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We prove that for a function /(z) transcendental and meromorphic in the plane and not of the form

exp{az + b), we have either N(r, l///")^o(T(r, /'//)) or Tim !2I^LJZ£G g 2.
r-» loglogr

1991 Mathematics subject classification: 3OD35.

1. Introduction

The following theorem was proved in [12], confirming a conjecture of Hayman [8].

Theorem A. Suppose that f is meromorphic in the plane such that f and F have only
finitely many zeros, where F = f" + aif + aof and the aj are rational functions with
a,-(z) = O(|zp~2) as z->oo. Then f'/f is rational. In particular, if f and f" have no zeros,
we have f(z) = exp(az + b) or f(z) = (az + b)~" with a and b constants and n a positive
integer.

The proof of Theorem A in [12] begins by using a device of Frank [5,6,7]. If fuf2

are linearly independent solutions of the associated homogeneous equation w" + axw' +
aow = 0, then we define g by g2=f/F, and the functions Wj=f'jg—fj(f'/f)g solve an
equation w" + a1w' + bw = 0 in which b is meromorphic with only finitely many poles.
The paper [15] uses this method to determine all functions / meromorphic in the plane
for which / and F have only finitely many zeros, with the a, any rational functions. In
the particular case F=f", an alternative, but related, approach, used by Mues in [16], is
to write H = z—f/f so that H has only finitely many multiple points and its
Schwarzian derivative {H,z} = Hl3)/H' -§(J/"///')2 [10,11] has only finitely many poles.
Using the modified auxiliary function G = z — hf/f, with h a constant, Bergweiler
proved the following in [2].

Theorem B. Suppose that a is a constant such that a # 1 and l/(a— 1) is not a positive
integer, and suppose that f is transcendental and meromorphic of finite order in the plane
such that L = ff" — af'2 has only finitely many zeros. Then
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), A,BeC. (1.1)

It is necessary to assume in Theorem B that a is not of the form (n+\)/n, with n a
positive integer, because of the example f(z)=g(z)~", with g any entire function such
that g" has only finitely many zeros. The case a = 1 must also be excluded, because of
examples such as /(z) = cosz,/(z)=(l +ez)n("^ l),/(z) = e9(z),g"(z)#0 (see also [17]).
Bergweiler's proof in [2] does not use the Schwarzian derivative, but proceeds by
applying the main result of [3] to show that the inverse function of G has only finitely
many singularities, this leading to an estimate for G'(z) at fixpoints of G.

In the present paper, we remove the order restriction in Theorem B, and strengthen
the conclusion that if (1.1) does not hold then L must have infinitely many zeros, thus
also improving Theorem A in the most important case F=f". We state the following
result, part (i) of which was proved by Frank and Hellerstein in [6], with part (ii)
appearing in [14].

Theorem C. Suppose that f is transcendental meromorphic in the plane and
N(r,l/fpk)) = o(T(r,f'/f)) for some k^l (i) If k^3 then (1.1) holds, (ii) The same
conclusion holds if k = 2 and f has finite lower order.

It seems possible that Theorem C holds without the order restriction in part (ii). The
proof in [14] uses the auxiliary function H — z—flf and the following combination of
results of Shea [18] and Eremenko [4]. If H is transcendental and meromorphic of
finite lower order in the plane, and the counting function

AMr, H) = N(r, 1///') + W(r, tf) - JV(r, tf)

of the multiple points of H satisfies Nr(r, H) = o(T(r, //)), and if H is normalised so that
d(co,H) = 0, then the order p of H is such that 2p is an integer not less than two, and
there are slowly varying functions Lj(r) such that

(1.2)

outside an exceptional set. With the hypotheses of Theorem D, part (ii), the assumption
that H is transcendental and (1.2) lead to an upper estimate for m(r, 1//), which in turn
contradicts the fact that N(r, 1//) is small. This approach does not seem to work for the
problem considered in Theorem B, and (1.2) is not available when H has infinite order.
We prove here the following theorem.

