DECOMPOSITION OF THE *n*-DIMENSIONAL LATTICE-GRAPH INTO HAMILTONIAN LINES

by C. ST.J. A. NASH-WILLIAMS (Received 2nd October 1960)

1. Statement of the Problem

A graph G consists, for the purposes of this paper, of two disjoint sets V(G), E(G), whose elements are called vertices and edges respectively of G, together with a relationship whereby with each edge is associated an unordered pair of distinct vertices (called its end-vertices) which the edge is said to join, and whereby no two vertices are joined by more than one edge. An edge λ and vertex ξ are incident if ξ is an end-vertex of λ . A monomorphism [isomorphism] of a graph G into [onto] a graph H is a one-to-one function ϕ from $V(G) \cup E(G)$ into [onto] $V(H) \cup E(H)$ such that $\phi(V(G)) \subset V(H)$, $\phi(E(G)) \subset E(H)$ and an edge and vertex of G are incident in G if and only if their images under ϕ are incident in H. G and H are isomorphic (in symbols, $G \cong H$) if there exists an isomorphism of G onto H. A subgraph of G is a graph H such that $V(H) \subset V(G)$, $E(H) \subset E(G)$ and an edge and vertex of H are incident in H if and only if they are incident in G; if V(H) = V(G), H is a spanning subgraph. A collection of graphs are edge-disjoint if no two of them have an edge in common. A decomposition of G is a set of edge-disjoint subgraphs of G which between them include all the edges and vertices of G. L^n is a graph whose vertices are the lattice points of *n*-dimensional Euclidean space, two vertices A and B being joined by an edge if and only if AB is of unit length (and therefore necessarily parallel to one of the co-ordinate axes). An *endless Hamiltonian line* of a graph G is a spanning subgraph of G which is isomorphic to L^1 . The object of this paper is to prove that L^n is decomposable into *n* endless Hamiltonian lines, a result previously established (1) for the case where n is a power of 2.

2. Preliminary Lemmas

Definitions. The set whose elements are $a_1, a_2, ..., a_n$ will be denoted by $\{a_1, a_2, ..., a_n\}$. If A, B are sets, $A \ominus B$ will denote the set of those elements of A which do not belong to B. The number of elements of A will be denoted by ord A. The set of all real numbers, the set of all integers, the set of all non-negative integers and the set of all positive integers will be denoted by R, I, J and P respectively. We shall suppose given an infinite sequence $e^1, e^2, ...$ of vectors forming a basis of an infinite-dimensional real vector space U. Let $x \in R$, $u \in U$ and Q, T be subsets of R, U respectively. Then u+T [Qu] will denote

the set of all vectors of the form u + t [qu], where $t \in T [q \in Q]$; and xQ [Q+x], (Q-x) will denote the set of all real numbers of the form xq [q+x, q-x], where $q \in Q$. We shall write $I + \frac{1}{2} = \hat{I}, J + \frac{1}{2} = \hat{J}, \{1, 2, ..., n\} = P_n$. A set of n consecutive elements of \hat{I} (where *n* is a positive integer) will be called a *string* of length n—e.g. $\{2\frac{1}{2}, 3\frac{1}{2}, 4\frac{1}{2}\}$ is a string of length 3. If $z \in U, z_i$ will denote its '*i*th component', i.e. the coefficient of e^i in the unique relation $z = z_1 e^1 + z_2 e^2 + \dots$ Furthermore, z will denote the vector $z - z_i e^i$. V^n will denote the set of all vectors of the form $\lambda_1 e^1 + \lambda_2 e^2 + \ldots + \lambda_n e^n$, where the λ_i are *integers*. It will be convenient to re-define the graph L^n as follows: $V(L^n) = V^n$, and two elements **u**, **v** of V^n are joined by an edge of L^n if and only if $u - v = \pm e^i$ for some *i*, in which case the edge joining them will be denoted by the vector $\frac{1}{2}(u+v)$. This definition is essentially similar to that of §1; but we have arranged for convenience that (i) our "*n*-dimensional space" is contained in our "(n+1)dimensional space", and (ii) each edge of L^n is referred to by what may be thought of as the position vector of its mid-point. I define a one-ended [endless] Hamiltonian function for a graph G to be a one-to-one function $f: \frac{1}{2}J [\frac{1}{2}I] \rightarrow$ $V(G) \cup E(G)$ such that f(J)[f(I)] = V(G) and, for every $n \in J[I]$, $f(n+\frac{1}{2})$ is an edge joining f(n) to f(n+1) in G. (If f is an endless Hamiltonian function for G, the elements of $f(\frac{1}{2}I)$ clearly form an endless Hamiltonian line of G.) If f is a one-ended [endless] Hamiltonian function for G and T is a subset of E(G), $\Delta_f(T)$ will denote the number of elements of T which do not belong to $f(\hat{J})$ $[f(\hat{I})].$

