DECOMPOSITION OF THE n-DIMENSIONAL LATTICE-GRAPH INTO HAMILTONIAN LINES

by C. ST.J. A. NASH-WILLIAMS
(Received 2nd October 1960)

1. Statement of the Problem

A graph G consists, for the purposes of this paper, of two disjoint sets $V(G)$, $E(G)$, whose elements are called vertices and edges respectively of G, together with a relationship whereby with each edge is associated an unordered pair of distinct vertices (called its end-vertices) which the edge is said to join, and whereby no two vertices are joined by more than one edge. An edge λ and vertex ξ are incident if ξ is an end-vertex of λ. A monomorphism [isomorphism] of a graph G into [onto] a graph H is a one-to-one function ϕ from $V(G) \cup E(G)$ into [onto] $V(H) \cup E(H)$ such that $\phi(V(G)) \subset V(H), \phi(E(G)) \subset E(H)$ and an edge and vertex of G are incident in G if and only if their images under ϕ are incident in $H . \quad G$ and H are isomorphic (in symbols, $G \cong H$) if there exists an isomorphism of G onto H. A subgraph of G is a graph H such that $V(H) \subset V(G)$, $E(H) \subset E(G)$ and an edge and vertex of H are incident in H if and only if they are incident in G; if $V(H)=V(G), H$ is a spanning subgraph. A collection of graphs are edge-disjoint if no two of them have an edge in common. A decomposition of G is a set of edge-disjoint subgraphs of G which between them include all the edges and vertices of $G . \quad L^{n}$ is a graph whose vertices are the lattice points of n-dimensional Euclidean space, two vertices A and B being joined by an edge if and only if $A B$ is of unit length (and therefore necessarily parallel to one of the co-ordinate axes). An endless Hamiltonian line of a graph G is a spanning subgraph of G which is isomorphic to L^{1}. The object of this paper is to prove that L^{n} is decomposable into n endless Hamiltonian lines, a result previously established (1) for the case where n is a power of 2 .

2. Preliminary Lemmas

Definitions. The set whose elements are $a_{1}, a_{2}, \ldots, a_{n}$ will be denoted by $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. If A, B are sets, $A \ominus B$ will denote the set of those elements of A which do not belong to B. The number of elements of A will be denoted by ord A. The set of all real numbers, the set of all integers, the set of all nonnegative integers and the set of all positive integers will be denoted by R, I, J and P respectively. We shall suppose given an infinite sequence $e^{\boldsymbol{1}}, \boldsymbol{e}^{\mathbf{2}}, \ldots$ of vectors forming a basis of an infinite-dimensional real vector space U. Let $x \in R$, $\boldsymbol{u} \in U$ and Q, T be subsets of R, U respectively. Then $u+T$ [$Q u$] will denote
the set of all vectors of the form $u+t[q u]$, where $t \in T[q \in Q]$; and $x Q[Q+x$, $Q-x]$ will denote the set of all real numbers of the form $x q[q+x, q-x]$, where $q \in Q$. We shall write $I+\frac{1}{2}=\hat{I}, J+\frac{1}{2}=\hat{J},\{1,2, \ldots, n\}=P_{n}$. A set of n consecutive elements of \hat{I} (where n is a positive integer) will be called a string of length n-e.g. $\left\{2 \frac{1}{2}, 3 \frac{1}{2}, 4 \frac{1}{2}\right\}$ is a string of length 3. If $z \in U, z_{i}$ will denote its ' i th component', i.e. the coefficient of e^{i} in the unique relation $z=z_{1} e^{1}+z_{2} e^{2}+\ldots$ Furthermore, ${ }_{i} z$ will denote the vector $z-z_{i} e^{i}$. V^{n} will denote the set of all vectors of the form $\lambda_{1} e^{1}+\lambda_{2} e^{2}+\ldots+\lambda_{n} e^{n}$, where the λ_{i} are integers. It will be convenient to re-define the graph L^{n} as follows: $V\left(L^{n}\right)=V^{n}$, and two elements u, v of V^{n} are joined by an edge of L^{n} if and only if $u-v= \pm e^{i}$ for some i, in which case the edge joining them will be denoted by the vector $\frac{1}{2}(u+v)$. This definition is essentially similar to that of $\S 1$; but we have arranged for convenience that (i) our " n-dimensional space" is contained in our " $(n+1)$ dimensional space", and (ii) each edge of L^{n} is referred to by what may be thought of as the position vector of its mid-point. I define a one-ended [endless] Hamiltonian function for a graph G to be a one-to-one function $f: \frac{1}{2} J\left[\frac{1}{2} \Pi\right] \rightarrow$ $V(G) \cup E(G)$ such that $f(J)[f(I)]=V(G)$ and, for every $n \in J[I], f\left(n+\frac{1}{2}\right)$ is an edge joining $f(n)$ to $f(n+1)$ in G. (If f is an endless Hamiltonian function for G, the elements of $f\left(\frac{1}{2} I\right)$ clearly form an endless Hamiltonian line of G.) If f is a one-ended [endless] Hamiltonian function for G and T is a subset of $E(G)$, $\Delta_{f}(T)$ will denote the number of elements of T which do not belong to $f(\hat{J})$ $[f(\hat{I})$].