Theorem 1. Suppose that f is transcendental and meromorphic in the plane, and that
F=ff"-af'2,aeC.

(i) If a^ 1 and l/(a— 1) is not a positive integer and

N(r) = o(nr,f'/f)) and I H £ | ^ < 2 (1.3)
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holds with N{r) = N2(r) = N(r, l/F), then (1.1) holds.

(ii) Suppose that a # l and l/(a—1) is not an integer, or that a = 0. / / (1.3) holds with
N(r) = N3(r), where N3(r) counts the zeros of F which are not multiple zeros of f, then
(1.1) holds.

In particular, if N(r) counts the simple zeros of / and the zeros of / " which are not
multiple zeros of/, and (1.3) holds, then we have (1.1). Theorem 1 will be proved using
the following auxiliary result.

Theorem 2. Suppose that H is transcendental and meromorphic in the plane of order
p(H) such that

l o I ^ ^ " ) , ( , 4

. . 1 V , ~ , _ v . v , - , „ - . „ i O g i o g r - - '

and suppose further that q is a constant with q<p{H). Then H has fixpoints z with \z\
arbitrarily large and \H'(z)\>\z\q.

We make some remarks about Theorem 2. First, we are free to assume that p(H) is
positive, by the results of Shea and Eremenko already cited. Further, the first inequality
of (1.4) implies that H has infinitely many fixpoints (as noted in [2]) and, if H has finite
lower order, implies additionally that (1.2) holds. However, these fixpoints may and
almost certainly must lie in regions where the cosine term in (1.2) is small.

Of course, if / ' / / is not of small growth then Theorem 1 gives only a weak estimate
for the number of zeros of / and /". We indicate in Section 5 where the second
inequality of (1.4) seems to be necessary for our method, and in Section 8 we outline the
proof of a stronger result which holds when / ' / / has very large growth.

2. Preliminaries

We begin by summarizing some facts from the Wiman-Valiron theory [9]. If y > 1/2
is a constant and g(z) = Zk°=oa*z't iS a transcendental entire function with maximum
modulus M(r,g) on | z = r > l , the central index v(r,g) is the largest n such that
\an\r

a = fi(r,g) = maxm\amrm, and there is a set of normal r, the complement of this set
having finite logarithmic measure, such that if r is normal and |zo| = r with |g(zo)|>
jM(r,g), we have

(log M(r, g))/2 log r ̂  v(r, g) g (log M(r, g))3/2,

M(r,g')~M(r,g)v(r,g)/r, while g(z)~(z/zoy^g(zo),

and

g°\z)/g(z)~(v(r,g)/zy for , = 1,2 and |log(z/z0)|gv(r,s)-».

We require in addition representations in annuli for entire functions of very small
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growth. Suppose that 5 and e are positive constants, and that fi, f2,••-,/„-1 and / „ = /
are transcendental entire functions each satisfying T(r,fj) = 0(\ogr)2~>. Then if ro is
large the number of zeros of the f} in ro^ |z |^(ro)1 + E is 0(logro)

1~<), and we can find
ri,r2 with

log r0 ^ log r i ̂  log r t + (log ro)
2m = log r2 ^ (1 + e) log r0

and such that none of the /} have zeros in

00

If/(z)= f ] (1 — z/aj)> assuming that / (0)= 1, then for rt g |z |^r 2 we can write

and we have (see [1,13] for details)

(

Lemma 1. There is a positive constant cx with the following property. Suppose that
c > 0 and L>(l+c)s>l+c and F(z) is analytic in the closed rectangular region Q given
by |Re(z)|^37iL, Ls^Im(z)^LSg2Ls, with |F(z)|gcL"2 there. Then the equation

F(z))w(z) = 0 (2.1)

has solutions U(z), V(z) in Q such that, with \EJ\

C/(z) = e-'z(l+e1(z))) C/'(z)=-ie-iz(l+e2(z)),

V(z) = e(2( 1 + e3(z)), V'(z) = ie'z( 1 + e4(z)). (2.2)