Lemma 1. Let N be a positive integer. For any subset A of $\hat{1}$, let \mathscr{S}_A denote the set of all strings of length $\leq N$ which are disjoint from A. Call a Hamiltonian function f for L^n "admissible" if, for every $u \in V^n$ and $i \in P_n$, there is a finite subset A of $\hat{1}$ such that $\Delta_f (u + Se^i) \leq 3^{n-2}$ for every $S \in \mathscr{S}_A$. Then, if $n \geq 2$, there exist both a one-ended and an endless admissible Hamiltonian function for L^n .

The proof will use a technique taken from (2).

Proof. The result is diagrammatically obvious if n = 2; cf. figs. 1 and 2, which are drawn for the illustrative case n = 2, N = 4. Assume, therefore, that the result is true for $2 \le n \le k-1$, where $k \ge 3$. Then we can select admissible endless Hamiltonian functions g, h for L^{k-1} , L^2 respectively. Let ϕ be the monomorphism of L^2 into L^k defined by

$$\phi(z) = g(z_1) + z_2 e^k \quad (z \in V^2 \cup E(L^2)).$$

Then ϕh is clearly an endless Hamiltonian function for L^k ; we will prove it to be admissible.

Let $u \in V^k$, and let $_k u = v$, $\phi^{-1}(u) = w$. Since h is admissible, there is a finite subset A of \hat{I} such that, for all $S \in \mathcal{S}_A$,

Moreover, if $i \in P_{k-1}$, the admissibility of g and h implies that there are finite

DECOMPOSITION OF *n*-DIMENSIONAL LATTICE-GRAPH 125

subsets B, C of \hat{I} such that $\Delta_g(v+Se^i) \leq 3^{k-3}$, $\Delta_h(w+S'e^1) \leq 1$ for all $S \in \mathscr{S}_B$, $S' \in \mathscr{S}_C$. Let

and let $F = B \cup D$. We will prove that $\Delta_{\phi h}(\boldsymbol{u} + Te^{i}) \leq 3^{k-2}$ for every $T \in \mathscr{S}_{F}$; this result, together with (1), shows that ϕh is admissible.

Suppose, therefore, that $T \in \mathscr{S}_F$. Then $T \in \mathscr{S}_B$ and so $\Delta_g(\mathbf{v}+Te^i) \leq 3^{k-3}$, which clearly implies that $g^{-1}(\mathbf{v}+Te^i)$ is of the form $\tilde{T}_1 \cup \tilde{T}_2 \cup \ldots \cup \tilde{T}_R$, where the \tilde{T}_r are disjoint strings and $0 \leq R \leq 3^{k-3} + 1$. Writing T_r for the string $\tilde{T}_r - w_1$, this gives

whence

126

By (2) and (4), the hypotheses $t \in C$, $t \in T_r$ imply respectively the conclusions

$$\phi(w+te^1) \notin u + (\hat{I} \ominus D)e^i, \quad \phi(w+te^1) \in u + Te^i,$$

which are incompatible since $T \in \mathscr{G}_F$ and therefore $T \subset \hat{I} \ominus D$. Therefore $T_r \cap C = \emptyset$. It is also clear from (3) that ord $T_r \leq$ ord $T \leq N$. Hence $T_r \in \mathscr{G}_C$, and so $\Delta_h(w+T_re^1) \leq 1$. Therefore, by (4),

