that the

indexing is such that

G =m^ m2g = mk

A finite group for which

(1.1) >

is called a repetition-free group. Repetition-free groups were first studied by
Markel (1973); he proved that a supersolvable repetition-free group is
necessarily isomorphie to Sym (3), the symmetric group on three symbols.
Earlier Markel (1972) conjectured that Sym (3) is the only repetition-free
group. In this paper we obtain a partial solution to Markel's conjecture. In
fact, we prove the following:
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THEOREM. / / G is a repetition-free group for which mk S4, then G =
Sym (3).

2. Proof of the theorem for mk g 3

The following lemma summarizes the well-known properties of
repetition-free groups which are required in the sequel. Parts (a) through (c)
are easy to see, while Part (d) is proved in Markel (1972).

LEMMA 2.1. Let G be a repetition-free group.
(a) For x £ G, x is conjugate to xm whenever (m, | x |) = 1 and this power

conjugate property is inherited by the homomorphic images of G.
(b) If some m{ = p , where p is a prime and i > 1, then \G\ is not divisible

by p2 and p does not divide any other m, where / > 1.
(c) If p divides \G\, then p - 1 also divides | G .
(d) / / | G | = paqli where p, q are distinct primes, then G = Sym (3).

REMARK. Recall that a (finite) group G is said to be rational if it is power
conjugate. Furthermore a group G is rational if and only if every complex
character of G is rational-valued (see, for example, Huppert (1967), Satz
V.13.7.b). Finally we note that the class of rational groups is closed under the
operation of taking homomorphic images.

If G is repetition-free and mk = 2, it follows easily from Burnside (1911,
Note A, p. 462), that G sSym(3).

Next we assume that mk = 3. Thus G contains a self-centralizing element
of order 3. So by a theorem of Feit & Thompson (1962), one of the following
statements must be true:

(a) G contains a nilpotent normal subgroup N such that G/N = Alt (3)
or Sym (3);

(b) G contains a normal subgroup H which is a 2-group such that
G/H s Alt (5);

(c) GsPSL(2,7) .
Now if G/N = Sym(3), where N is nilpotent, we can see that G cannot

be repetition-free as follows:
Let P be the set of primes which divide the order of N. Since N is

nilpotent, the center Z(N) of N is a P-group if and only if N is a P-group.
Now let x G Z(N)* = Z(N)\{1}, then the order | K(x)\ of the conjugacy class
of x in G divides |Sym(3)|. Thus |K(x)| = 2,3 or 6 for every x in Z(N)*.
Since Z(N)< G, Z(N) is a union of complete sets of conjugacy classes of G. If
G is repetition-free, these classes must have distinct sizes and so \Z(N)\ = 3,
4, 7, 6, 9, 10 or 12. The case | Z(N)\ = 3, 6, 9 or 12 is impossible since | G | is
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not divisible by 9 of Lemma 2.1(b). The case I Z(N)\ = 4 implies | N | = 2" and
I G | = 2Q + I • 3. Thus G is not repetition-free by Lemma 2.1(d). If [ Z ( N ) | = 10,
then Z(N), being Abelian, is a cyclic group of order 10, and so Z(/V) contains
exactly one element of order 2. This, however, is incompatible with the
partition of Z(N) into three conjugacy classes of sizes 1, 3 and 6. Finally,
suppose j Z(N)\ = 7. Then if x is a generator of Z(N), we have j K(x)\ = 6,
and so CG (x)= N. Hence

Sym (3) = G/N = N« (Z(N))/Ca (Z(N)) < Aut (Z(N)).

This is impossible since Aut (Z(N)) is a cyclic group of order 6.
In the other cases G cannot be repetition-free since PSL(2.7), Alt (3)

and Alt (5) are not rational.

3. Proof of the theorem for mk = 4

The proof in this case is carried out by means of a series of lemmas. We
start with the following results of Wong (1967):

THEOREM A. Let G be a finite group with a non-cyclic subgroup Tof order
4 which is its own centralizer in G. Then one of the following statements is true:

(1) G = MU or Alt (7);
(2) if K is the largest normal subgroup of odd order in G, then GIK is

isomorphic with PSL (3,3), GL (2,3), H(q) (q the square of an odd prime
power), PGL(2,q), PSL(2,q) (q odd), or a 2-group of dihedral or semi-
dihedral type.