Proof. This is similar to Lemma 1 of [12], but with a different region Q. We choose
a solution v of the equation v" + 2iv'-Fv = 0 such that v(X) = l,v'(X) = 0, where XMLS.
Differentiating twice shows that

] ] (2.3)

We take as path of integration the straight line segment from X to Re(z) + iLS followed
by that from Re(z) + iLS to z. If ds denotes arc-length on this path, (2.3) gives
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\v(z)-l\^]\F(t)v(t)\ds.
X

We set

\+\\F(t)v(t)\ds\

with C lying on the above path. Then dW/ds^\F(C)\, so that using dx,d2,... to denote
positive constants not depending on c, we obtain W{z)-^\z

x\F{i)\ds^dlcsL~x. Thus

Now we set V(z) = e{zv(z) so that V solves (2.1) and (2.2) follows at once. To form £/,
choose a solution u of u"-2iu'-Fu = 0, such that u{Y) = 1, u'(Y) = 0, where F=iLs. The
integral equation for u is u- 1 = (l/2i)Jy(e~2i"~r) — l)F(t)u(t)dt and we choose a path of
integration on which Im(t-z)^0. Finally we set U = ue~".

3. Proof of Theorem 2, first part

Suppose that H satisfies the hypotheses of the theorem, with

Ni(r,H) = o(T(r,H)), N1(r,H) = 0(\ogr)2-\ (3.1)

3 being a positive constant. Then [10,11] we can write, locally,

H = wjw2, W(Wi,w2) = l, (3.2)

where the vv7- are solutions of the equation

= 0, (3.3)

with b(z)=j{H,z}. The function b is meromorphic in the plane, while the solutions w7

admit analytic continuation along any path avoiding poles of b. For convenience later
on we choose constants <f>, ifr such that Hl(z) = (H(z) — (l))/(H(z) — i]/) has only simple
zeros and poles and such that N{r,Hl)~T(r,H). Further, we write Hl(z) = a(z)/x(z) with
a and x entire functions with no common zeros, and we choose a zero u0 of T(Z). This
gives H\(z) = W(x,a)x'2 = hx'2, with N(r, l/h) = 0(\ogr)2~i, and we can assume that
T(r,h) = O(\ogr)2~a, because otherwise we can write h(z) = h*(z)e~2X(z) with A(z) entire
and T(r,h*) = 0(logr)2~s, and we need only replace a and T by aex and re\

Returning to the function H, we have
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H'=-l/V2, (l/H)'=l/Vu Vj=(Wj)
2, (3.4)

and so the Vs are meromorphic in the plane and

N(r, VJ + Nir, V2) + N(r,b) = O(Nl(r,H)) = 0(logr)2~>. (3.5)

We can write

Vj=gj/hj, b = a/c, T(r,hj) + T(r,c) = 0{\ogr)2-i, (3.6)

with gj,hj,a,c entire, with in each case the numerator and denominator having no
common zeros. We now divide the proof into certain cases.

Case A. Suppose that T(r,a)^O(logr)2~<5/2.

In this case we easily obtain arbitraily large s0 with

logM(s0,a)>2(logs0)2-iS/2, v(s0,a)>(logs0)1-'5/2. (3.7)

By the discussion in Section 2, we can find slts2 satisfying

so^sl<s2^(so)
2, Iog(s2/Sl)^(logs0f

2 (3.8)

and such that we have, for some non-zero constant y0,

c(z) = yoz
v(l+ o(l)), c'(z)/c{z) = (v/z)( 1 + o( 1)), c"(z)/c(z) = (v/z)2(1 + o( 1)),

v = n(s1>l/c) = O(logs0)
1-*, s ,g |z |^52 ) (3.9)

with similar representations for ht and h2 in the same annulus.
We now choose r, normal for the functions a, gt and g2, and z0 and constants yt,y,

such that 3S 2 ^r^ is 2 , \a(zo)\ = M(r,a), and ^.<Ji<y<\- We then have, provided s0 was
chosen large enough,