Moreover,

ord
$$[(\boldsymbol{u}+Te^i) \ominus \phi(\boldsymbol{w}+\hat{l}e^1)] = \Delta_g(\boldsymbol{v}+Te^i) \leq 3^{k-3}$$
.(6)

By (5) and (6),

$$\Delta_{\phi h}(u+Te^{i}) \leq (3^{k-3}+1)+3^{k-3} \leq 3^{k-2}.$$

Hence ϕh is admissible.

A similar argument shows that the composition of ϕ with any one-ended admissible Hamiltonian function for L^2 is a one-ended admissible Hamiltonian function for L^k . So Lemma 1 is now proved by induction on *n*.

Lemma 2. If $n \ge 2$, there exists a one-ended Hamiltonian function f for L^n such that f(0) = 0 and, for every $u \in V^n$, $i \in P_n$, the set $\{x \in \hat{I} \mid u + xe^i \in f(2P - \frac{1}{2})\}$ is unbounded above and below.

Proof. Taking $N = 2.3^{n-2} + 2$, let f' be an admissible one-ended Hamiltonian function for L^n in the sense of Lemma 1. Then, for any $u \in V^n$, $I \in P_n$, there is a finite subset A of \hat{I} such that $\Delta_{f'}(u+Se^i) \leq 3^{n-2}$ for every $S \in \mathscr{S}_A$, which implies that every string of length $2.3^{n-2} + 2$ and disjoint from A includes two consecutive elements θ , $\theta+1$ such that $u+\theta e^i$ and $u+(\theta+1)e^i$ belong to $f'(\hat{J})$. These must clearly be images under f' of successive elements of \hat{J} ; hence one of them belongs to $f'(2P-\frac{1}{2})$. Thus the set $\{x \in \hat{I} \mid u+xe^i \in f'(2P-\frac{1}{2})\}$ is unbounded above and below. Writing $f(\alpha) = f'(\alpha) - f'(0)$ for every $\alpha \in \frac{1}{2}J$, we clearly obtain an f which meets our requirements.

Definitions. Z will denote the set of all ordered pairs (t, y) such that $t \in I$, $y \in \hat{J}$, $t \equiv y + \frac{1}{2} \pmod{2}$ and either t = 0 or |t| > y. An edge u of L^n will be called an *i*-edge if $u_i \in \hat{I}$ (i.e. if u joins vertices v, w such that $v - w = \pm e^i$). K, M will denote the subgraphs of L^2 defined by

$$V(M) = V(K) = \{ u \in V^2 \mid u_2 \ge 0 \}, \quad E(K) = \{ u \in E(L^2) \mid u_2 \ge 0 \},$$
$$E(M) = \{ u \in E(L^2) \mid u_2 \in J \}.$$

(Thus all edges of M are 1-edges.) An *i-couple* of L^n is a pair $\{u, v\}$ of *i*-edges of L^n such that $u - v = \pm e^i$ for some $j \neq i$. A couple of L^n is a pair of edges of L^n which is an *i*-couple for some value of *i*. If $x, y \in \hat{I}$, $\delta(x, y)$ is defined to be the 1-couple of L^2 consisting of the edges $xe^1 + (y \pm \frac{1}{2})e^2$. If *c* is an *i*-couple of L^n consisting of the edges $u \pm \frac{1}{2}e^j$ (where the vector *u* has necessarily just two nonintegral components), the *conjugate* couple *c'* is defined to consist of the edges $u \pm \frac{1}{2}e^i$; geometrically speaking, *c* and *c'* are the two pairs of opposite sides of a unit square. Let *C* be a set of couples of L^n , *S* be the union of these couples (i.e. a subset of $E(L^n)$), *S'* be the union of their conjugates and *H* be a subgraph of L^n such that $S \subset E(H)$. Then H + C will denote the subgraph of L^n defined by