Lemma 1. Let N be a positive integer. For any subset A of \hat{I}, let \mathscr{S}_{A} denote the set of all strings of length $\leqq N$ which are disjoint from A. Call a Hamiltonian function f for L^{n} " admissible" if, for every $u \in V^{n}$ and $i \in P_{n}$, there is a finite subset A of \hat{I} such that $\Delta_{f}\left(u+S e^{i}\right) \leqq 3^{n-2}$ for every $S \in \mathscr{S}_{A}$. Then, if $n \geqq 2$, there exist both a one-ended and an endless admissible Hamiltonian function for L^{n}.

The proof will use a technique taken from (2).
Proof. The result is diagrammatically obvious if $n=2$; cf. figs. 1 and 2, which are drawn for the illustrative case $n=2, N=4$. Assume, therefore, that the result is true for $2 \leqq n \leqq k-1$, where $k \geqq 3$. Then we can select admissible endless Hamiltonian functions g, h for L^{k-1}, L^{2} respectively. Let ϕ be the monomorphism of L^{2} into L^{k} defined by

$$
\phi(z)=g\left(z_{1}\right)+z_{2} e^{k} \quad\left(z \in V^{2} \cup E\left(L^{2}\right)\right)
$$

Then ϕh is clearly an endless Hamiltonian function for L^{k}; we will prove it to be admissible.

Let $\boldsymbol{u} \in V^{\boldsymbol{k}}$, and let ${ }_{k} \boldsymbol{u}=\boldsymbol{v}, \phi^{-1}(\boldsymbol{u})=\boldsymbol{w}$. Since h is admissible, there is a finite subset A of \hat{I} such that, for all $S \in \mathscr{S}_{A}$,

$$
\begin{equation*}
\Delta_{\phi h}\left(u+S e^{k}\right)=\Delta_{h}\left(w+S e^{2}\right) \leqq 1<3^{k-2} \tag{1}
\end{equation*}
$$

Moreover, if $i \in P_{k-1}$, the admissibility of g and h implies that there are finite

Fig. 1.

Fic. 2.
subsets B, C of \hat{I} such that $\Delta_{\theta}\left(v+S e^{i}\right) \leqq 3^{k-3}, \Delta_{h}\left(w+S^{\prime} e^{1}\right) \leqq 1$ for all $S \in \mathscr{S}_{B}$, $S^{\prime} \in \mathscr{S}_{c}$. Let

$$
\begin{equation*}
\phi\left(w+C e^{1}\right) \cap\left(u+\hat{l} e^{i}\right)=u+D e^{i} \tag{2}
\end{equation*}
$$

and let $F=B \cup D$. We will prove that $\Delta_{\phi h}\left(u+T e^{i}\right) \leqq 3^{k-2}$ for every $T \in \mathscr{S}_{F}$; this result, together with (1), shows that ϕh is admissible.

