Kentaro Takaki Nagoya Math. J. Vol. 53 (1974), 71-82

LIPEOMORPHISMS CLOSE TO AN ANOSOV DIFFEOMORPHISM

KENTARO TAKAKI

§ 0. Introduction

It is well-known that an Anosov diffeomorphism f on a compact manifold is structurally stable in the space of all C^1 -diffeomorphisms, with the C^1 -topology (Anosov [1]). In this paper we show that f is also structurally stable in the space of all lipeomorphisms, with a lipschitz topology. The proof is similar to that of the C^1 -case by J. Moser [4]. If a C^1 -diffeomorphism g is sufficiently close to f in the C^1 -sense g is also sufficiently close to f in the lipschitz sense by the mean value theorem. Hence our result is somewhat stronger than that of Anosov.

In the following let M be a compact connected boundaryless C^{∞} -manifold of dimension n with a Riemannian metric $\|\cdot\|$, d the distance function induced by $\|\cdot\|$, and $\{(U_{\alpha},\alpha)\}$ a covering of M by finite charts $M=\bigcup_{\alpha}U_{\alpha}$, where each local diffeomorphism α onto an open subset of R^n is defined on an open subset of M which contains the closure of U_{α} : $\mathscr{D}(\alpha)\supset \overline{U}_{\alpha}(\mathscr{D}(\alpha))$ denotes the domain of α .). Let $|\cdot|$ be the standard norm in R^n .

$\S 1$. Lipschitz maps on M.

Let $C^0(M)$ be the set of all continuous maps of M into itself and d_0 the distance function on $C^0(M)$ induced by the distance function d on $M: d_0(f,g) = \sup_{x \in M} d(f(x),g(x))$ for $f,g \in C^0(M)$. L(M) denotes the set of all lipschitz maps of M into itself. It is clear that L(M) is contained in $C^0(M)$. We may choose a positive number λ_1 such that for any α $f(\overline{U}_\alpha) \subset \mathcal{D}(\alpha)$ holds for $f \in C^0(M)$ with $d_0(f,1_M) < \lambda_1$, 1_M denoting the identity map of M. For any $f \in C^0(M)$ with $d_0(f,1_M) < \lambda_1$, f is lipschitz if and only if for any α the map $\alpha \circ f \circ \alpha^{-1}$ of $\alpha(U_\alpha)$ into \mathbb{R}^n is lipschitz i.e. the lipschitz constant of $\alpha \circ f \circ \alpha^{-1}: \alpha(U_\alpha) \to \mathbb{R}^n$, which is denoted by

Received June 29, 1973.

 $L(\alpha \circ f \circ \alpha^{-1})$ on $\alpha(U_a)$ or simply by $L(\alpha \circ f \circ \alpha^{-1})$, is finite. This follows from the facts that we can choose a positive number ρ_1 such that for each x the closed ρ_1 -ball $B(x\colon \rho_1)=\{y\in M\,|\,d(x,y)\leqq \rho_1\}$ around x is contained in some U_a and that for any chart (V,γ) for M, and for each compact subset X of M contained in V the map $\gamma\colon (X,d)\to (\gamma(X),|\cdot|)$ is a lipeomorphism. We have the following

PROPOSITION 1-1. There exists a positive number C_1 with the following property: For each α and each $x, y \in U_{\alpha}$ we have $C_1^{-1}|\alpha(x) - \alpha(y)| \le d(x, y) \le C_1|\alpha(x) - \alpha(y)|$.

For each $f \in L(M)$ with $d_0(f, 1_M) < \lambda_1$ we define $d_{\ell}(f, 1_M)$ by $d_{\ell}(f, 1_M) = d_0(f, 1_M) + \operatorname{Sup}_{\alpha} L(\alpha \circ f \circ \alpha^{-1} - 1 \text{ on } \alpha(U_{\alpha})).$

PROPOSITION 1-2. Let f be any element in L(M) with $d_0(f, 1_M) < \lambda_1$. If $d_t(f, 1_M)$ is sufficiently small f is a lipeomorphism.

Proof. We use the following

LEMMA (Lipschitz Inverse Function Theorem [3]). Let E, F be Banach space, $U \subset E$ and $V \subset F$ non-empty open sets and $g: U \to V$ a homeomorphism such that g^{-1} is lipschitz. Then for each $h: U \to F$ with $L(h-g) \cdot L(g^{-1}) < 1$, h(U) = V' is an open set of $F, h: U \to V'$ is a homeomorphism and $h^{-1}: V' \to U$ is lipschitz.

Let f be an element of L(M) such that $d_0(f, 1_M) < \lambda_1$ and $d_\ell(f, 1_M) < \min\{1, \rho_1/2\}$. By the above lemma and Prop 1–1 $f(U_a)$ is an open set of M and $f: U_a \to f(U_a)$ is a lipeomorphism. In particular f(M) is open. Since M is compact connected f(M) = M. We can complete the proof by proving that f is injective. To do this, take $x, y \in M$ with f(x) = f(y). Then, $d(f(x), x) \leq d_0(f, 1_M) \leq d_\ell(f, 1_M) < \rho_1/2$. Similarly $d(f(y), y) < \rho_1/2$. Hence g is contained in g(x) = g which is contained in some g. As $g \in M$ is injective we have $g \in M$ q.e.d.

$\S 2$. Lipschitz vector fields on M.