$$V(H*C) = V(H), \quad E(H*C) = (E(H) \ominus S) \cup S'.$$

Lemma 3. Let $x: Z \rightarrow \hat{I}$ be a function such that the inequalities

$$x(-2\alpha+1, 2\alpha-\frac{3}{2}) < x(0, 2\alpha-\frac{1}{2}) < x(2\alpha-1, 2\alpha-\frac{3}{2})$$

hold for every positive integer α and the inequalities

$$x(\beta, \gamma - \frac{1}{2}) < x(\beta + 1, \gamma + \frac{1}{2}) < x(\beta + 2, \gamma - \frac{1}{2}) x(-\beta - 2, \gamma - \frac{1}{2}) < x(-\beta - 1, \gamma + \frac{1}{2}) < x(-\beta, \gamma - \frac{1}{2})$$

hold for every pair of positive integers β , γ such that $\beta - \gamma \in 2J$. Let C be the set of all couples of the form $\delta(x(t, y), y)$, where $(t, y) \in Z$. Then $M * C \cong L^1$.

A detailed formal proof would be tedious; but it is thought that a sufficient indication is given by fig. 3, which is drawn for the illustrative case in which x is defined by $x(t, y) = 3t + \frac{1}{2}$.

3. The Main Result

We shall now prove that L^n is decomposable into n endless Hamiltonian lines. Since this result is trivial for n = 1 and easily established diagrammatically [(1), fig. 1] for n = 2, we shall henceforward assume that $n \ge 3$. Let f be a one-ended Hamiltonian function for L^{n-1} such that f(0) = 0 and, for every $u \in V^{n-1}$, $i \in P_{n-1}$, the set $\{x \in \hat{l} \mid u + xe^i \in f(2P - \frac{1}{2})\}$ is unbounded above and below. (Such an f exists by Lemma 2.) Let ϕ^i be the monomorphism of Kinto L^n defined by

$$\phi^{i}(z) = \sum_{j=1}^{i-1} f_{j}(z_{2})e^{j} + z_{1}e^{i} + \sum_{j=i+1}^{n} f_{j-1}(z_{2})e^{j}$$

for every $z \in V(K) \cup E(K)$, where $f_i(\theta)$ is the *j*th component of $f(\theta)$. We shall write

 $\pi(i, x, y)$ for $\phi^i(\delta(x, y))$, where $x \in \hat{I}$, $y \in \hat{J}$. (Thus $\pi(i, x, y)$ is an *i*-couple of L^n .) For a fixed $i \in P_n$ and $y \in \hat{J}$, $\pi(i, \hat{I}, y)$ will denote the set of all couples of the form $\pi(i, x, y)$, $x \in \hat{I}$. A couple *c* of L^n will be called *admissible* if $c' = \pi(i, x, y)$ for some $i \in P_n$, $x \in \hat{I}$, $y \in \hat{J}$, and good if $c' = \pi(i, x, y)$ for some $i \in P_n$, $x \in \hat{I}$, $y \in \hat{J}$, and good if $c' = \pi(i, x, y)$ for some $i \in P_n$, $x \in \hat{I}$, $y \in \hat{J}$, and good if $c' = \pi(i, x, y)$ for some $i \in P_n$, $x \in \hat{I}$, $y \in 2P - \frac{1}{2}$. If $c = \pi(i, x, y)$, we define Y(c) to be y.

Lemma 4. For every $i \in P_n$, $y \in \hat{J}$, the set of those $x \in \hat{I}$ for which $\pi(i, x, y)$ is good is unbounded above and below.

