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Abstract
High tuberculosis (TB) prevalence in Papua New Guinea (PNG) is a serious public
health concern. The epidemic in this region is exacerbated by the presence of drug-
resistant TB strains as well as HIV infection. This presents a public health threat not
only locally but also to Australia due to the high potential for cross-border transmission
between PNG’s Western Province and the Australian Torres Strait Islands. We present
two mathematical models of TB in the Western Province: a simple model of the
underlying TB dynamics, and a detailed model which accounts for the additional
effects of HIV and drug resistance. The detailed model is used to make quantitative
predictions about the impact of expanding the TB case detection rate under the Directly
Observed Treatment, Short-course treatment regimen. This paper provides a framework
for future investigation into the economic costs and public health benefits of potential
TB interventions in this region, with the eventual aim of providing recommendations to
guide policy makers in both PNG and Australia.
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1. Introduction

Despite its ancient origins, tuberculosis (TB) remains a significant contributor to
the global burden of infectious disease, with 9.27 million incident cases recorded
in 2007 [42]. Additional challenges to tuberculosis control efforts in recent times
have been presented by the emergence of HIV [12, 26] and drug-resistant strains of
TB [48]. In certain regions, co-infection with HIV and the presence of multidrug-
resistant (MDR) and extensively drug-resistant (XDR) strains have led to higher TB
mortality rates and increased the financial costs of the epidemic [41, 44].
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In Australia, TB prevalence has typically remained low, at about seven cases per
100 000 population over the past two decades. However in Papua New Guinea (PNG),
Australia’s nearest neighbour to the north, prevalence is much higher at 430 per
100 000 in 2007 [42]. Furthermore, PNG is experiencing a generalized HIV
epidemic [29] and MDRTB strains have been identified in the Western Province [15],
the region closest to Australian territory. The World Health Organisation (WHO)
recommended course of treatment for TB is the Directly Observed Treatment, Short-
course (DOTS) regimen. Access to DOTS in PNG is currently at a mere 14%, the
lowest in the Western Pacific [45].

The Torres Strait Treaty between Australia and PNG allows passage by traditional
inhabitants of the area between the Torres Strait and designated treaty villages in
PNG’s Western Province without possession of a visa [4]. A dramatic health gradient
traverses this border due to superior access to adequate healthcare by Australians living
in the Torres Strait Islands compared to their close neighbours in PNG. Freedom of
movement in the treaty zone, with the incentive of access to higher-quality health
services in the Torres Strait, has led to a highly porous border. Over 60 000 movements
between the Western Province and the Torres Strait in both directions were recorded in
2008–09, 98% of them by PNG citizens [4]. As a result, infectious disease outbreaks
in the Western Province pose a serious public health risk to the Torres Strait region and
the nearby Australian mainland. Notably, 60 PNG nationals who presented to clinics
in Australian territory between 2000 and 2006 had confirmed cases of TB; of these,
25% were MDRTB strains [15].

In this paper, a deterministic model of TB epidemiology is developed based on data
from the PNG Western Province and, in the absence of information specific to this
region, data from PNG as a whole or wider sources. The model differs from many
recently published TB and TB/HIV co-infection models (for example, [1, 7, 8, 19,
27, 28, 30, 31]) in that it attempts to capture the interacting effects of drug resistance
and HIV. We analyse the dynamics of TB transmission in PNG in order to predict and
compare the effects of different epidemic intervention strategies. This paper lays the
groundwork for future studies into PNG–Torres Strait cross-border transmission using
a spatially differentiated model of the TB epidemic in this region.

2. Methods

2.1. Construction of a simple model We begin with a simple deterministic model
based on that of Blower et al. [10] in order to capture the basic dynamics of the
epidemic. HIV and drug-resistant TB strains are not included in this first model. Four
classes of individuals are considered: susceptibles X , latently infected individuals
L , and individuals with active tuberculosis, either infectious (pulmonary) TI or
noninfectious (extra-pulmonary) TN . Table 1 gives a list of common acronyms
and classes used throughout this paper. Individuals are born into the susceptible
class at a rate b from the total population, P = X + L + TN + TI . Susceptibles
contract TB by contact with infectious individuals at a rate proportional to the ratio
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TABLE 1. Glossary of abbreviations used throughout the paper.

AIDS Acquired immune deficiency syndrome
DDTB Deaths due to tuberculosis
DOTS Directly Observed Treatment, Short course
DSTB Drug-sensitive tuberculosis
HIV Human immunodeficiency virus
LHS Latin hypercube sampling
MDR Multidrug resistant
PNG Papua New Guinea
PRCC Partial rank correlation coefficient
PYLTB Person-years lived with tuberculosis
TB Tuberculosis
TBC Tuberculosis cases
WHO World Health Organisation
XDR Extensively drug resistant
L Latent class
TI Infectious (pulmonary) class
TN Noninfectious (extra-pulmonary) class
X Susceptible class

of infectious individuals to the total population, times an infecting constant βN (where
βN is the product of the contact rates between individuals in the population and the
probability of TB transmission per contact). Susceptible individuals who contract
TB may move either directly into the active class (“fast” TB) with probability εN ,
or into the latent class (“slow” TB) with probability 1− εN . From the latent class,
individuals progress to active TB at a rate vN . Individuals contracting active TB move
into either the infectious class with probability pN or the noninfectious class with
probability 1− pN . Tuberculous cases are cured (that is, infected individuals return
to the susceptible class; see later for a discussion of this) at a rate cNI for infectious
cases or cNN for noninfectious cases. Individuals may exit each class due to death
at a rate µN for latent or susceptible individuals or µNT for those with active TB.
These relationships are shown diagrammatically in Figure 1, and the corresponding
mathematical description is given by the following set of equations:

λ = βN
TI

P
,

d X

dt
= bP + cNITI + cNN TN − (λ+ µN )X,

d L

dt
= (1− εN )λX − (vN + µN )L ,
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FIGURE 1. Flowchart showing movement between classes in the simple model. Arrow labels which are
not bracketed indicate the rate at which individuals move from one class into the next, while those in
brackets indicate probabilities multiplying the rates. Individuals are born into the susceptible class at a
rate b from the total population (P = X + L + TI + TN ).

dTI

dt
= pN (εNλX + vN L)− (cNI + µNT)TI ,

dTN

dt
= (1− pN )(εNλX + vN L)− (cNN + µNT)TN .

2.2. Construction of a detailed model In order to capture the relevant complexities
of the PNG Western Province tuberculosis epidemic in recent times, the simple model
was extended to include the effects of HIV infection and drug-resistant strains of TB.
The general population was divided into HIV positive and HIV negative individuals.
Of those with tuberculosis, drug-sensitive TB (DSTB) and multidrug-resistant TB
(MDRTB) were considered, as well as infectious (pulmonary) and noninfectious
(extra-pulmonary) TB. The HIV negative population was partitioned as follows: X N ,
consisting of individuals susceptible to TB; L N , individuals latently infected with
drug-sensitive TB; TNI , comprising infectious DSTB cases; TNN , noninfectious DSTB
cases; LNM , individuals latently infected with MDRTB; TNMI , those with infectious
active MDRTB; TNMN , noninfectious individuals with MDRTB. The same classes
apply for HIV positive individuals, and are denoted by first subscript H instead of N .

Movement between classes in the HIV negative population when MDRTB is not
considered operates identically as for the simple model, where all relevant parameters
and classes have the subscript N . This pattern is mirrored for MDRTB, where the
relevant classes and parameters have the additional subscript M . Following previous
models of drug-resistant TB [6, 27], individuals may move from the active DSTB
classes into the active MDRTB classes due to strain mutation after failed treatment
at a rate γ . Individuals latently infected with DSTB may also become infected
with MDRTB through primary transmission, in the same manner as for susceptible
individuals. However, their probability of becoming infected is reduced by a factor of
σN as a result of acquired immunity due to previous infection [27]. The patterns of
movement for both DSTB and MDRTB are the same in the HIV positive group, where
the subscript N is replaced by H , with the exception that individuals are assumed to be
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TNI

FIGURE 2. Flowchart showing movement between HIV negative classes in the detailed model.
Nonbracketed labels on arrows indicate the rate at which individuals move from one class into the next,
while those in brackets indicate probabilities multiplying the rates. Individuals are born into the HIV
negative susceptible class at a rate b from the total population (the sum of all classes). Movement between
HIV positive classes operates identically as for the HIV negative classes, where the first subscript N is
replaced by the subscript H . Individuals may move from any HIV negative class into the equivalent HIV
positive class at a rate λHIV.

born into the HIV negative class. Additionally, individuals may move from any HIV
negative class into the corresponding HIV positive class with force of infection λHIV.
These relationships are shown in Figure 2. The following sets of equations are used to
construct the model.

The force of infection parameters are given by

λN = βN
TNI + THI

PT
,

λNM = βNM
TNMI + THMI

PT
,

λHM = βHM
TNMI + THMI

PT
,

λHIV = h
PH

PT
,

λH = βH
TNI + THI

PT
,

where PT is the total population, or the sum of all classes in the model.
The HIV negative population is governed by the following ODEs:

d X N

dt
= bPT + cNITNI + cNN TNN + cNMITNMI + cNMN TNMN

− (µN + λN + λNM + λHIV)X N ,
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d L N

dt
= (1− εN )λN X N − (µN + λHIV + vN + σNλNM)L N ,

d LNM

dt
= λNM(1− εN )(X N + σN L N )− (µN + vN + λHIV)LNM,

dTNI

dt
= pN (vN L N + εNλN X N )− (µNT + cNI + γ + λHIV)TNI,

dTNN

dt
= (1− pN )(vN L N + εNλN X N )− (µNT + cNN + γ + λHIV)TNN,

dTNMI

dt
= pN {vN LNM + εNλNM(X N + σN L N )} + γ TNI

− (µNMT + cNMI + λHIV)TNMI,

dTNMN

dt
= (1− pN ){vN LNM + εNλNM(X N + σN L N )} + γ TNN

− (µNMT + cNMN + λHIV)TNMN .