Let $X^0(M)$ denote the set of all continuous vector fields on M and $\|\cdot\|$ be the norm on $X^0(M)$ induced by the Riemannian metric $\|\cdot\|:\|u\|=\sup_{x\in M}\|u_x\|$ for any $u=(u_x)_{x\in M}\in X^0(M)$. $(X^0(M),\|\cdot\|)$ is a Banach space. For each (U_α,α) put $U'_\alpha=\alpha(U_\alpha)$ and let $T_\alpha:TM\mid U_\alpha\to U'_\alpha\times R^n$ be the isomorphism induced by α . Let $D\alpha:TM\mid U_\alpha\to R^n$ be the composite of

 $T_{\alpha}\colon TM\mid U_{\alpha}\to U_{\alpha}'\times R^n$ and the projection $U_{\alpha}'\times R^n\to R^n$. $D\alpha$ is considered as the differential of α . Then for each $v\in X^0(M)$ we define v_{α} by $v_{\alpha}=D\alpha\circ v:U_{\alpha}\to R^n$, and define |v| by $|v|=\operatorname{Sup}_{\alpha}\operatorname{Sup}_{x\in U_{\alpha}}|v_{\alpha}(x)|$. Then $|\cdot|\colon X^0(M)\to R^+=\{a\in R\mid a\geq 0\}$ is a norm on $X^0(M)$ and it is equivalent to $\|\cdot\|$. The equivalence of $|\cdot|$ and $\|\cdot\|$ follows from the following.

PROPOSITION 2-1. There exists a positive number C_2 such that for any α and any $v \in TM \mid U_{\alpha}$ we have $C_2^{-1} \mid \mid v \mid \mid \leq |D\alpha(v)| \leq C_2 \mid \mid v \mid \mid$.

An element $v \in X^0(M)$ is called a lipschitz vector field on M if and only if for each α , $v_{\alpha} \colon U_{\alpha} \to \mathbf{R}^n$ is lipschitz i.e. $v_{\alpha} \circ \alpha^{-1} \colon U'_{\alpha} \to \mathbf{R}^n$ is lipschitz. Denote the set of all lipschitz vector fields by $X_{\ell}(M)$. We define a norm $|\cdot|_{\ell}$ on $X_{\ell}(M)$ by $|v|_{\ell} = |v| + \operatorname{Sup}_{\alpha} \{L(v_{\alpha} \circ \alpha^{-1})\}$ for any $v \in X_{\ell}(M)$. Then $(X_{\ell}(M), |\cdot|_{\ell})$ is a Banach space.

Let $\exp = (\exp_x)_{x \in M}$ be the exponential map induced by the Riemannian metric $\|\cdot\|$. In a normed space $(E,\|\cdot\|)$ we denote the closed λ -ball around the origin by $(E,\|\cdot\|)_{\lambda}$ and the open λ -ball around the origin by $(E,\|\cdot\|)_{\lambda}^{\circ}$. We can choose a positive number λ_2 such that for each $x \in M$ \exp_x is a diffeomorphism of $(T_x(M),\|\cdot\|)_{\lambda_2}^{\circ}$ onto the open λ_2 -ball around x in (M,d). Hence for this λ_2 $\exp: (X^0(M),\|\cdot\|)_{\lambda_2}^{\circ}\ni v \to \exp v = \exp \circ v \in \{f \in C^0(M) \mid d_0(f,1_M) < \lambda_2\}$ is a bijective map. And for each $v \in (X^0(M),\|\cdot\|)_{\lambda_1}^{\circ}$ we have $d_0(\exp v,1_M) = \|v\|$. For the convenience assume $\lambda_2 \le \lambda_1$. By the equivalence of $\|\cdot\|$ and $\|\cdot\|$ we can choose a positive number ε_1 such that $(X^0(M),\|\cdot\|)_{\varepsilon_1}^{\circ}$ is contained in $(X^0(M),\|\cdot\|)_{\lambda_2}^{\circ}$.

Proposition 2-2. We can choose a positive number ϵ_2 : $0<\epsilon_2\leq \epsilon_1$ such that

- (i) for each $v \in (M, |\cdot|)^{\circ}_{\iota_2} \exp v$ is contained in L(M) if and only if v is contained in $X_{\iota}(M)$ and that
- (ii) for each sequence $\{v^{(i)}\}_{i=1}^{\infty} \subset X_{\ell}(M) \cap (X^{0}(M), |\cdot|)_{\epsilon_{2}}^{\circ}$

$$d_{\ell}(\exp v^{(i)}, 1_{\mathit{M}})
ightarrow 0$$
 as $i
ightarrow \infty$,

iff

$$|v^{(i)}|_{\ell} \to 0$$
 as $i \to \infty$.

Proof. We take any (U_{α}, α) and fix it. For each $(x', \xi) \in U'_{\alpha} \times \mathbb{R}^n$ with $|\xi| < \varepsilon_1$ we define $e(x', \xi)$ by $e(x', \xi) = \alpha \circ \exp \circ T\alpha^{-1}(x', \xi)$. By the choice of ε_1 this is well-defined and e is of class C^{∞} . Since e(x', 0) = x'

and $(De)_{2(x',0)} = 1_{R^n}$, if we represent $e(x',\xi)$ by $e(x',\xi) = x' + \xi + r(x'\xi)$, then r is of class C^{∞} and $(Dr)_{(x',0)} = 0$ as $(Dr)_{1(x',0)} = (Dr)_{2(x',0)} = 0$ for any $x' \in U'_{\alpha}$. Recalling that $\mathcal{D}(\alpha) \supset \overline{U}_{\alpha}$, by the mean value theorem, we have the following