Proof. Let $i \in P_n$ and $y \in \hat{J}$. Then for any $x \in \hat{I}$, clearly

$$\pi(i, x, y)' = \phi^i(\delta(x, y)'),$$

FIG. 3.

which consists of the edges

$$\phi^{i}((x\pm\frac{1}{2})e^{1}+ye^{2}) = u + (x\pm\frac{1}{2})e^{i},\dots,(7)$$

where $u = \phi^i(ye^2)$. Let u be a *j*-edge; then clearly $j \neq i$. If $\alpha \in \hat{J}$, $\pi(j, u_j, \alpha)$ consists of the edges

$$\phi^{j}(u_{j}e^{1} + (\alpha \pm \frac{1}{2})e^{2}) = \phi^{j}((\alpha \pm \frac{1}{2})e^{2}) + u_{j}e^{j},$$

and so coincides with (7) if the pairs of vectors $\phi^{j}((\alpha \pm \frac{1}{2})e^{2})$, $_{j}u + (x \pm \frac{1}{2})e^{i}$ coincide. These pairs of vectors are the pairs of end-vertices of the edges $\phi^{j}(\alpha e^{2})$, $_{j}u + xe^{i}$ respectively, and so coincide if $_{j}u + xe^{i} = \phi^{j}(\alpha e^{2})$, i.e. if $v + xe^{k} = f(\alpha)$, where

$$v = u_1 e^1 + u_2 e^2 + \ldots + u_{j-1} e^{j-1} + u_{j+1} e^j + u_{j+2} e^{j+1} + \ldots + u_n e^{n-1}$$

and k = i or i-1 according as i < j or i > j respectively. So $\pi(i, x, y)' = \pi(j, u_j, \alpha)$ if $v + xe^k = f(\alpha)$, and hence $\pi(i, x, y)$ is good if $v + xe^k \in f(2P - \frac{1}{2})$. But, by our choice of f, this last property holds for a set of x-values unbounded above and below. Thus the lemma is proved.

Lemma 5. If
$$\pi(i, x, y)' = \pi(j, \overline{x}, \overline{y})$$
, then $|\overline{x}| \leq y$.

Proof. The hypothesis clearly implies that $i \neq j$. Let k = j or j-1 according

as j < i or j > i respectively. Clearly $\pi(i, x, y)' = \phi^i(\delta(x, y)')$, which consists of the edges $\phi^i((x \pm \frac{1}{2})e^1 + ye^2)$; the *j*th component of each of these vectors is, by the definition of ϕ^i , equal to $f_k(y)$. But $\pi(j, \bar{x}, \bar{y})$ consists of the edges $\phi^j(\bar{x}e^1 + (\bar{y} \pm \frac{1}{2})e^2)$, and the *j*th component of each of these vectors is, by the definition of ϕ^j , equal to \bar{x} . Hence $\bar{x} = f_k(y)$. But, since f(0) = 0, it is clear that $|f_k(y)| \le y$; hence $|\bar{x}| \le y$.

Definition. If, for each $m \in P$, S_m denotes the finite sequence a_{m1} , a_{m2} , ..., $a_{m\psi(m)}$, then $S_1 S_2 S_3 \ldots$ will denote the infinite sequence

 $a_{11}, a_{12}, \ldots, a_{1\psi(1)}, a_{21}, a_{22}, \ldots a_{2\psi(2)}, a_{31}, a_{32}, \ldots, a_{3\psi(3)}, \ldots$

For any *positive* integer α , there are only finitely many elements (t, y) of Z for which $|t| = \alpha$; hence these elements of Z can be arranged in a finite sequence s_{α} . Let s denote the sequence

$$\bar{s}_1 s_1 s_2 \bar{s}_2 s_3 s_4 \bar{s}_3 s_5 s_6 \bar{s}_4 s_7 s_8 \dots$$

where \bar{s}_{α} is the sequence whose only term is $(0, 2\alpha - \frac{1}{2})$; thus s is an arrangement of the elements of Z in an infinite sequence. Let (t_m, y_m) be the *m*th term of s. Let σ be the infinite sequence $\sigma_1 \sigma_2 \sigma_3 \dots$, where σ_m denotes the finite sequence

 $(1, t_m, y_m), (2, t_m, y_m), \dots, (n, t_m, y_m).$

Thus σ is a sequence of ordered triples; let (i_r, τ_r, η_r) be its rth term.