The HIV positive population is governed by the following ODEs:

d X H

dt
= λHIV X N + cHITHI + cHN THN + cHMITHMI + cHMN THMN

− (µH + λH + λHM)X H ,

d L H

dt
= λHIVL N + (1− εH )λH X H − (µH + vH + σHλHM)L H ,

d LHM

dt
= λHIVLNM + λHM(1− εH )(X H + σH L H )− (µH + vH )LHM,

dTHI

dt
= λHIVTNI + pH (vH L H + εHλH X H )− (µHT + cHI + γ )THI,

dTHN

dt
= λHIVTNN + (1− pH )(vH L H + εHλH X H )− (µHT + cHN + γ )THN,

dTHMI

dt
= λHIVTNMI + pH {vH LHM + εHλHM(X H + σH L H )} + γ THI

− (µHMT + cHMI)THMI,

dTHMN

dt
= λHIVTNMN + (1− pH ){vH LHM + εHλHM(X H + σH L H )} + γ THN

− (µHMT + cHMN)THMN .

2.3. Numerical simulation and parameter estimates Numerical simulations of
both the simple and detailed models were performed in MATLAB. The model
presented in the previous section is applicable to any region where DSTB, MDRTB
and HIV coexist in the population. Here we consider a case study of TB spread in the
Western Province of PNG and make parameter estimates to reflect the current situation
there.

The parameter values were taken from a review of the available literature. Data
specific to the Western Province were used where available; otherwise, PNG-wide
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data were used. In the absence of information specific to PNG, wider sources were
considered. The remaining parameters for which “estimate” is quoted as a source were
obtained by fitting the model to epidemiological data from PNG. Data on prevalence
of TB in PNG, population size in the Western Province, and prevalence of HIV in PNG
were obtained from sources [3, 23, 38] respectively. Where possible, upper and lower
bounds for the parameter estimates were determined. Table 2 gives the parameter
values which were used in numerical simulation of the simple and detailed models,
as well as a description of the parameter, the source of the value and any relevant
comments.

2.4. Analysis of intervention strategies Further MATLAB simulations were
undertaken in order to demonstrate the capacity of the detailed model to evaluate and
compare future TB interventions. An examination of one likely intervention strategy
was carried out, namely expanding the availability to Western Province residents of the
WHO-recommended DOTS program. A full discussion of other possible interventions
and their implementation is given elsewhere [5].

In order to model the effects of improved access to DOTS, the model was simulated
from 2007 to 2020. We chose fixed initial values in the year 2007 for each outcome
variable based on the results of the numerical simulation described in the previous
section. The year 2007 was chosen as this is the last year for which accurate data exist
on TB prevalence rates in PNG [38].

Three different DOTS detection rates were investigated. Firstly, the DOTS detection
rate was kept stable at its current level of 15% (d = 0.15) throughout the simulation.
This represents the baseline scenario for which the DOTS detection rate was taken
from a recent WHO estimate for PNG [45] (see Table 2). The process was then
repeated with the interventions introduced in 2010: once with the DOTS detection
rate increased to 50% (d = 0.5), and again with the detection rate at 100% (d = 1.0).

Following the method of Murray and Salomon [21], the total number of deaths due
to TB (DDTB) and TB cases (TBC) expected to accumulate over the decade from 2010
to 2020 were then calculated for each of the DOTS detection rates modelled. We also
calculated the number of person-years lived with TB (PYLTB) over the same time
period. The public health benefits gained by increasing DOTS detection were then
quantified by subtracting the intervention scenario results from the baseline results.

2.5. Uncertainty and sensitivity analysis Uncertainty was evaluated using Latin
hypercube sampling (LHS), following the method given in [9, 24]. LHS is a technique
used when there is uncertainty in a model’s input parameters. The parameters are
repeatedly sampled from suitable probability distributions in such a way that the
parameter space is evenly covered. The model is then simulated repeatedly using the
randomly sampled parameter sets. LHS ensures high sampling efficiency and hence
requires fewer runs of the model in order to obtain consistent results compared to basic
random sampling [9].

For our analysis, triangular probability distributions were created for each
parameter using the minimum, maximum and mode given in Table 2. Where no mode
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TABLE 2. Parameter values used in the detailed and simple models. Parameter values are discussed
further in Section 3.3.

Parameter Description Value Notes and references
Min Mode Max

b Natural birth rate 0.0317 [35]
µN Natural death rate 0.0072 0.008 [35]
µH HIV positive, TB negative death rate 0.027 0.028 0.029 Number of AIDS deaths over the

total number of HIV positive people
in PNG in 2007 [34] plus the natural
death rate µN .