a(z) = a(z0)(z/zor"-<"(l +o(l)), a"\z)/a(z) = (v(r,a)/zy(l +o(l)), (3.10)

for ;=1,2 and z = zoe\\x\<v(r,a)~yi. Setting N = v(r,a)-v = v(r,a)( 1 +o(l)), using (3.7),
we now have, by (3.9),

b(z) = b(z0){z/z0)
N(l+o(\)), forz = z0e

I,|T|^Ar", (3.11)

and we note that, with M(r, b) = max{|6(z)|:|z| = r},

\b(z0)\^(l-o(l))M(r,b), (logSoJ^^/VgOogl^Zo)!)2. (3.12)

We now make the same local change of variables as in [12, Section 7], and [15,
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Section 4]. We set D(s) = {z:|log|z/z0||gsAr1', |arg(z/zo) |^sAr) '}. We write zv =
zoexp( — N~y) and on D(l) we define branches of b(z)1'2 and zN'2. Defining Z exactly as
in [12, Section 7], we obtain, in D(l/2),

Z = b(z1)
ll2z12/(N + 2) + } bit)1'2dt=(l+o(l))b(z0)

1/22z<N+2)l2Zom(N + 2)"1

= (l+o(l))b(z)1/22z/(N + 2). (3.13)

As in [12] we conclude that the function Z has in £>(l/4) simple islands over the closed
region D* given by

lloglZ/Zol^N1'3, |argZ|^7r/4, Z0 = \b(z0)
l'22z0/(N + 2)|, (3.14)

and we choose such a pre-image £>**. By (3.12), Zoexp( —iV1/3) and the minimum
modulus of b(z) on D** are large. Indeed, we have, using (3.7),

= o(logZ0), r=\zo\. (3.15)

As in [12, Section 8] we make the transformation W(Z) = b(z)ll*w{z), where w solves
(3.3), z lies in D** and Z in £>*. The equation (3.3) transforms to

d2W/dZ2 + (\-F0(Z))W=0, F0(Z) = b"(z)IAb{z)2-5b'{z)2l\6b{z)\ (3.16)

in which, using (3.7), (3.9), (3.10) and (3.13), | F 0 (Z) | ^c 4 |Z | " 2 in D*. By Lemma 1 of
[12] there exist solutions U, V of (3.16) in D* such that

iZ, K(Z)=(l+o(l))e i Z , W(U,V) = 2i + o(l). (3.17)

We can write, in D**, for some constants A, B, C, D,

u(z) = b(z)'ll4U(Z), v(z) = b{zyll4V(Z), wt=Au + Bv, w2 = Cu + Dv. (3.18)

We estimate A, B, C and D, using a method different to that of [12]. Since

_ b = w'j /wj=Ug'j Igj ~ h'j /hj) - k(g'j/gj)2 + Uh'j/hj)2 - fa'j/gjWj/hj), (3.19)

we obtain, denoting absolute constants by c, and using (3.9),
and so

(3.20)

Therefore we have, for st ^ | z | g r , using (3.7),

^ b ) 1 / 2 . (3.21)
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To estimate A,B,C,D we note that, in D**,

wl=Au + Bv, w\=Au' + Bv', W(u,v) = 2i + o(l). (3.22)

We choose Z* in D* with |Z*|^Z0/2 and |t/(Z*)|^2, \U'(Z*)\^2. Let z* be the
preimage of Z* in £>**, so that \z*\^r and |u(z*)|^2 and \u'(z*)\<L2M(r,b)1'2. Now
(3.22) gives B=W(u,w1)W(u,v)~1 so that

and the same estimate holds for A, C and D. Further,

l = W(w1,w2)=(AD-BQW(u,v) = (AD-BC)(2i + o{l)). (3.23)

Thus, in any pair {A, B}, {A, C}, {B,D}, {C,D}, each term has modulus at most

M = exp(c5JVZ0logr), logM = o(exp(N1/4)Z0), (3.24)

while at least one term has modulus at least 1/M.