Lemma 6. If q < r, $i_q = i_r$ and $\tau_r = 0$, then $\eta_r \ge \eta_q + 2$.

Proof. The above hypotheses imply that (τ_q, η_q) is an earlier term of s than $(0, \eta_r)$, which, by the definitions of Z and s, clearly implies that $\eta_r \ge \eta_q + 2$.

We shall now select in succession admissible couples $c_1, c_2, c_3, ...$ of L^n . For each r, c_r will be $\pi(i_r, \xi_r, \eta_r)$ for some $\xi_r \in \hat{l}$; so the selection of c_r will be determined by that of ξ_r and vice-versa. First, we take c_1 to be a good element of $\pi(i_1, \hat{l}, \eta_1)$; this is possible by Lemma 4. Suppose we have selected the admissible couples $c_1, c_2, ..., c_{r-1}$ (and the associated numbers $\xi_1, \xi_2, ..., \xi_{r-1}$), where $r \ge 2$. Let

$$A_{r} = \max_{q=1}^{r-1} \max(|\xi_{q}|, \eta_{q}, Y(c_{q}')).$$

 $(Y(c_q')$ is defined since c_q is admissible.) We now choose ξ_r (or c_r) in accordance with the following instructions; the possibility of the choice in Cases (i)-(iii) follows from Lemma 4.

- (i) If $\tau_r > 0$, choose ξ_r so that $c_r = \pi(i_r, \xi_r, \eta_r)$ is good and $\xi_r > A_r$.
- (ii) If $\tau_r < 0$, choose ξ_r so that c_r is good and $\xi_r < -A_r$.
- (iii) If $\tau_r = 0$ and none of $c'_1, c'_2, ..., c'_{r-1}$ belongs to $\pi(i_r, \hat{I}, \eta_r)$, choose ξ_r so that c_r is good and $|\xi_r| > A_r$.
- (iv) If $\tau_r = 0$ and at least one c'_q (q < r) belongs to $\pi(i_r, \hat{I}, \eta_r)$, let c_r be one such c'_q .

Then c_r is certainly admissible since it is good in Cases (i)-(iii) and conjugate to some $\pi(i_a, \xi_a, \eta_a)$ in Case (iv).

E.M.S.—K

We now prove that, if q < r, c_q and c_r are disjoint (i.e. have no edge in common). Since this is obvious if $i_q \neq i_r$ from the fact that c_q is an i_q -couple and c_r an i_r -couple, we shall assume that $i_q = i_r$. Then $c_q = \pi(i_r, \xi_q, \eta_q)$ and $c_r = \pi(i_r, \xi_r, \eta_r)$ are disjoint if $\delta(\xi_q, \eta_q)$, $\delta(\xi_r, \eta_r)$ are disjoint, which is the case if either $\xi_q \neq \xi_r$ or $\eta_r \ge \eta_q + 2$. But, in Cases (i)-(iii), $|\xi_r| > A_r \ge |\xi_q|$ while, in Case (iv), $\eta_r \ge \eta_q + 2$ by Lemma 6.

We next prove that, in Case (iv), there can in fact have been only one possible choice for c_r . For suppose, if possible, that $\tau_r = 0$, p < q < r and c'_p , c'_q both belong to $\pi(i_r, \hat{l}, \eta_r)$. By Lemma 6, there is no $\rho < r$ such that $i_\rho = i_r$ and $\eta_\rho = \eta_r$; hence $c_\rho \notin \pi(i_r, \hat{l}, \eta_r)$ for any $\rho < r$. Therefore there is no $\rho < r$ (and hence *a* fortiori no $\rho < q$) such that $c_\rho = c'_q$; so c_q cannot have been chosen according to the rule for Case (iv). We therefore have, by Lemma 5,

$$Y(c_q') \ge \left| \xi_q \right| > A_q \ge Y(c_p'),$$

contrary to the hypothesis that $Y(c'_p) = Y(c'_q) = \eta_r$; this contradiction proves that the choice of c_r must have been uniquely determined.