µNT HIV negative, TB positive death rate 0.05 0.10 0.15 [43]
µHT HIV positive, TB positive death rate 0.11 0.25 0.43 [43]
µNMT MDRTB positive, HIV negative

death rate
0.6 0.85 [32]

µHMT MDRTB positive, HIV positive
death rate

0.72 0.89 [33]

εN Proportion of HIV negative people
progressing to active TB within 1
year of infection

0.05 Estimate: 5–10% of those infected
with TB progress to active TB
within 2 years [25].

εH Proportion of HIV positive people
progressing to active TB within 1
year of infection

0.1 0.3 0.5 Estimate

pN Proportion of HIV negative people
developing infectious TB

0.57 0.7 0.88 Mean value taken from [47]. Values
taken from two other studies ([1,
42] respectively) were used as
proxy for upper and lower bounds.

pH Proportion of HIV positive people
developing infectious TB

0.87 0.92 0.97 Calculated using an odds ratio
compared to the HIV negative
population given in [47].

vN Rate of progression to active TB in
HIV negative people

0.001 Estimate

vH Rate of progression to active TB in
HIV positive people

0.006 Estimate, noting that HIV positive
people are 5–7 times more likely
to develop TB than HIV negative
people [28].

d DOTS detection rate 0.15 Annual new smear-positive noti-
fications under DOTS divided by
estimated annual new smear-
positive incidence, 2007 [45].

n Proportion of cases detected under
DOTS that went on to treatment
through DOTS

0.91 Data from 2007 [45].

s Likelihood of treatment success 0.59 Percentage of new smear-positive
cases treated under DOTS success-
fully cured in 2007 [45].

cNI , cNN HIV negative TB cure rate 0.09 Calculated as d × n × s after
introduction of DOTS in 1997 [39];
prior to this, natural cure rate of
0.04 estimated. Due to a lack
of information, cure rates for
infectious and noninfectious cases
have been assumed to be equal.

cHI , cHN HIV positive TB cure rate 0.025 Estimate
cNMI , cNMN HIV negative MDRTB positive cure

rate
0.054 Estimate: [20] gives 53.7%, which

is nearly as high as the likelihood
for drug-susceptible TB in PNG,
hence cNMI and cNMN here are
much lower than in [20].
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TABLE 2. Continued ...

cHMI , cHMN HIV positive MDRTB positive cure
rate

0.006 Estimate

α Proportion of drug-sensitive TB
treatment failure acquiring multi-
drug resistance

0.05 Estimate

γ Rate of progression from active
drug-sensitive TB to active MDRTB
as a result of failed treatment

0.02 Calculated as α × (1− s). Prior
to DOTS introduction in 1997,
assumed to be zero.

σN Factor reducing risk of infection by
a new strain of TB due to acquired
immunity from infection by another
strain in HIV negative cases

0.25 [27]

σH Factor reducing risk of infection by
a new strain of TB due to acquired
immunity from infection by another
strain in HIV positive cases

0.5 Estimate

βN TB transmission coefficient in HIV
negative people

5.7 Estimate

βNM MDRTB transmission coefficient in
HIV negative people

5.7 Assumed to be the same as βN .

βH TB transmission coefficient in HIV
positive people

11.4 Estimate

βHM MDRTB transmission coefficient in
HIV positive people

17.1 Estimate

h HIV transmission coefficient 0.065 Estimate: [16] cites a higher value
of 0.315, see discussion for further
details.

is given in the table, a value equidistant from the minimum and maximum was used.
When no upper and lower bounds were found, the variable was assigned uncertainty
of 5% in both directions.

Each parameter was randomly sampled from its distribution and the model was
run three times as described above, using the baseline scenario and each intervention
scenario. From the results, the numbers of DDTB, TBC and PYLTB averted due
to each intervention were calculated. This was repeated 5000 times, producing an
empirical probability distribution for each of the outcome variables from which mean
values and 95% confidence intervals could be determined.

A sensitivity analysis using the results of the LHS process was conducted in order
to qualitatively assess the responsiveness of outcomes from the intervention analysis to
a given input parameter. This process allowed identification of the crucial parameters
to which the results were most sensitive, providing direction for future improvement
in the accuracy and precision of model output.

The partial rank correlation coefficient (PRCC) is a measure of the degree of
monotonicity between two parameters which adjusts for the effects of other variables
in the system [9]. A PRCC can therefore be used to assess the sensitivity of a model to
variation in one of its input parameters whilst adjusting for the effects of uncertainty in
the other parameters. For this model, PRCCs were calculated for each input parameter
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FIGURE 3. Numerical simulation of the detailed and simple models using the mode parameter values
given in Table 2. Where no mode is given, a number approximately equidistant from the upper and lower
bounds was chosen. Plot (a) shows the total TB prevalence given by the detailed and simple models,
and 10 times the prevalence of MDRTB given by the detailed model. Plot (b) shows the size of the total
population from both models. In each instance, the simulated values are plotted together with empirical
data from sources [23, 38], shown as the diamonds.

against the three output variables used to compare the effects of intervention strategies
(DDTB, TBC and PYLTB between 2010 and 2020). We also calculated P-values
for testing the hypothesis of no partial correlation against the alternative of a nonzero
partial correlation.

3. Results

3.1. Numerical simulation of TB in the Western Province Graphical results from
MATLAB simulations of both the detailed and simple models using the parameter
values given in Table 2 are shown in Figure 3. The prevalence of TB and population
size for the detailed and simple models from 1895 to 2020 are shown. The data used
to fit the models and obtain parameter estimates are also shown in Figure 3. These
results are for the baseline DOTS detection rate of 15%.

The results shown are broadly similar to those obtained by other simple TB models
(for example, [1, 10]). One notable difference in this model is the dramatic shift in
rates of change, particularly in the prevalence of TB, from 1997 onwards. This occurs
because the cure rates cNI and cNN increase from 0.04 to 0.09 per person per year with
the introduction of DOTS in the same year [39]. This was also chosen as the year
in which MDRTB first arises due to strain mutation under the selective pressure of
DOTS.