4. Completion of the proof of Theorem 2, in Case A

We choose a small positive constant r\, and we write

= w2z-w1=F1u + F2v, Fl(z) = Cz-A, F2(z) = Dz-B,

y* FJ(Z). (4.1)

Now (3.23) implies that either | / lD|^l/6 or |BC|^l/6. In this section we use D, to
denote positive constants not depending on //. It is easy to see that we have

\\, (4.2)

if AD 5*0 and, if CD #0,

\F'J(Z)/FJ(Z)\Z 0 ^ + 2)^1, (4.3)

outside at most four discs each of radius at most Dtr(N + 2)~l. Further, these discs have
images in the Z-plane which each lie in an annulus of form Ry^\Z\-^R2 with

Ki)^02- Th'S easily gives us d^ 1/2 such that
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(4.4)

and such that we have (4.2) and/or (4.3) in the pre-image D' in D** of the region in
(4.4). Now suppose that z e D' is a zero of g. Then we have H(z) = z, since the vv, have no
common zeros, and n = v/u = (A — Cz)/(Dz — B) so that

If \AD\Z 1/6 this is, using (3.12), (3.13), (3.15), (3.23) and (4.2),

We argue similarly if |BC|^l/6. Thus the conclusion of Theorem 2 holds in Case A,
provided that we can show that D' contains a zero of g.

To prove the last assertion, we assume that D' contains no zero of g. In the region in
(4.4) we have, using (3.15), (3.24), the last remark in Section 3 and (4.2) or (4.3)

and log+|G(Z)| = 0(|Z|). Further, we have, provided s0 was chosen large enough,

| | | | | | | | 0 , for n/4£|

so that |G(Z)|>1 on argZ = j / , and we obtain, arguing as in [12], \G'(Z)/G(Z)\<LD6 in
the region (d+ l/48)W1/3^|log|Z/Z0||g(d+ 1/16)W1/3, |argZ|^n/16. We apply the argu-
ment principle to G on the boundary of the region

^. (4.5)

On the straight line segments which form part of this boundary we have

G(Z)=(l+o(l))l/(Z)P,(Z),argZ = ij, and G(Z) = (1 +o(l))K(Z)P2(Z),argZ= -»,.
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The change in log G(Z) as Z describes once counter-clockwise the boundary of the
region in (4.5) is then, using (4.4),

5. Proof of Theorem 2: Case B

Here we suppose that T(r,a) = O(logr)2~il2. By (3.4) and (3.6), we must have
p(gj) = p(H) for each j . We choose q' with q<q'<p(H) and e>0 with (l+e)q<q', and
we can find arbitrarily large s0 such that, for some j ,

(5-1)

Since a and c both have small growth we can find sl,s2 such that

s0fSSlS(So)1+e/2,log(s2/Sl) = (logs0)a'5 (5.2)

and such that in the annulus s, ^ | z | ^ s 2
 w e n a v e

N 2, (5.3)

with a a non-zero constant (depending on the annulus) and N = n(si, I/a) — n(sl, 1/c),
and

h<T\z)/h(z) = 0(n(Sl, l/hj)/\z\r (5.4)

for j=l,2,m=l,2. We remark that at this point the second condition of (1.4) seems to
be necessary for our method to work, because if the entire functions a and c are of
roughly the same growth we have otherwise apparently no information on the local
behaviour of a/c. We then have, by (3.19) and (5.1), if re\_sl,s2] is normal for both gjt

and z is a maximum modulus point of gj with |z| = r,

v(r,gj)
2=(-4 + o(l))0LZN + 2, (5.5)

and it follows that since v(r,gj) is increasing we must have N^.—2 in (5.3). Further,
|aji/2r<\ + 2)/2 m u s t be iarge> if r is n o r m a i for the gy We postpone the case N= — 2 to
Section 6 and assume for the remainder of this section that N^ — l. We write <x = fi2

and we choose a real 0O such that arg^+(AT + 2)0o/2 = O(mod27t). We set z,=s1eiflo,
and we make the change of variables

l) + ] b{t)112dt = (2 + o(l))P{N + 2)-izlN+2)l2,

for s1^ |z |^s2 , |argz-0o |<7t , (5.6)

https://doi.org/10.1017/S0013091500022884 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022884