THEOREM B. Let G be a finite group with a cyclic subgroup T of order 4
which is self-centralizing in G. If K is the largest normal subgroup of odd order
in G, then one of the following statements is true:

(1) G = Alt(7);
(2) K is Abelian and G/K is isomorphic with SL (2.3), SL (2,5),

PSL (2,7) or PSL (2.9);
(3) the derived group K' of K is nilpotent and G/K is isomorphic with

PGL (2,3), PGL (2,5), H(9), J, a 2-group of semi-dihedral or generalized
quaternion type, a dihedral group of order 8, or a cyclic group of order 4.

The groups M,,, Alt (7), PSL (3,3), GL (2,3), PGL(2,q) (q odd and
/3,5), SL(2,3), SL(2,5), PSL(2,q) (q odd), H{q) (q the square of an odd
prime power), C4 and / are not rational. Hence the corresponding G cannot
be repetition-free. The groups PGL (2, 3) and PGL (2, 5) are rational but not
repetition-free, and it is easy to see that the corresponding G cannot be
repetition-free in these cases also.

https://doi.org/10.1017/S1446788700020280 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020280


260 Bola O. Balogun [4]

THEOREM 3.1. A 2-group G of dihedral, semi-dihedral or generalized
quaternion type is power conjugate only if it is either the ordinary dihedral group
D of order 8, the ordinary quaternion group Q of order 8 or the four-group V.

P R O O F . T h e g r o u p s

D a = (JC, y | x2" = 1 = y 2 , y ~ 'xy = x~')

Qa = (x, y | x2" ' = y2 = z, z2 = 1, y 'xy = x', a g 2)

and

SDa =(x, y | x2" = y2= 1, y ' x y = JC"1+2° ', a g 3)

are respectively the 2-groups of dihedral, generalized quaternion and semi-
dihedral type of order 2° + 1. So it suffices to show that a = 1 or 2. Let h be an
element of maxima! order in G. Then \h\ = 2°. Every odd power of h is
conjugate to h in G. Hence the automorphism </>: fc —» h "\ m odd, is induced
by an inner automorphism of G. Since [G: C(h)] — 2 it follows that 4> is a
unique automorphism of order 2 and so the only admissible odd powers of h
are h and /i '. Hence a = 1 or 2.

LEMMA 3.2. Ler G be a group with a self-centralizing cyclic subgroup of
order 4 and K the maximal normal subgroup of odd order in G. Suppose that the
factor group G IK is isomorphic to the quaternion group Q of order 8. Then G is
not repetition-free.

PROOF. Suppose that G is repetition-free and GIK = Q = (x,y | x2 = y2,
y~'xy = x~'). Let (x) be self-centralizing in G, so that the corresponding m is
4. Then since y and xy are not conjugates of x we must have m > 4 for them.
Hence there is a non-identity element u in K so that u centralizes y. So (yu)
is a cyclic group of order 4q where u has order q. Since (4q, 4<? - 1)= 1,
NG ((yu))ICa {(yu)) must be isomorphic to the full automorphism group of
(yu). Now {y ', «} is a set of generators for (yu), hence the correspondence
y —> y "' and u —» u defines an automorphism of (yu). Hence there must be an
element a in G (in fact, in Na((yu))) so that a 'ya — y~' and a 'ua = u.
Thus a £ Cc (u). Also we know that every element k G K can be written in
the form w 'wx for a suitable w E K and so every element of xK U x 'K is
conjugate to x. Hence (xK U x" 'K) fl Co (u) = 0 . Since a 'ya = y~\ a has
even order and so a£K. U a = yk for some k €E K then k'uk = M and
fe"'yfc=y"' and so as before k cannot be in K. Hence we must have
a G xyK U (xy)'K. So, for some k in K, Co («) contains xy/c or y ~ "x 'fc, and
y. This implies that x~'/c G CG(u) which is a contradiction.

LEMMA 3.3. Let G be a group with a self-centralizing cyclic subgroup of
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order 4 and K the maximal normal subgroup of odd order in G. Suppose that the
factor group G/K is isomorphic to the dihedral group D of order 8. Then G
cannot be repetition-free.