- (A): There exist a positive number $\varepsilon_2^{(\alpha)}$: $0 < \varepsilon_2^{(\alpha)} \leq \varepsilon_1$ and a function $L^{(\alpha)}$: $(0, \varepsilon_2^{(\alpha)}) \to [0, 1)$ satisfying the following properties.
- (iii) For each $x', y' \in U_a'$, $0 < \varepsilon < \varepsilon_2^{(a)}$ and ξ , $\eta \in \mathbb{R}^n$ with $|\xi|, |\eta| \le \varepsilon$ we have $|r(x', \xi) r(y', \eta)| \le L^{(a)}(\varepsilon)\{|x' y'| + |\xi \eta|\}.$
- (iv) $L^{(\alpha)}(\varepsilon)$ 0 as $\varepsilon \to 0$

Now, take $\varepsilon: 0 < \varepsilon < \varepsilon_2^{(\alpha)}$ and $v \in (X^0(M), |\cdot|)_{\varepsilon}$ and put $v_{\alpha} = D\alpha \circ v: U_{\alpha} \to \mathbb{R}^n$ and $h = \exp v \in C^0(M)$. We have $h(\overline{U}_{\alpha}) \subset \mathcal{D}(\alpha)$ since $d_0(h, 1_M) = ||v|| < \lambda_2 \leq \lambda_1$. For each $x' \in U'_{\alpha}$ put $x = \alpha^{-1}(x')$. Then, we have

$$(x', v_{\alpha} \circ \alpha^{-1}(x')) = T\alpha(v_x) = T\alpha \circ \exp_x^{-1}(h(x))$$
$$= T\alpha \circ \exp_x^{-1} \circ \alpha^{-1}(\alpha \circ h \circ \alpha^{-1}(x')),$$

which implies

$$\alpha \circ h \circ \alpha^{-1}(x') = e(x', v_{\alpha} \circ \alpha^{-1}(x'))$$

= $x' + v_{\alpha} \circ \alpha^{-1}(x') + r(x', v_{\alpha} \circ \alpha^{-1}(x'))$,

from which we get

$$(\alpha \circ h \circ \alpha^{-1} - 1)(x') = v_{\alpha} \circ \alpha^{-1}(x') + r(x', v_{\alpha} \circ \alpha^{-1}(x')).$$

Hence for each x', $y' \in U'_{\alpha}$ we have

$$\begin{split} (\alpha \circ h \circ \alpha^{-1} - 1)(x') &- (\alpha \circ h \circ \alpha^{-1} - 1)(y') \\ &= \{ v_{\alpha} \circ \alpha^{-1}(x') - v_{\alpha} \circ \alpha^{-1}(y') \} + \{ r(x', v_{\alpha} \circ \alpha^{-1}(x')) - r(y', v_{\alpha} \circ \alpha^{-1}(y')) \} \; . \end{split}$$

By this equality we have the followings:

(v) If v is lipschitz then we have

$$\begin{split} |(\alpha \circ h \circ \alpha^{-1} - 1)(x') - (\alpha \circ h \circ \alpha^{-1} - 1)(y')| \\ & \leq L(v_{\alpha} \circ \alpha^{-1})|x' - y'| + L^{(\alpha)}(\varepsilon)\{|x' - y'| + L(v_{\alpha} \circ \alpha^{-1})|x' - y'|\} \\ & \leq \{L^{(\alpha)}(\varepsilon) + |v|_{\ell} + L^{(\alpha)}(\varepsilon)|v|_{\ell}\}|x' - y'| \; . \end{split}$$

(vi) If $h = \exp v$ is lipschitz then we have

$$\begin{aligned} d_{t}(h, 1_{M}) \cdot |x' - y'| &\geq L(\alpha \circ h \circ \alpha^{-1} - 1)|x' - y'| \\ &\geq |(\alpha \circ h \circ \alpha^{-1} - 1)(x') - (\alpha \circ h \circ \alpha^{-1} - 1)(y')| \\ &\geq |y_{*} \circ \alpha^{-1}(x') - y_{*} \circ \alpha^{-1}(y')| \end{aligned}$$

$$\begin{aligned} &-|r(x', v_{\alpha} \circ \alpha^{-1}(x')) - r(y', v_{\alpha} \circ \alpha^{-1}(y'))| \\ &\ge |v_{\alpha} \circ \alpha^{-1}(x') - v_{\alpha} \circ \alpha^{-1}(y')| \\ &- L^{(\alpha)}(\varepsilon)\{|x' - y'| + |v_{\alpha} \circ \alpha^{-1}(x') - v_{\alpha} \circ \alpha^{-1}(y')|\} \end{aligned}$$

As $0 \le L^{(\alpha)}(\varepsilon) < 1$ we have by this inequality

$$\begin{aligned} |v_{\alpha} \circ \alpha^{-1}(x) - v_{\alpha} \circ \alpha^{-1}(y)| \\ & \leq [\{d_{i}(h, 1_{M}) + L^{(\alpha)}(\varepsilon)\}/(1 - L^{(\alpha)}(\varepsilon))] \cdot |x' - y'| \end{aligned}$$

The proof is complete by using (iv), (v) and (v).

q.e.d.

\S 3. Lipeomorphisms close to an Anosov diffeomorphism on M.

LEMMA 3-1. There exist positive numbers ε_3 : $0 < \varepsilon_3 \le \varepsilon_1$ and C_3 with the following property. For any $x \in U_\alpha$ and ξ , $\eta \in \mathbb{R}^n$ with $|\xi|$, $|\eta| < \varepsilon_3$ we have

$$|C_3^{-1}|\xi - \eta| \le |y' - z'| \le C_3 |\xi - \eta|$$

where $y' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(\xi)$ and $z' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(\eta)$.