The results from the simple and detailed models in Figure 3 are qualitatively similar
but differ in the detail. TB prevalence for the simple model progresses slightly more
rapidly than for the detailed model and peaks approximately two decades earlier.
From about 1980 onwards, outputs from the two models continue to follow similar
paths. However, after the introduction of DOTS in 1997 the TB prevalence for the
simple model declines slightly less rapidly than for the detailed model, such that TB
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TABLE 3. The number of new TB cases (TBC), deaths due to TB (DDTB) and years lived with TB
(PYLTB) that could be averted over the the decade from 2010 to 2020 in PNG’s Western Province when
the TB detection rate under DOTS is increased relative to the current level of 15%. Mean values (95%
confidence intervals) from 5000 runs of the model are shown.

TB detection rate
TBC averted DDTB averted PYLTB averted

under DOTS

50%
Number 773 (528, 1017) 601 (530, 673) 5026 (3590, 6462)
Percent 28 (24, 32) 44 (42, 46) 46 (43, 49)

100%
Number 1174 (818, 1531) 907 (794, 1020) 7513 (5512, 9514)
Percent 43 (37, 48) 66 (64, 68) 69 (66, 73)

prevalence predicted by the detailed model is approximately 13% lower than for the
simple model by 2020. Differences in population size for both models are very small
throughout the simulations, although the population grows slightly more rapidly as
simulated by the simple model.

In the detailed model, the HIV prevalence rate was modelled with very little
variation over time, increasing from near 1% in 1990 to near 1.1% in 2010. This
was considered to be appropriate given the lack of data representing HIV prevalence
and rates of change in PNG’s Western Province. The only source identified which gave
a Western Province-specific value reported an HIV prevalence of 1.05% to 1.2% [3].
Both of these values came from voluntary testing studies and are hence subject to the
error typically associated with nonrandom samples. However, for the purposes of this
study we elected to use reported prevalence data in preference to estimation due to lack
of quantitative and qualitative information to provide a basis for the latter approach.

3.2. Intervention strategies The numbers of new TB cases, deaths due to TB and
person-years lived with TB expected to occur in the Western Province over the decade
from 2010 to 2020 were calculated for each level of DOTS coverage. The numbers
of new cases, deaths and person-years lived with TB averted under each improved
level of DOTS coverage compared to the baseline scenario (no change in coverage)
were determined as a measure of the success of that strategy. The results are given in
Table 3.

Figure 4 shows that the rates of TB prevalence in the Western Province are predicted
to decline rapidly following the introduction of improved access to the DOTS program.
Shown is the total prevalence which includes diagnosed and undiagnosed cases.
When DOTS coverage is increased to 100%, prevalence declines to 0.1% by 2015,
and appears to level off thereafter. However, when DOTS coverage is increased to
only 50%, prevalence reduces to just above 0.2% by 2015 but continues to decline.
The model also predicts that 775 cases with 95% confidence interval (530, 1015),
600 (530, 675) deaths and 5025 (3590, 6640) person-years lived with TB could be
averted over the next 10 years if DOTS coverage were increased to 50%. If coverage
were increased to 100%, 1175 (820, 1530) cases, 910 (795, 1020) deaths and 7515
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FIGURE 4. Numerical simulation of the detailed model from 2010 to 2020 when different DOTS detection
rates are applied, showing the mean and 95% confidence intervals from 5000 runs of the model. The
model parameter values from Table 2 were used. Where no mode is given, a value equidistant from the
upper and lower bounds was used. Values for which no upper or lower bounds are given were assigned
5% uncertainty in both directions.

(5510, 9515) person-years lived with TB could be averted in the same period. As
expected, increasing coverage to 100% is more beneficial than increasing to 50%, but
the latter will still produce significant reductions in morbidity and mortality.

3.3. Sensitivity analysis The results of the sensitivity analysis are shown in Table 4.
Those values found to have statistically significant PRCC (significance level 0.001)
from a test with null hypothesis PRCC= 0 are indicated by an asterisk. The following
input parameters had statistically significant PRCCs whose magnitudes were greater
than 0.2 for all three outcome variables: µNT , εN , pN , vN , cNI and βN . In addition
to these, b, µNMT , cNN , cH , vH , εH , βH , h and γ had PRCC values for one or
more outcome variables that were statistically significant but whose magnitudes were
less than 0.2. The effect of these latter parameters on the model outputs tested was
therefore minor.

The HIV negative, TB positive death rate (µNT ) and the proportion of HIV negative
people developing infectious TB (pN ) had PRCCs of particularly large magnitude
(≥0.90) for all three model outputs, and uncertainty in these variables therefore had
the greatest impact on variability in the results. In addition, the proportion of HIV
negative people progressing to active TB (εN ), the HIV negative transmission rate
(βN ) and the rate of progression from latent to active TB in HIV negative people (vN )
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TABLE 4. Partial rank correlation coefficients (PRCC) of each of the input parameters in the detailed
model compared to the output variable given by the cumulative number of new TB cases (TBC),
deaths due to TB (DDTB) and person-years lived with TB (PYLTB) between 2010 and 2020. An
asterisk denotes statistically significant values (significance level 0.001).