We now show that, for each $r \in P$, c'_r is a term of the sequence (c_m) . If c_r was chosen by Rule (iv), this is immediate. In all other cases, c_r is good and so $c'_r \in \pi(j, \hat{l}, y)$ for some $j \in P_n$, $y \in 2P - \frac{1}{2}$. By the definition of σ , there is a unique p such that $(i_p, \tau_p, \eta_p) = (j, 0, y)$. Since the conjugate of an *i*_r-couple cannot be an *i*_r-couple, $i_r \neq j = i_p$ and hence $p \neq r$. Moreover, p < r would imply that

$$y = \eta_p \leq A_r < |\xi_r| \leq Y(c_r')$$

by Lemma 5, contrary to the assumption that $Y(c'_r) = y$. Therefore p > r. Since $\tau_p = 0$, p > r and $c'_r \in \pi(ij, \hat{l}, y) = \pi(i_p, \hat{l}, \eta_p)$, c_p must be chosen by Rule (iv), and, since we have just shown that Rule (iv) in fact gives only one choice, it follows that $c_p = c'_r$; hence c'_r is a term of our sequence (c_m) .

If $(t, y) \in Z$, $i \in P_n$, there is a unique r such that $(i, t, y) = (i_r, \tau_r, \eta_r)$; define $x_i(t, y)$ to be ξ_r for this value of r.

Lemma 7. If (t, y), $(\overline{i}, \overline{y}) \in Z$ and $(\overline{i}, \overline{y})$ is a later term of s than (t, y), then (a) $x_i(\overline{i}, \overline{y}) > x_i(t, y)$ if $\overline{i} > 0$, (b) $x_i(\overline{i}, \overline{y}) < x_i(t, y)$ if $\overline{i} < 0$.

Proof. The hypotheses imply that $(i, t, y) = (i_q, \tau_q, \eta_q)$, $(i, \bar{i}, \bar{y}) = (i_r, \tau_r, \eta_r)$ for some q, r such that q < r. Moreover, if $\bar{i} > 0$, i.e. $\tau_r > 0$, then ξ_r is chosen in accordance with Rule (i) and so $\xi_r > A_r \ge \xi_q$, which, since $\xi_r = x_i(\bar{i}, \bar{y})$, $\xi_q = x_i(t, y)$, establishes (a). Similarly, if $\bar{i} = \tau_r < 0$, ξ_r is chosen in accordance with Rule (ii) and so $\xi_r < -A_r \le \xi_q$, which establishes (b).

Let H_i be the spanning subgraph of L^n whose edges are precisely the *i*-edges of L^n . Let S_i be the set of all *i*-couples in the sequence (c_m) . Since we have seen that the terms of this sequence are disjoint and that the conjugate of each term of the sequence is also a term of the sequence, it follows that the subgraphs $H_i * S_i$ constitute a decomposition of L^n . Since, moreover, these are

DECOMPOSITION OF n-DIMENSIONAL LATTICE-GRAPH 131

spanning subgraphs of L^n , it suffices to prove that they are all isomorphic to L^1 . But H_i , S_i are the images under ϕ^i of M, C_i respectively, where C_i is the set of all couples of the form $\delta(x_i(t, y), y)$, $(t, y) \in \mathbb{Z}$. Therefore $H_i * S_i$ is the image of $M * C_i$, and so it suffices to prove that $M * C_i \cong L^1$. To do this, it suffices, by Lemma 3, to show that the hypotheses of that lemma are satisfied by the function $x_i: \mathbb{Z} \to \hat{I}$. But this follows at once from Lemma 7.

REFERENCES

(1) G. RINGEL, Über drei kombinatorische Probleme am *n*-dimensionalen Würfel und Würfelgitter. Abh. Math. Sem. Univ. Hamburg 20 (1955), 10-19.

(2) E. VÁZSONYI, Über Gitterpunkte des mehrdimensionalen Raumes. Acta Litt. Sci. Szeged, Sect. Sci. Math. 9 (1939), 163-173.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ABERDEEN