Proof. Take α and fix it. In the proof of Prop. 2–2 we defined e and r. By (A) we can choose a positive number $\varepsilon_{\S}^{(\alpha)}: 0 < \varepsilon_{\S}^{(\alpha)} \leq \varepsilon_{1}$ such that for any $x', y' \in U'_{\alpha}$ and any $\xi, \eta \in \mathbb{R}^{n}$ with $|\xi|, |\eta| < \varepsilon_{\S}^{(\alpha)}$ we have

$$|r(x',\xi) - r(y',\eta)| \le 1/2(|x'-y'| + |\xi-\eta|)$$

For any $x \in U_{\alpha}$ and ξ , $\eta \in \mathbb{R}^n$ with $|\xi|$, $|\eta| < \varepsilon_3^{(\alpha)}$ putting $y' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(\xi)$, $z' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(\eta)$ and $x' = \alpha(x)$, we have $y' = e(x', \xi)$ and $z' = e(x', \eta)$. Hence

$$|y' - z'| \le |\xi - \eta| + |r(x', \xi) - r(x', \eta)| \le |\xi - \eta| + 1/2 |\xi - \eta|$$

 $\le C_3 |\xi - \eta|$

and

$$\begin{aligned} |y'-z'| & \ge |\xi-\eta| - |r(x',\xi) - r(x',\eta)| \ge |\xi-\eta| - 1/2 \, |\xi-\eta| \\ & \ge C_3^{-1} \, |\xi-\eta| \end{aligned}$$

Hence we can take $C_3 = 2$ and $\varepsilon_3 = \operatorname{Inf}_{\alpha} \{ \varepsilon_3^{(\alpha)} \}$ q.e.d.

COROLLARY. We can take positive numbers λ and C such that for any $x \in M$ and $u, v \in T_xM$ with $||u||, ||v|| < \lambda$ we have

$$C^{-1} \|u - v\| \le d(\exp_x u, \exp_x v) \le C \|u - v\|$$
.

Proof. This follows from Lemma 3-1, Prop. 1-1 and Prop. 2-1. q.e.d.

LEMMA 3-2. There exist positive numbers $\delta_1, \varepsilon_4 : 0 < \varepsilon_4 \leq \varepsilon_3$, a function $L_1: (0, \delta_1) \times (0, \varepsilon_4) \to \mathbb{R}^+$ and a continuous map $r: (X_{\ell}(M), |\cdot|_{\ell})_{\delta_1}^{\circ} \times (X^{0}(M), |\cdot|_{\ell_4})_{\delta_4}^{\circ} \times X^{0}(M)$ with the following properties:

- (i) It holds that $\exp w \circ \exp v = \exp (w + v + r(w, v))$ for each $w \in (X_{\ell}(M), |\cdot|_{\ell})^{\circ}_{\delta_1}$ and $v \in (X^{\circ}(M), |\cdot|_{\delta_2})^{\circ}_{\delta_1}$
- (ii) For each $\delta: 0 < \delta < \delta_1$, $\varepsilon: 0 < \varepsilon < \varepsilon_4$, $w \in (X_{\iota}(M), |\cdot|_{\iota})_{\delta}$ and $v, v' \in (X^0(M), |\cdot|)_{\varepsilon}$ we have $|r(w, v) r(w, v')| \leq L_1(\delta, \varepsilon)|v v'|$ and r(w, 0) = r(0, v) = 0.
- (iii) $L_1(\delta, \varepsilon) \to 0$ as $\delta, \varepsilon \to 0$.

Proof. Choose open subsets V_{α} of M for each α such that $V_{\alpha} \subset \overline{V}_{\alpha}$ $\subset U_{\alpha}$ and $\bigcup_{\alpha} V_{\alpha} = M$. We define a norm $|\cdot|'$ on $X^{0}(M)$ with respect to the covering by finite charts, $\{(V_{\alpha}, \alpha)\}_{\alpha}$, in the same way as we defined $|\cdot|$: For each $v \in X^0(M)$ we define |v|' by $|v|' = \operatorname{Sup}_{\alpha} \operatorname{Sup}_{x \in V_{\alpha}} |v_{\alpha}(x)|$, where $v_{\alpha} = D\alpha \circ v$. As $|\cdot|'$ and $|\cdot|$ are equivalent $|\cdot|'$ and $|\cdot|$ are equivalent. We can choose a positive number $\varepsilon_4': 0 < \varepsilon_4' \leq \varepsilon_3$ such that for any w, $v \in X^0(M)$ with $|w|, |v|' < \varepsilon_4'$ we have $\exp v(\overline{V}_\alpha) \subset U_\alpha$ for any α and $d_0(\exp w \circ \exp v, 1_M) < \lambda_2$. Then for each $w, v \in X^0(M)$ with $|w|, |v|' < \varepsilon_4'$ there exists a unique $r(w, v) \in X^0(M)$ such that $\exp w \cdot \exp v = \exp (w + v)$ v + r(w, v) and $d_0(\exp w \cdot \exp v, 1_M) = ||w + v + r(w, v)||$. It is clear that r is continuous and r(w,0)=(0,v)=0. Take any α and fix it. Put $V'_{\alpha} = \alpha(V_{\alpha})$. For each $(x', \xi, \eta) \in V'_{\alpha} \times \mathbb{R}^n \times \mathbb{R}^n$ with $|\xi|$, $|\eta| < \varepsilon'_{4}$ we define $P_{\alpha}(x',\xi,\eta)$ by $P_{\alpha}(x',\xi,\eta)=D_{\alpha}\circ\exp_{x}^{-1}\circ\exp_{y}\circ(D\alpha)_{y}^{-1}(\xi)$, where $x=\alpha^{-1}(x')$ and $y = \exp_x \circ (D\alpha)_x^{-1}(\eta)$. By the choice of ε_4 this is well-defined and P_α is of class C^{∞} . It is clear that $P_{\alpha}(x',0,0)=0$, $P_{\alpha}(x',\xi,0)=\xi$ and $P_{\alpha}(x',0,\eta)$ $=\eta$. Hence if we express $P_{\alpha}(x',\xi,\eta)$ by $P_{\alpha}(x',\xi,\eta)=\xi+\eta+r^{(\alpha)}(x',\xi,\eta)$ then $r^{(\alpha)}$ is of class C^{∞} , $(Dr^{(\alpha)})_{1(x',\xi,0)} = (Dr^{(\alpha)})_{1(x',0,\eta)} = 0$, $(Dr^{(\alpha)})_{2(x',\xi,0)} = 0$, $(Dr^{\scriptscriptstyle(a)})_{\scriptscriptstyle 3(x',0,\eta)}=0$ and so in particular $(Dr^{\scriptscriptstyle(a)})_{\scriptscriptstyle (x',0,0)}=0.$ Noting that $\mathscr{D}(\alpha)\supset \overline{U}_{\alpha}\supset U_{\alpha}\supset \overline{V}_{\alpha}\supset V_{\alpha}$, we can conclude the following by the mean value theorem.