Suppose, therefore, that $T \in \mathscr{S}_{F}$. Then $T \in \mathscr{S}_{B}$ and so $\Delta_{g}\left(v+T e^{i}\right) \leqq 3^{k-3}$, which clearly implies that $g^{-1}\left(v+T e^{i}\right)$ is of the form $\tilde{T}_{1} \cup \tilde{T}_{2} \cup \ldots \cup \tilde{T}_{R}$, where the \tilde{T}_{r} are disjoint strings and $0 \leqq R \leqq 3^{k-3}+1$. Writing T_{r} for the string $\tilde{T}_{r}-w_{1}$, this gives

$$
\begin{equation*}
g^{-1}\left(v+T e^{i}\right)=\cup_{r=1}^{R}\left(T_{r}+w_{1}\right), \tag{3}
\end{equation*}
$$

whence

$$
\begin{equation*}
\phi^{-1}\left(u+T e^{i}\right)=\bigcup_{r=1}^{R}\left(w+T_{r} e^{1}\right) \tag{4}
\end{equation*}
$$

By (2) and (4), the hypotheses $t \in C, t \in T_{r}$ imply respectively the conclusions

$$
\phi\left(w+t e^{1}\right) \notin u+(\hat{l} \ominus D) e^{i}, \quad \phi\left(w+t e^{1}\right) \in u+T e^{i}
$$

which are incompatible since $T \in \mathscr{S}_{F}$ and therefore $T \subset \hat{I} \ominus D$. Therefore $T_{r} \cap C=\varnothing$. It is also clear from (3) that ord $T_{r} \leqq$ ord $T \leqq N$. Hence $T_{r} \in \mathscr{S}_{C}$, and so $\Delta_{h}\left(w+T_{r} e^{1}\right) \leqq 1$. Therefore, by (4),

$$
\begin{equation*}
\Delta_{\phi h}\left(\left(u+T e^{i}\right) \cap \phi\left(w+\hat{l} e^{1}\right)\right)=\Delta_{h}\left(\phi^{-1}\left(u+T e^{i}\right)\right) \leqq R \leqq 3^{k-3}+1 . \tag{5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\operatorname{ord}\left[\left(u+T e^{i}\right) \ominus \phi\left(w+\hat{l} e^{1}\right)\right]=\Delta_{g}\left(v+T e^{i}\right) \leqq 3^{k-3} \tag{6}
\end{equation*}
$$

By (5) and (6),

$$
\Delta_{\phi h}\left(u+T e^{i}\right) \leqq\left(3^{k-3}+1\right)+3^{k-3} \leqq 3^{k-2} .
$$

Hence ϕh is admissible.
A similar argument shows that the composition of ϕ with any one-ended admissible Hamiltonian function for L^{2} is a one-ended admissible Hamiltonian function for L^{k}. So Lemma 1 is now proved by induction on n.

Lemma 2. If $n \geqq 2$, there exists a one-ended Hamiltonian function ffor L^{n} such that $f(0)=0$ and, for every $u \in V^{n}, i \in P_{n}$, the set $\left\{x \in \hat{I} \left\lvert\, u+x e^{i} \in f\left(2 P-\frac{1}{2}\right)\right.\right\}$ is unbounded above and below.