A MEROMORPHIC FUNCTION AND ITS SECOND DERIVATIVE 181

using (5.3). Now the function Z maps a sub-domain D** of the annulus 4s1g |z |^s2

univalently onto the region

(5.7)

and Tj must be large, by (5.2) and the remark following (5.5). The same transformation
W(Z) = b(z)1'*w(z) as in Section 3 gives (3.16) again, in which F0(Z) = O(|Z|"2), by (5.3).
Again, we obtain the solutions U, V as in (3.17) in the region (5.7), and we estimate the
coefficients A,B,C,D. We choose r with I2sl^r^l6sl, normal for both the gJt and we
obtain (3.20) again. Using the remark following (5.5), this leads to (3.21), valid for \z\ = r.
We choose Z* in the region (5.9) with |[/(Z*)|g2, |l/'(Z*)|^2, and with pre-image z* in
D** satisfying |z*| = r. We then have

using (5.5). Further, using (5.3),

This reasoning shows that the coefficients A, B, C, D all have modulus at most M, where

1|/J|(16s1)
(W+2)'2log(16s1), (5.8)

denoting constants by d}. We now write (4.1) again and we have (4.2) and/or (4.3) for all
z in D** outside at most four discs whose images each lie in an annulus in the Z-plane
of logarithmic measure at most d2. Since log(72/Ti)^d3(N + 2)(logs0)''

/5, we can choose
Si,S2 such that

log 71 + dA(N + 2)(log so)'/5 £ log Sx < log S2 = log St + dA(N + 2)(log so)
d'5 ^ log T2, (5.9)

and such that we have (4.2) and/or (4.3) in the pre-image in D** of the region
|^7t/4. We also have

Therefore we have

\ = o(\Z\),\P'J{Z)/Pj(Z)\^d6/\Z\,

(5.10)

We argue as in Section 4, assuming again that r\ is a small positive constant. If the
region (5.10) contains a zero of G(Z) then at the pre-image z in D** we have
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using (5.1), (5.2), (5.5) and (5.9). To show that such a fixpoint of H exists, if s0 is large
enough, we suppose that the region in (5.10) contains no zero of G(Z). Then G{Z) is
large on argZ = >7, by (5.10), and \G'(Z)/G(Z)\^di0 for 2Sl ^|Z|^S2/2,|argZ|^7i/64.
Thus the change in log G{Z) as Z describes once counter-clockwise the boundary of the
region 2St g |Z |^S2 /2 , |argZ|^^ is

6. The case where N= - 2 in (5.3)

At this stage we recall the function Hl defined following (3.3), to which we will apply
an argument similar to that of [18]. By (5.5) and the discussion in Section 2, we can
write b{z)ll2 — \Lz~l(l+u>(z)), with L large and positive and |co(z)|^
0(exp(—(Iogs0)

a/10)). As L is large, we can again use the transformation w(z) =
b(z)-ll4W{Z), where

+ j b{t)u2dt = i
Si

mapping onto a region containing the rectangle

(6.1)

The equation (3.3) transforms to (3.16) again, with this time |F0(Z)|gC1L~2, denoting
absolute constants by C,, and we note that, by (5.1) and (5.5), we have L>(s1)

q. Lemma
1 gives us solutions U, V of (3.21) in the region (6.1) satisfying L/(Z)~e"iZ, K(Z)~eiZ.
This gives us, on multiplying by a constant, solutions u, v of (3.3) satisfying

for 4s, ^|z|^s2/4,|argz|^7i, and there are constants A,B, not both zero, such that
H'1(Z) = /I(Z)T(Z)"2 = (/1U(Z) + BI;(Z))~2. We assert the existence of R such that, for some
non-zero constant y2,