- (B) There exist two positive numbers $\delta_1' : 0 < \delta_1' \le \varepsilon_4'$ and $\varepsilon_4'' : 0 < \varepsilon_4'' \le \varepsilon_4'$ and a function $L_1^{(\alpha)} : (0, \delta_1') \times (0, \varepsilon_4'') \to \mathbb{R}^+$ with the following properties:
- (iv) For each $\delta: 0 < \delta < \delta'_1$, $\varepsilon: 0 < \varepsilon < \varepsilon''_4$, $x', y' \in V'_{\alpha}$ and $\xi, \eta, \zeta, \theta \in \mathbb{R}^n$ with $|\xi|, |\zeta| \leq \delta$ and $|\eta|, |\theta| \leq \varepsilon$ we have

$$|r^{(\alpha)}(x',\xi,\eta)-r^{(\alpha)}(y',\zeta,\theta)| \leqq L_1^{(\alpha)}(\delta,\varepsilon) \cdot \{|x'-y'|+|\xi-\zeta|+|\eta-\theta|\} \ ,$$

(v) $L_1^{(\alpha)}(\delta, \varepsilon) \to 0$ as $\delta, \varepsilon \to 0$.

Take any positive numbers δ , ε with $0 < \delta < \delta'_1$ and $0 < \varepsilon < \varepsilon''_4$ and fix them. For each w, v, $v' \in X^0(M)$ with $|w| \le \delta$ and |v|', $|v'|' \le \varepsilon$ we define w_α , v_α , v'_α , $r(w,v)_\alpha$ and $r(w,v')_\alpha$ as before. Then for each $x' \in V'_\alpha$ we have

$$r(w,v)_{\alpha}\circ\alpha^{-1}(x')=P_{\alpha}(x',w_{\alpha}\circ\alpha^{-1}(y'),v_{\alpha}\circ\alpha^{-1}(x'))-\{w_{\alpha}\circ\alpha^{-1}(x')+v_{\alpha}\circ\alpha^{-1}(x')\}$$

and

$$\begin{split} r(w,v')_{_a} \circ \alpha^{-1}(x') &= P_{_a}(x',w_{_a} \circ \alpha^{-1}(z'),v'_{_a} \circ \alpha^{-1}(x')) \\ &- \{w_{_a} \circ \alpha^{-1}(x') + v'_{_a} \circ \alpha^{-1}(x')\} \;, \end{split}$$

where

$$x = \alpha^{-1}(x')$$
, $y' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(v_\alpha \circ \alpha^{-1}(x))$

and

$$z' = \alpha \circ \exp_x \circ (D\alpha)_x^{-1}(v'_\alpha \circ \alpha^{-1}(x'))$$
.

Hence we get

$$\begin{split} |r(w,v)_{\alpha} \circ \alpha^{-1}(x') - r(w,v')_{\alpha} \circ \alpha^{-1}(x')| \\ & \leq |w_{\alpha} \circ \alpha^{-1}(y') - w_{\alpha} \circ \alpha^{-1}(z')| + |r^{(\alpha)}(x',w_{\alpha} \circ \alpha^{-1}(y'),v_{\alpha} \circ \alpha^{-1}(x'))| \\ & - r^{(\alpha)}(x',w_{\alpha} \circ \alpha^{-1}(z'),v'_{\alpha} \circ \alpha^{-1}(x'))| \\ & \leq \{1 + L_{1}^{(\alpha)}(\delta,\varepsilon)\} \cdot |w_{\alpha} \circ \alpha^{-1}(y') - w_{\alpha} \circ \alpha^{-1}(z')| \\ & + L_{i}^{(\alpha)}(\delta,\varepsilon)|v_{\alpha} \circ \alpha^{-1}(x') - v'_{\alpha} \circ \alpha^{-1}(x')| \; . \end{split}$$

If we assume that w is contained in L(M), then we have by Lemma 3-1

$$\begin{split} |r(w,v)_{\scriptscriptstyle\alpha} \circ \alpha^{\scriptscriptstyle-1}(x') &- r(w,v')_{\scriptscriptstyle\alpha} \circ \alpha^{\scriptscriptstyle-1}(x')| \\ & \leqq \{1 + L_1^{\scriptscriptstyle(\alpha)}(\delta,\varepsilon)\} \cdot |w|_{\scriptscriptstyle\ell} \cdot |y' - z'| + L_1^{\scriptscriptstyle(\alpha)}(\delta,\varepsilon)|v_{\scriptscriptstyle\alpha} \circ \alpha^{\scriptscriptstyle-1}(x') - v'_{\scriptscriptstyle\alpha} \circ \alpha^{\scriptscriptstyle-1}(x')| \\ & \le \{L_1^{\scriptscriptstyle(\alpha)}(\delta,\varepsilon) + C_1|w|_{\scriptscriptstyle\ell} \cdot (1 + L_1^{\scriptscriptstyle(\alpha)}(\delta,\varepsilon))\} \cdot |v_{\scriptscriptstyle\alpha} \circ \alpha^{\scriptscriptstyle-1}(x') - v'_{\scriptscriptstyle\alpha} \circ \alpha^{\scriptscriptstyle-1}(x')| \; . \end{split}$$

From this inequality, the equivalence of $|\cdot|$ and $|\cdot|'$ and (v) the proof of Lemma 3-2 is complete.