PROOF. If G is repetition-free then GIK' is power-conjugate. In particu-
lar, every element of K/K' of prime order p is conjugate to all its non-trivial
powers under the action of GIK. It follows that p — 1 = 2 or 4, so p = 3 or 5.
Furthermore, K/K' cannot have elements of order 9, 15 or 25, since otherwise
G/K would contain an Abelian group of order 6, 8 or 20. Hence K/K' is an
elementary Abelian p-group where p = 3 or 5. Since K admits a fixed-point-
free automorphism of order 4, it follows that K' is nilpotent. Thus if K' is a
P-group for some set P of primes, then so is its center Z(K'). Let x £ Z(K')
be an element of prime order q. Since K' centralizes x, we have that the order
of the factor group Na ((x))/Ca {{x)) divides the index \G:CG ((x))| which in
turn divides the order of G/K' and furthermore NG ((x))/Cc, ((*)) = Aut ((x))
is a cyclic group of order q — I- Hence

' 2 , 4 or 6 i f p = 3
q-\= •

. 2 , 4 or 10 if p = 5,

and

I" 3, 5 or 7 if p = 3

[ 3 , 5 or 11 i f p = 5 .

Now Z(K') cannot contain elements of order 15, 35 or 55 as this would
lead to an Abelian group of order 8, 24 or 40 which does not exist in G. Hence
if p = 3 , Z(K'), and hence K', is a 5-group, otherwise it is a {3,7}-group. We
now consider the various cases in turn.

C a s e 1. p =5 a n d \K'\ = 5".
In this case K is a 5-group. Thus | G | = 8.513. Hence G is not repetition-free by
Lemma 2.1.

Case 2. p = 5 and |K ' | = 3 M 1 6 , 5 ^ 0 .
Here | K | = S?,. Sj. SiU where no element of S* commutes with any element
of S* or S*, while every element of S, commutes with every element of S,,- If
an m, = 5, then no other m, is 5. Hence

contradiction. On the other hand if no m, = 5, then we have

https://doi.org/10.1017/S1446788700020280 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020280


262 Bola O. Balogun [6]

W+WH+-)(&&

Thus we cannot have a repetition-free group in this case.
Case 3. p = 3 and K' is a 5-group, or p = 5 and K' is a 3-group.
In this case K = S3. S5 and no element of S? commutes with any element

of Ss, since there is no element of order 15. If m, = 5 occurs, then no other m,
is divisible by 5. Also recall that there is no element of order 12. Hence

Whereas if no m, = 5 we get

Hr-KK(H+

since there is no element of order 20. So in both subcases we get a
contradiction.

Case 4. |K"'| = 3° and p = 3.
G cannot be repetition-free by Lemma 2.1.
Final case: p = 3 and K' is a {3,7}-group.
Consider the action of the elementary Abelian group K/K' on Z(S1). Then by
a theorem of Wielandt (1960), as long as \K/K'\ > 3 there exists an element
u, S K/K' so that u, leaves an element in S7" = Z(S7) fixed. Let K2 = (K', «,),
then Z(X2) O S , / (1). Now consider the action of K/K2 on Z(K2) D 57 = S7

2).
If | K/K21 > 3 there exists a u z 6 K/K2 which leaves some element of S?)fixed.
So K, = (u2, K2) satisfies Z(K3) D S7

3) ̂  (1). Repeating this we get to Kp_, with
K/K;p_,| = 3 and Z(Kp_,)g S7

P"'V <1>. Now since the centralizer of every
element of S^"1' has index less than or equal to 24 we cannot have | S 7 " " | > 7
(that is s 49), since the only conjugate classes of elements in SV"" have sizes
1, 6, 12 or 24 and 1 + 6+ 12 + 24 < 49. Hence there exists z £ Z(S7) which has
either 6, 12 or 24 conjugates.

If 2 has six conjugates, then G contains a characteristic subgroup of
order 7 whose centralizer is a normal subgroup H of index 6, and G/H is
cyclic of order 6, which is not power conjugate. Hence G is not repetition-free
bv Lemma 2.1.
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If z has 12 conjugates, let the conjugates be z, z2,- • •, z* and
z', z'2, • • •, z'6 where z' G Z(S7) (a characteristic subgroup of G). The group
N = (z, z') is elementary Abelian of order 49 and there is a homomorphism of
G into the group of automorphisms of N, in fact into that group A (of order
72) which leaves the set {z°, z'p | a, (3 = 0,1, • • -,6} fixed. Let us use the
additive notation, so we can represent the automorphisms as elements of
GL(2,7):

a ON / 0 a
A '\o pr \p o

The elements of S2(A) are

; a,/3 £ G F ( 7 )