Variable PRCC Variable PRCC

TBC DDTB PYLTB TBC DDTB PYLTB

b 0.13* 0.11* 0.11* cNI −0.28* −0.42* −0.45*
µN −0.04 −0.02 −0.03 cNMI −0.03 −0.02 −0.03
µH −0.01 0.00 0.00 cNN −0.03 −0.10* −0.15*
µNT −0.96* 0.96* −0.99* cNMN 0.00 −0.03 0.00
µNMT −0.08 −0.10* −0.16* cHI 0.00 −0.01 0.00
µHT −0.02 0.01 −0.03 cHMI −0.01 −0.01 0.00
µHMT 0.00 −0.01 0.00 cHN −0.01 0.02 −0.01
εN 0.66* 0.63* 0.64* cHMN 0.01 0.03 0.01
εH 0.05* 0.00 0.00 βN 0.67* 0.60* 0.65*
pN 0.95* 0.90* 0.91* βNM 0.03 0.03 0.00
pH 0.00 0.03 0.01 βH 0.02 0.01 0.00
vN 0.61* 0.54* 0.58* βHM 0.00 −0.01 −0.01
vH 0.06* 0.09* 0.03 h 0.04 0.05* −0.01
σN 0.02 0.01 0.01 γ 0.04 0.10* −0.10*
σH −0.04 0.00 −0.03

had PRCCs of high magnitude (≥0.50) with all outcome variables. The HIV negative
cure rate (cNI) had PRCCs of moderate magnitude, between 0.27 and 0.46, with all
outputs.

Most of the parameters with statistically significant PRCCs had positive PRCC
values, indicating that an increase in the parameter leads to an increase in the outcome
of interest. The exceptions included the cure rates cNI and cNN , which had negative
PRCCs for all three outcome variables. The death rate µNT had negative PRCCs for
DDTB and PYLTB but a positive value for TBC, while µNMT had negative PRCCs
with all three outputs. Finally, the rate of strain mutation after treatment failure, γ ,
had a negative PRCC with the number of person-years lived with TB.

4. Discussion

4.1. Model construction The similarity between the simulations of the detailed
and simple models shown in Figure 3 demonstrates that the alterations made to the
simple model to construct the detailed model did not have a dramatic effect on the
modelled TB prevalence. The low PRCCs of HIV- and MDRTB-related parameters
with the outcome variables tested show that changes in, for example, MDRTB or
HIV/TB co-infected cure rates or infection rates will have little effect on the wider TB
epidemic. However, MDRTB patients are significantly more costly due to the higher
price of second-line drugs, longer duration of treatment, higher mortality and higher
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hospitalization rates [17]. Co-infection of TB with HIV is more costly and lengthy to
treat, with lower success rates than TB in HIV negative patients [14]. Furthermore,
at most times evaluated the detailed model predicted a lower TB prevalence than the
simple model (see Figure 3); a likely explanation is that HIV and MDRTB lead to a
greater number of TB deaths. This is supported by the observed slower population
growth for the detailed model, suggesting a higher overall death rate due to the
presence of HIV and MDRTB. This is most noticeable after the appearance of MDRTB
in 1997, after which TB prevalence for the detailed model declined more rapidly than
for the simple model. In light of the significant additional morbidity and mortality
caused by drug resistance and HIV infection, it is still necessary and important to
consider their impacts when comparing the costs and benefits of TB control strategies.
Moreover, previous models which included both drug resistance and HIV highlighted
the need for interventions targeted to drug-resistant strains, especially in settings with
high HIV prevalence [6–8].

This model does not accurately represent the timing of the appearance of HIV. The
first case of HIV in PNG was recorded in 1987 [40], but HIV was introduced at the
start of this model for simplicity. It was found that introducing HIV at a later stage
in the model led either to prevalence rates that were much lower than expected or to
unrealistic exponential growth of both the HIV and TB epidemics. A likely reason
for this is that the latent stage of HIV infection (HIV positive without symptoms of
AIDS) has not been included. A detailed analysis of HIV dynamics in PNG would
be severely restricted by a lack of available data and was considered to be beyond
the scope of this study. A model which resulted in almost constant HIV prevalence
was therefore preferable to expanding the model to account for further complexities
of the HIV epidemic. Similarly, the PNG TB epidemic is likely to have existed for
several hundred years more than is depicted in this model. As such, for the purposes of
accurately modelling the epidemic in PNG in order to analyse intervention strategies,
this model is only valid from 1990 onwards.