In the followings we assume that $f: M \to M$ is a C^1 -diffeomorphism. For this f we define a linear automorphism f_* of $X^0(M)$ by

$$f_*(v) = df \circ v \circ f^{\scriptscriptstyle -1}$$
 for any $v \in X^{\scriptscriptstyle 0}(M)$,

where df is the differential of f.

LEMMA 3-3. There exist a positive number ε_5 , a bounded function $L_2: (0, \varepsilon_5) \to \mathbb{R}^+$ and a continuous map $s: (X^0(M), |\cdot|)^{\circ}_{\varepsilon_5} \to X^0(M)$ with the

following properties.

- (i) $f \circ \exp v \circ f^{-1} = \exp (f_*(v) + s(v)) \text{ for any } v \in (X^0(M), |\cdot|)_{ss}^{\circ}$
- (ii) s(0) = 0 and for each $\varepsilon: 0 < \varepsilon < \varepsilon_5$ and $v, v' \in (X^0(M), |\cdot|)_{\varepsilon}$ we have

$$|s(v)-s(v')| \leq L_2(\varepsilon)|v-v'|$$
,

(iii)
$$L_2(\varepsilon) \to 0 \text{ as } \varepsilon \to 0.$$

Proof. (cf. [4]) We can define a map F of a neighborhood of the origin in $X^0(M)$ into $X^0(M)$ such that $\exp(F(v)) = f \circ \exp v \circ f^{-1}$ for each $v \in X^0(M)$ with |v| sufficiently small. It is clear that F(0) = 0. Since f is of class C^1 , F is so and in fact, the differential of F at the origin is f_* . Hence the proof is easy by using the mean value theorem for $s = F - f_*$.

For the convenience we may assume $\varepsilon_5 \leq \varepsilon_4$.

Let $X_b(M)$ be the set of all bounded vector fields on M. A complete norm $\|\cdot\|_b$ on $X_b(M)$ is defined by

$$\|v\|_b = \sup_{x \in M} \|v_x\|$$
 for any $v \in X_b(M)$.

Lemma 3–3 is also true for $(X_b(M), \|\cdot\|_b)$. We make use of the same notations as those in Lemma 3–3 for $(X_b, \|\cdot\|_b)$, f_* , ε_5 , L_2 , s. If f is an Anosov deffeomorphism $1 - f_*$ is a linear automorphism of $X^0(M)$ and also of $X_b(M)$, where 1 is the identity map (cf. [4]).

We will prove the following well known fact.

LEMMA 3-4. If f is an Anosov diffeomorphism then f is expansive i.e. there exists a positive number λ_0 such that $\sup_{n\in \mathbb{Z}} d(f^n(x), f^n(y)) > \lambda_0$ for any $x, y \in M$ with $x \neq y$.

Proof. (cf. [5]) By the above remark there exists a positive number $\lambda_0: 0 < 2\lambda_0 < \lambda_2$ such that for each $v, v' \in (X_b(M), \|\cdot\|_b)_{2\lambda_0}$ we have

$$||s(v) - s(v')||_b \le 1/2 \cdot ||(1 - f_*)^{-1}||_b^{-1} \cdot ||v - v'||_b$$
.

We assert the following.

(C) Let u be a map of M into itself such that $f \circ u = u \circ f$ and $u \neq 1_M$. Then $d_0(u, 1_M) = \sup_{x \in M} d(u(x), x) > 2 \cdot \lambda_0$.

Choose any map $u: M \to M$ with $f \circ u = u \circ f$ and $d_0(u, 1_M) \leq 2 \cdot \lambda_0$. For this u there exists a unique element $v \in X_b(M)$ such that $u = \exp v$ and

$$d_0(u, 1_M) = ||v||_b$$
.

Then we have

$$f \circ \exp v \circ f^{-1} = f \circ u \circ f^{-1} = u = \exp v$$

and hence $f_*(v) + s(v) = v$, or $v = (1 - f_*)^{-1}(s(v))$.

By the choice of λ_0 , $(1-f_*)^{-1} \circ s$ is a lipschitz map of $(X_b(M), \|\cdot\|_b)_{2\lambda_0}$ into itself with the lipschitz constant $L((1-f_*)^{-1} \circ s) \leq 1/2$. Hence by the contraction principle v must be 0 i.e. u must be the identity map of M. Now, take any $x, y \in M$ with $x \neq y$. Put $\operatorname{Per}(f) = \{x \in M \mid x \text{ is a periodic point of } f\}$.

Case 1: the case of $x \in \text{Per}(f)$ or $y \in \text{Per}(f)$. Suppose $x \in \text{Per}(f)$.

We can define a map $u: M \to M$ as following:

For any $z \in M$

$$u(z) = \begin{cases} f^n(y) & \text{if } \exists n \text{ with } z = f^n(x) \\ z & \text{otherwise.} \end{cases}$$

Then it is clear that $f \circ u = u \circ f$ and that $u \neq 1_M$. By (c) we have $d_0(u, 1_M) > 2 \cdot \lambda_0$. Hence there exists an integer n with $d(f^n(x), f^n(y)) > \lambda_0$. The case of $y \in \text{Per}(f)$ is similar.