1 ON /0 - 1 \ / - I ON

0 i ) = 1' ( 1 o ) = JC< I 0 - i ) x - l - i

- 1 O N / 1 O N 2 / o n / 0 - i
0 ! j = y . l o - i j = x > ' ' l i o j = yx' l - i o

which is isomorphic to D.
One group S,(A) is given by

A 0 \ 2 / I 0
j l
0

1
0

1
0

2
0

1-

ON
A)

4

1 - i,

= f2,

I2

lo
(2

lo
/

0^
\)

0
2

4
Q

(=M' U l j = M

2 ) = W

This is a normal subgroup of A and commutes with the diagonal elements
l,x2, y, x2y of S2(A). The elements uv, u2v2 are in the center of A and are
not conjugates of each other, neither are the elements u, u2 or u, v2

conjugates of each other. Thus if we let H = C(N) then G/H = A , S A
where on the one hand 12 divides |A , | (since A, acts transitively on the
conjugacy class of 2) and 3 does not divide A, |, since otherwise there would
be an element of order 3 not conjugate to its inverse. Contradiction.

Finally, let z G Z(ST) have 24 conjugates. Then the conjugates of z
generate a characteristic subgroup N ^ Z(S7) of G with | N ] = 72, T or 74. The
case I N j = 72 we have settled already because the other conjugacy classes in N
must then have sizes 6 and 18 (49 = 1 + 6 + 18 + 24) and the class of size 6 leads
to the normal subgroup N» S N, | No| = 7 whose centralizer has index 6 in G.

The case \N\ = 73 would lead to a decomposition of N into conjugacy
classes of sizes 1 and 6s, where 6(4 + s, + s2 + • • •) = 6. (T - l)/6 = 6.57 and
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there is no way of expressing 53 as a sum of distinct integers of the form 2". 3"
(/4), « S 2 , since the only choices for s, are 36, 27, 18, 12, 9, 6, 3.

This leaves the case | N | = 74. If we write the group additively we can
express it in terms of a basis z, = z, z2, z3, z4 where the conjugacy class of z is

{a,z, | i = 1,2,3,4; a, = 1,2, ••-6}.

The group A of conjugacies is isomorphic to a subgroup B of GL (4, 7) which
leaves the conjugacy class of z invariant. That is, B is the group generated by
the diagonal matrices and the permutation matrices which has order 6".24.
Since it is a homomorphic image of G/K' we know that \A\ cannot be
divisible by a power of 2 higher than 8 and the Sylow 3-subgroup S*(A) is
elementary Abelian. Since S*(B) is non-Abelian we have S*(B)> Si(A) and
therefore \A\ divides 8.3".

Now we must express 74 as the sum of orders of different conjugacy
classes of orders 1 and 6s, where s, 1108,

1-~- = 4 + s , + s2+ •••, s, | 108, s,/ 4

so Si G {108,54, 36,27,18,12,9,6, 3} and 4 + S s, § 277 < 400.

LEMMA 3.4. Let G be a group of order n which contains an element x so
that the conjugacy class K(x)of x in G has n/4 elements, where the centralizer
of x in G is a four-group V. Then G is not repetition-free or else G has a
self-centralizing cyclic subgroup of order 4.

PROOF. Let G be as in the hypothesis of the lemma. Then by Theorem A
either

(a) G = MU or Alt (7)
or

(b) if N is the maximal normal subgroup of odd order in G, then G/N is
isomorphic to PSL (3,3), GL (2, 3), PGL (2,q), PSL (2, q) (q odd); H{q) (q the
square of an odd prime power), or a 2-group of dihedral or semi-dihedral
type.

All these cases have been dealt with except when G/N is isomorphic to a
2-group of dihedral or semi-dihedral type. However by our reduction
Theorem 3.1, we know that if G is also repetition-free, then we have

(i) G/N = V (the four group), or
(ii) G/N = D (the dihedral group of order 8).
In the first case, we have xN G V and consider H = (x, N). Since x does

not commute with any element of N (except the identity) it follows that the
conjugacy class of x still has \N\ = \H\/2 elements. Thus all the other
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conjugacy classes have size 2 (except the identity). This means that N is
Abelian, and the only possible sizes of conjugacy classes of G whose elements
are in N are 1,2,4 so either | N | = 3,5 or 7, none of which works (just by
adding the 1/m,).

In case (ii), we have xN G D and H = (x, N) is a group in which, x has
N\ distinct conjugates. Thus either \K(x)\ = \H\/2 and we have N Abelian

as before, or I K(x)\ = | H\/4 and x generates a cyclic group of order 4 which is
self-centralizing in H.
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