Unlike many mathematical models of infectious disease, a recovered class was
not included in this model; instead, cured individuals move directly back into the
susceptible class. This assumes that rates of infection are approximately the same
for recovered and susceptible individuals [36]. This assumption may be inaccurate
in light of data from some recent studies. For example, Nahid et al. [22] recorded
relapse rates in HIV infected and HIV negative patients that were evidently higher
than the usual infection rate, and a WHO surveillance report [46] indicates higher
rates of MDRTB in relapse cases than in new cases. Furthermore, Rodrigues et al. [27]
report model outcomes that are significantly different from models where reinfection
was not considered. Unfortunately no data are available on reinfection rates for the
Western Province of PNG, and so reinfection rates were taken to be the same as initial
infection rates [36] to avoid increasing uncertainty in model output due to the inclusion
of additional parameters of which there is no knowledge. One can consider that the
effect of relapse cases can be absorbed by the transmission coefficient as an overall
average, given that this is the data that are fitted to.
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In preference to including a DSTB/MDRTB co-infected class in the model, it has
been assumed that in mixed DSTB/MDRTB cases, active infection will develop only
from the resistant strain. This is justified by the selective advantage of drug-resistant
strains under treatment, and represents a worst-case scenario in terms of public health
and economic costs [27]. Basu et al. [6] similarly avoid defining co-infected classes
by including a “risk of infection” parameter for each strain. However, in contrast to
the approach used in this model, Basu et al. assume that risk of infection decreases
with increasing drug resistance due to fitness trade-offs. Rodrigues et al. [27]
present an alternative model with the addition of a DSTB/MDRTB co-infected class.
However, current knowledge about the conditions under which competing strains will
be expressed as active TB is incomplete. In the case of PNG’s Western Province, no
existing data differentiate between primary infection with MDRTB, co-infected cases
and strain mutation; the impact of co-infection on the TB epidemic in this region
cannot therefore be determined. As such, we have adopted the simpler and more
conservative approach in this model. Further studies on modes of transmission of
drug-resistance in PNG may elucidate this issue.

4.2. Parameter estimates Since we were not able to find sufficient data on
transmission coefficients beyond the simplest HIV negative, drug-susceptible case,
these values were chosen to reflect the increased likelihood of HIV positive people
contracting TB due to their immune-deficient state. Evidence also suggests that HIV
positive individuals have an enhanced probability of contracting MDRTB [13]: as
such, βHM has been chosen to be larger than βM by a greater amount than βH is larger
than βN . However, a recent review of the link between HIV infection and MDRTB
states that MDRTB infection does not take hold more readily than drug-susceptible
TB in HIV sufferers [37]. The assumption used in this model may therefore need to
be re-examined in future investigations when more data are available.

The transmission coefficient for the HIV epidemic used in this model (h = 0.065)
was much smaller than the value calculated in a study by Hyman et al. (h = 0.315
[16]). Hyman et al. assumed a contact rate of five partners per year and a probability
of transmission per partner of 0.063; however, the population under study was a small,
high-risk sub-population, and thus has higher contact rates than the general population.
Using the probability of transmission calculated by Hyman et al., the transmission
coefficient used in this model corresponds to a contact rate of just over one partner per
year. This is likely to be more accurate as applied to this model, particularly since we
have not differentiated between sexually active and inactive individuals.

4.3. Intervention analysis: sensitivity and uncertainty The sensitivity analysis
showed quantitatively which input parameters had the greatest impact on variability
in the model output. The two most important parameters as determined by this
analysis were the TB positive death rate, µNT , and the proportion of HIV negative
people developing infectious TB, pN . Increasing pN led to greater numbers of deaths,
cases and person-years lived with TB between 2010 and 2020. It is therefore clear
that reducing the number of infectious cases would be substantially beneficial for TB
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control efforts. A higher death rate leads to more deaths but fewer cases and fewer
person-years lived with TB. However, the latter points are not necessarily indicative of
improved public health outcomes given that these reductions are due to TB sufferers
dying more rapidly and with greater probability.

In order to reduce uncertainty in the model outputs, values for both these parameters
could be improved upon by the emergence of new empirical data. Better estimation of
µNT requires more stringent testing and monitoring of cases in the Western Province.
The uncertainty range for pN could be reduced by clearer delineation between data on
incidence of extra-pulmonary TB only and incidence of patients with both pulmonary
and extra-pulmonary TB. Existing data sources do not always clearly differentiate
between these two situations, making it difficult to infer the proportion of TB sufferers
who are infectious.

Other parameters revealed to be important by the PRCC analysis included the
proportion of HIV negative people progressing to active TB (εN ), the HIV negative
transmission rate (βN ) and the rate of progression from latent to active TB in HIV
negative people (vN ). Increases in each of these values led to increases in all three
outcome variables, as demonstrated by their positive PRCCs. The large magnitude of
their PRCC values across all three outcomes also indicates that interventions targeting
these parameters (that is, reducing transmission rates or rates of progression) could be
substantially and broadly effective in TB control.

Unlike µNT and pN , achieving a higher degree of accuracy for εN , vN and βN is
not a simple matter of better data collection and may not be feasible. Specifically,
information on prevalence of latent infection and duration of the latent period is
limited due to the symptomless nature of this stage of the disease. As a result, values
for the likelihood of TB transmission when two individuals come into contact, a
quantity which is required for estimation of the transmission coefficient βN , would
be cumbersome to estimate. Similarly, rates of progression from latent to active TB
would be difficult to obtain, as the time at which a given individual was first infected
is generally unknown.