Case II: the case of $x \in \text{Per}(f)$ and $y \in \text{Per}(f)$. Let r and s be the smallest periods of x and y respectively. Suppose r = s. We can define a map $u: M \to M$ as following:

For any $z \in M$

$$u(z) = \begin{cases} f^n(y) & \text{if } \exists n \text{ with } z = f^n(x) \\ z & \text{otherwise.} \end{cases}$$

It is clear that $f \circ u = u \circ f$ and $u \neq 1_M$. By (c) we have $d_0(u, 1_M) > 2\lambda_0$. By the definition of u we conclude that there exists an integer n with $d(f^n(x), f^n(y)) = d_0(u, 1_M) > 2 \cdot \lambda_0 > \lambda_0$. Suppose r > s. We can define a map $u: M \to M$ as follows:

For any $z \in M$

$$u(z) = \begin{cases} f^{s+n}(x) & \text{if } \exists n \text{ with } z = f^n(x) \\ z & \text{otherwise.} \end{cases}$$

It is clear that $f \circ u = u \circ f$. Since $x \neq f^s(x)$, $u \neq 1_M$. Hence we have $d_0(u, 1_M) > 2 \cdot \lambda_0$. By the definition of u there exists an integer n with

 $d(f^n(x), f^{s+n}(x)) > 2 \cdot \lambda_0$. As $f^n(y) = f^{s+n}(y)$ we have

$$d(f^n(x), f^n(y)) + d(f^{s+n}(y), f^{s+n}(x)) \ge d(f^n(x), f^{s+n}(x)) > 2 \cdot \lambda_0$$

Hence $d(f^n(x), f^n(y)) > \lambda_0$ or $d(f^{n+s}(x), f^{n+s}(y)) > \lambda_0$.

The case of r < s is similar.

For each $g \in L(M)$ with $d_0(g \circ f^{-1}, 1_M) < \lambda_1$ we define $d_\ell(g, f)$ by $d_\ell(g, f) = d_\ell(g \circ f^{-1}, 1_M)$. (Note that C^1 -diffeomorphism on M is a lipeomorphism on M.)

q.e.d.

THEOREM. Assume that f is an Anosov diffeomorphism. Then there exists a positive number ε_0 satisfying the following condition. For any $\varepsilon: 0 < \varepsilon < \varepsilon_0$ there exists a positive number $\delta = \delta(\varepsilon)$ with the property that for each $g \in L(M)$ with $d_{\varepsilon}(g, f) < \delta$ there exists a unique homeomorphism $u: M \to M$ such that $g \circ u = u \circ f$ and $d_0(u, 1_M) < \varepsilon$.

Proof. Put $K = |f^*| + \operatorname{Sup}_{0 < \varepsilon < \varepsilon_5} L_2(\varepsilon)$. K is finite by Lemma 3-3. For each $v \in (X^0(M), |\cdot|)^{\circ}$ we have

$$|f_*(v) + s(v)| \le |f_*||v| + L_2(|v|)|v| \le K|v|$$
.

Choose a positive number ε_6 with $\varepsilon_6 \leq \min \{\varepsilon_5, \varepsilon_4/K\}$. From Lemma 3–2 and 3–3 we have

$$\exp w \circ f \circ \exp v \circ f^{-1} = \exp \{ w + f_*(v) + s(v) + r(w : f_*(v) + s(v)) \}$$

for any $w \in (X_{\ell}(M), |\cdot|_{\ell})_{\delta_{1}}^{\circ}$ and $v \in (X^{0}(M), |\cdot|)_{\epsilon_{6}}^{\circ}$. We may assume that $\|w + f_{*}(v) + s(v) + r(w : f_{*}(v) + s(v))\| < \lambda_{2}$ by making δ_{1} and ϵ_{6} sufficiently small. From the above expression we see that

$$\exp w \circ f \circ \exp v \circ f^{-1} = \exp v$$

holds if and only if

$$w + f_*(v) + s(v) + r(w : f_*(v) + s(v)) = v$$
.

As f is Anosov, $1 - f_*$ is a linear automorphism. Hence the above equality is equivalent to

$$(1-f_*)^{-1}(w+s(v)+r(w:f_*(v)+s(v)))=v$$
.

Put $F(v) = f_*(v) + s(v)$ and $G_w(v) = (1 - f_*)^{-1}(w + s(v) + r(w : f_*(v) + s(v)))$. By (ii) in Lemma 3-2 and by (ii) in Lemma 3-3 we have

$$|r(w: F(v))| \leq L_1(|w|_{\ell}, K|v|)K|v|$$

and $|s(v)| \leq L_2(|v|)|v|$. Hence by (iii) in Lemma 3–2 and by (iii) in Lemma 3–3 we can choose positive numbers $\delta_2 : 0 < \delta_2 \leq \delta_1$ and $\varepsilon_7 : 0 < \varepsilon_7 \leq \varepsilon_6$ with the property that for each $w \in (X_{\ell}(M), |\cdot|_{\ell})_{\delta_2}^{\circ}$ and $v \in (X^{0}(M), |\cdot|_{\epsilon_7})$ we have

$$|(1-f_*)^{-1}(r(w:F(v)))| \le 1/3|v|$$

and

$$|(1 - f_*)^{-1}(s(v))| \le 1/3 |v|$$

On the other hand for each $w \in (X_{\ell}(M), |\cdot|_{\ell})^{\circ}_{\delta_{1}}$ and $v, v' \in (X_{0}(M), |\cdot|)^{\circ}_{\epsilon_{0}}$, putting $\delta = |w|_{\ell}$ and $\varepsilon = \operatorname{Max}\{|v|, |v'|\}$, we have

$$\begin{split} |G_w(v) - G_w(v')| & \leq |(1 - f_*)^{-1}| \left\{ |s(v) - s(v')| + |r(w : F(v)) - r(w : F(v'))| \right\} \\ & \leq |(1 - f_*)^{-1}| \left\{ L_2(\varepsilon)|v - v'| + L_1(\delta, K\varepsilon)(|f_*| \cdot |v - v'| + L_2(\varepsilon)|v - v'|) \right\} \\ & \leq |(1 - f_*)^{-1}| \left\{ L_2(\varepsilon) + KL_1(\delta, K\varepsilon) \right\} |v - v'| \; . \end{split}$$