H'l(z) = y2z-1±2LQoiL) for 4s,g | i?g|z |g8/?gs2/4, (6.2)

and such that |/i(z)|^l on |z| = K. If AB = 0, this is obvious. Otherwise, we choose R
such that |/i(z)|^l on \z\ = R and |logR-(l/2L)log|B/y*||>2 and (6.2) follows, as L is
large. Since n(r, l/H'1) = O(logr)l's, (5.1), (5.5) and (6.2) give
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Therefore (6.2) gives logM(R,x)~\ogm0(R,x), with mo(R,x) denoting the minimum
modulus. We choose a fixed z2 with |z2| = /?. Integrating /IT"2 around |z| = -R we obtain
\a(z)/x(z)-o(z2)/x(z2)\^RM(R,h)m0(R,x)-2 and so

\a(z)x{z2) - <T(Z2)T(Z)| ^ RM(R, h)mo(R, x) " 2M(R, T)|T(Z2)|

for |z|^K. Applying this inequality with z = u0, the zero of T(Z) fixed in Section 3, we
obtain mo{R,x)2^CtiRM(R,h)M(R,x), a contradiction.

7. Proof of Theorem 1

We shall prove parts (i) and (ii) simultaneously, and we denote non-integrated
counting functions, as usual, by n(r). As in [2], we use the auxiliary function

H = z - hf/f, h=\/(l-a),H' = h(ff" - af'2)/(f'2).

Now multiple poles of H can only occur at zeros of / ' of multiplicity m ^ 2 which are
not also zeros of /, and they contribute m— 1 to n^r,H) and the same to n2{r) and
n3(r). Further, zeros of H' cannot occur at poles of / , since a is not of the form (m+l)/m
with m a positive integer, and with the hypotheses of part (ii) they cannot occur at
multiple zeros of/ either. Therefore, we have N(r,\/H')^N(r) in both cases. However,
at any fixpoint of H we clearly have / = 0 or / = oo, and H' = O(l).

Thus H must be a rational function, with no multiple points, and so a Mobius
transformation, and we obtain f'(z)/f(z) = h{Cz + £>)/(Cz2 + (D + S)z + T), with C,D,S,T
constants, and since / is transcendental we see at once that C and D + S must vanish.

8. A better estimate when /"'//" has large growth

Suppose that H is transcendental meromorphic in the plane, such that log+|//'(z)|^
O(log|z|) at all fixpoints z of H with \z\ large, and suppose that Nl(r,H) = O(rm), with m
a positive constant. It seems reasonable to believe that these hypotheses might imply
that H has finite order. Our method does not appear to give this, but we can write (3.2),
(3.3), (3.4) and (3.6) with T(r, hj) + T(r, c) = 0(r2m). Suppose that p(a) is large compared
to m. Choosing ye(1/2,2/3), we can find arbitrarily large r, normal for a and the gj,
such that (log N)/(m log r) is large, where N = v(r,a), and such that, choosing z0 with
|zo| = r and \a(zo)\ = M(r,a), we have (3.10), and

|c'(z)/c(z)| + |log|c(z)|| ^ i-1'" for Hzl-rl^r-"2"1,

with similar estimates for the hj, and with dj denoting constants not depending on m.
This implies that (3.11) holds, and we have
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Applying the same change of variables as in Section 3, we have, in particular, (3.15). The
estimate (3.20) holds for the gp and we obtain (3.21), for r-r~dimfL\z\<Lr, and with
(logr)2~a replaced by r41"". The coefficients A,B,C,D all have modulus at most

The argument of Section 4 goes through, since logM = o(|Z|) for Z satisfying (4.4), and
we obtain fixpoints z of H with H' large, contradicting our initial assumption. Hence the
order of a can be bounded in terms of m. Estimating the gj using (3.19), we have the
following.

Theorem 3. Suppose that 0<m<co and f is meromorphic in the plane, and that N(r)
counts the zeros of ff" which are not multiple zeros of f. If N(r) = 0(rm), then
log T{r, f'lf) = O(r"), the positive constant n depending only on m.
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