A more practical approach is to estimate these values by fitting the model to
historical trends in TB transmission, as was done for several of the parameters used
in this model. However, once again this approach is hampered by the lack of data
concerning prevalence of latent disease. Furthermore, the accuracy of this study is
limited by the unavailability of data specific to the Western Province; although PNG-
wide prevalence rates may be used as proxy, the Western Province epidemic is likely to
be more severe due to higher MDRTB rates [15] and inadequate healthcare provision in
this region [2]. Aligning the model precisely with PNG-wide TB rates would therefore
be likely to lead to underestimates of the values of βN , vN and εN .

Finally, increases in the infectious cure rate (cNI) had a significant impact on
reducing numbers of all three outcomes, as expected. Although upper and lower
bounds for this value were not given, its accuracy is likely to be high as the relevant
data were recorded under the WHO’s DOTS program. As expected, cNI was far more
important than the noninfectious cure rate (cNN). This is because curing infectious
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cases decreases the number of new infections arising, whereas reducing the number of
noninfectious cases has no effect on this figure.

The sensitivity analysis also demonstrated the qualitative impact of either increasing
or decreasing the input parameters: a negative PRCC indicates an inverse relationship.
This helped us to identify the parameters for which more accurate estimates would
be most helpful in reducing output uncertainty and to understand the role of these
parameters in the TB epidemic. In general, the signs of the statistically significant
PRCCs were as expected and could be explained in biological terms. For example,
increasing the rate of progression from latent to active disease (vN or vH ) led to more
TBC, DDTB and PYLTB due to a greater number of people progressing to active
disease before death from other causes. Conversely, increasing the TB death rate (µNT )
led to more DDTB, but fewer TBC and PYLTB since those who developed active TB
died more quickly, decreasing the average duration of infection.

However, one unexpected result was the negative PRCC between the MDRTB
positive, HIV negative death rate (µNMT ) and the number of DDTB, although this
PRCC was of relatively low magnitude. A possible explanation is that individuals
developing active MDRTB died so rapidly that they prevented further TB infections
to the extent of also reducing the number of TB deaths. This suggests that in this
model, the large majority of MDRTB cases died before they could be cured. Further
investigation is needed in order to confirm or reject this hypothesis and to determine
whether this result reflects the dynamics of a true TB epidemic or an inaccuracy in our
model.

Finally, it is worth noting that a high degree of accuracy in the predictions of the
model may not be necessary in order to achieve the long-term aims of this study. When
attempting to identify the optimal approach to control of the Western Province/Torres
Strait TB epidemic, it is sufficient to demonstrate that one strategy outperforms all
others for all plausible values of input parameters. In that sense, precise projections
of TB incidence and deaths are not required. However, when economic outcomes are
accounted for, this is dependent on the interplay of cost and benefit. That is, if one
strategy is determined to be both the lowest cost and the most successful approach
to reducing disease burden over the entire parameter space and the relevant time
period, then no further investigation is needed. In the event that no single option
fulfils both roles, more precise predictions of incidence and TB-related deaths and the
associated costs of each candidate intervention must be sought in order to optimize the
reduction of disease burden with the financial resources available. A preliminary cost–
benefit analysis would therefore aid in determining the necessity of refining parameter
estimates in order to increase the model’s accuracy.

5. Conclusion

This paper demonstrates the application of a general TB model to a specific region
with unique characteristics in Papua New Guinea’s Western Province. This provides
the framework for future investigation into cost-benefit optimization of intervention
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strategies for TB in the Western Province and the Australian Torres Strait Islands. A
detailed model accounting for the impact of MDRTB and HIV infection has been
constructed and will be used for quantitative prediction of the effects of various
intervention strategies in this region. Sensitivity analyses of the detailed model have
revealed aspects of the model which could be improved in future studies. Further,
preliminary investigation using the detailed model into the number of deaths, new TB
cases and person-years lived with TB that might be avoided by increasing the case
detection rate under DOTS has laid the groundwork for assessment of more detailed
control recommendations.

Throughout this paper, various estimates of parameters have been used. Many of
these estimates are still relatively uncertain and further research is needed to narrow the
ranges of the parameters, particularly the ones indicated as important by the sensitivity
analysis. Although the results are generally robust to ranges of parameters, there
are particular parameter combinations that may change the results considerably. For
example, if the death rate of HIV positive, TB positive people was substantially higher
than HIV negative, TB positive people, then a general increase in HIV prevalence
could lead to a reduction in TB incidence due to the increased death rate of HIV
positive people. Care is needed when assessing the outcomes of the model that these
types of outlying parameter ranges are not overly influencing the results.

As well as assessing the impact of increasing the DOTS programme coverage, other
interventions that could be assessed using this model include those based around the
use of new drugs and diagnostic tools targeting both drug-sensitive and drug-resistant
tuberculosis. Recent studies suggest that drugs such as moxifloxacin and gatifloxacin
may shorten duration of treatment and be effective against resistant strains [18], and
that rapid assays for fluroquinolone resistance have the potential to greatly reduce
drug susceptibility testing time [11]. Modelling the impact of such interventions
at a population level is essential for future tuberculosis policy. Equally, changes in
population risk profiles, such as increased rates of HIV and changes in cross-border
population movements which impact on transmission patterns, can be accounted for
using this model.
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