Hence by (ii) in Lemma 3–2 and by (iii) in Lemma 3–3 we can choose positive numbers $\delta_3 \colon 0 < \delta_3 \leq \delta_1$ and $\varepsilon_8 \colon 0 < \varepsilon_8 \leq \varepsilon_6$ such that for each $w \in (X_{\ell}(M), |\cdot|_{\ell})^{\circ}_{\delta_8}$ and $v, v' \in (X^{0}(M), |\cdot|)^{\circ}_{\delta_8}$ we have

$$|G_w(v) - G_w(v')| \le 1/2 |v - v'|$$
.

For the convenience we may assume that $\delta_3 \leq \delta_2$ and $\varepsilon_8 \leq \varepsilon_7$. Now, take any positive number ε with $0 < \varepsilon < \varepsilon_8$. For this ε we can choose a positive number δ' such that for each $w \in (X_{\varepsilon}(M), |\cdot|_{\varepsilon})^{\circ}_{\delta'}$ we have

$$|(1-f_*)^{-1}(w)| < 1/3\varepsilon$$
.

Hence, putting $\delta = \text{Min}\{\delta', \delta_3\}$, we have the following

- $(i) \quad |G_w(v)| < \varepsilon \text{ for any } w \in (X_{\ell}(M), |\cdot|_{\ell})^{\circ}_{\delta} \text{ and } v \in (X^{0}(M), |\cdot|)_{\epsilon}$
- $$\begin{split} (\,\mathrm{ii}\,) & \ |G_w(v) G_w(v')| \leqq 1/2 \, |v v'| \\ & \ \text{for any } w \in (X_\ell(M), |\cdot|_\ell)_\delta^\circ \ \text{and} \ v, \, v' \in (X^0(M), |\cdot|)_\epsilon \end{split}$$

And so by the contraction principle

(iii) for any $w \in (X_{\ell}(M), |\cdot|_{\ell})_{\delta}$ there exists a unique $v \in X^{0}(M)$ such that $|v| < \varepsilon$ and $G_{w}(v) = v$ i.e.

$$\exp w \circ f \circ \exp v \circ f^{-1} = \exp v$$
.

Note that $\exp v$ is onto since $\exp v$ is homotopic to the identity. Hence

the proof of theorem is complete except for proving the injectivity of $u=\exp v$, remarking several facts that for any $g\in L(M)$ and $u\in C^0(M)$ $g\circ u=u\circ f$ if and only if $(g\circ f^{-1})\circ f\circ u\circ f^{-1}=u$, that if $d_{\mathfrak{g}}(g,f)$ is sufficiently small there exists a unique $w\in X_{\mathfrak{g}}(M)$ with $|w|_{\mathfrak{g}}$ sufficiently small such that $g\circ f^{-1}=\exp w$ (see Prop. 2-2), that if $d_{\mathfrak{g}}(u,1_M)$ is sufficiently small there exists a unique $v\in X^0(M)$ with |v| sufficiently small such that $u=\exp v$ and that $|\cdot|$ and $\|\cdot\|$ are equivalent. To prove the injectivity let g be a lipeomorphism of M and u be in $C^0(M)$ with $d_{\mathfrak{g}}(u,1_M)<\lambda_0/2$ and assume $g\circ u=u\circ f$. Choose $x,y\in M$ with u(x)=u(y). If $x\neq y$ there exists an integer $n_{\mathfrak{g}}$ such that $d(f^{n_{\mathfrak{g}}}(x),f^{n_{\mathfrak{g}}}(y))\geq \lambda_0$ by Lemma 3-4. As $g^{n_{\mathfrak{g}}}\circ u=u\circ f^{n_{\mathfrak{g}}}$ we have $u\circ f^{n_{\mathfrak{g}}}(x)=g^{n_{\mathfrak{g}}}\circ u(x)=g^{n_{\mathfrak{g}}}\circ u(y)=u\circ f^{n_{\mathfrak{g}}}(y)$. On the other hand as $d_{\mathfrak{g}}(u,1_M)<\lambda_0/2$ and $d(f^{n_{\mathfrak{g}}}(x),f^{n_{\mathfrak{g}}}(y))\geq \lambda_0$ we have $u\circ f^{n_{\mathfrak{g}}}(y)$. This is a contradiction. Hence x=y. q.e.d.

REFERENCES

- [1] Anosov, Geodesic flow on a Riemannian manifold with negative curvature, Trudy Math. Just. Stekholv, Moscow, 1967.
- [2] Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960.
- [3] Hirsch and Pugh, Stable manifolds and hyperbolic sets, Proc. of Symposia in Pure Math. (Global Analysis) XIX, AMS (1970), 133-163.
- [4] Moser, On a theorem of Anosov, J. of differential equations 5 (1969), 411-440.
- [5] Nitecki, Differentiable dynamics, Cambridge, M.I.T. Press, 1971.

Department of Mathematics Nagoya University