Proof. Taking $N=2.3^{n-2}+2$, let f^{\prime} be an admissible one-ended Hamiltonian function for L^{n} in the sense of Lemma 1. Then, for any $u \in V^{n}, I \in P_{n}$, there is a finite subset A of \hat{I} such that $\Delta_{f}\left(u+S e^{i}\right) \leqq 3^{n-2}$ for every $S \in \mathscr{S}_{A}$, which implies that every string of length $2.3^{n-2}+2$ and disjoint from A includes two consecutive elements $\theta, \theta+1$ such that $u+\theta e^{i}$ and $u+(\theta+1) e^{i}$ belong to $f^{\prime}(\hat{J})$. These must clearly be images under f^{\prime} of successive elements of \hat{J}; hence one of them belongs to $f^{\prime}\left(2 P-\frac{1}{2}\right)$. Thus the set $\left\{x \in \hat{I} \left\lvert\, u+x e^{i} \in f^{\prime}\left(2 P-\frac{1}{2}\right)\right.\right\}$ is unbounded above and below. Writing $f(\alpha)=f^{\prime}(\alpha)-f^{\prime}(0)$ for every $\alpha \in \frac{1}{2} J$, we clearly obtain an f which meets our requirements.

Definitions. Z will denote the set of all ordered pairs (t, y) such that $t \in I$, $y \in \hat{J}, t \equiv y+\frac{1}{2}(\bmod 2)$ and either $t=0$ or $|t|>y$. An edge u of L^{n} will be called an i-edge if $u_{i} \in \hat{I}$ (i.e. if u joins vertices v, w such that $v-w= \pm e^{i}$). K, M will denote the subgraphs of L^{2} defined by

$$
\begin{aligned}
V(M)=V(K)= & \left\{u \in V^{2} \mid u_{2} \geqq 0\right\}, \quad E(K)=\left\{u \in E\left(L^{2}\right) \mid u_{2} \geqq 0\right\}, \\
& E(M)=\left\{u \in E\left(L^{2}\right) \mid u_{2} \in J\right\} .
\end{aligned}
$$

(Thus all edges of M are 1-edges.) An i-couple of L^{n} is a pair $\{\boldsymbol{u}, \boldsymbol{v}\}$ of i-edges of L^{n} such that $u-v= \pm e^{i}$ for some $j \neq i$. A couple of L^{n} is a pair of edges of L^{n} which is an i-couple for some value of i. If $x, y \in \hat{I}, \delta(x, y)$ is defined to be the 1 -couple of L^{2} consisting of the edges $x e^{1}+\left(y \pm \frac{1}{2}\right) e^{2}$. If c is an i-couple of L^{n} consisting of the edges $u \pm \frac{1}{2} e^{j}$ (where the vector u has necessarily just two nonintegral components), the conjugate couple c^{\prime} is defined to consist of the edges $u \pm \frac{1}{2} e^{i}$; geometrically speaking, c and c^{\prime} are the two pairs of opposite sides of a unit square. Let C be a set of couples of L^{n}, S be the union of these couples (i.e. a subset of $E\left(L^{n}\right)$), S^{\prime} be the union of their conjugates and H be a subgraph of L^{n} such that $S \subset E(H)$. Then $H * C$ will denote the subgraph of L^{n} defined by

$$
V(H * C)=V(H), \quad E(H * C)=(E(H) \ominus S) \cup S^{\prime}
$$

Lemma 3. Let $x: Z \rightarrow \hat{I}$ be a function such that the inequalities

$$
x\left(-2 \alpha+1,2 \alpha-\frac{3}{2}\right)<x\left(0,2 \alpha-\frac{1}{2}\right)<x\left(2 \alpha-1,2 \alpha-\frac{3}{2}\right)
$$

hold for every positive integer α and the inequalities

$$
\begin{aligned}
& x\left(\beta, \gamma-\frac{1}{2}\right)<x\left(\beta+1, \gamma+\frac{1}{2}\right)<x\left(\beta+2, \gamma-\frac{1}{2}\right) \\
& x\left(-\beta-2, \gamma-\frac{1}{2}\right)<x\left(-\beta-1, \gamma+\frac{1}{2}\right)<x\left(-\beta, \gamma-\frac{1}{2}\right)
\end{aligned}
$$

hold for every pair of positive integers β, γ such that $\beta-\gamma \in 2 J$. Let C be the set of all couples of the form $\delta(x(t, y), y)$, where $(t, y) \in Z$. Then $M * C \cong L^{1}$.

A detailed formal proof would be tedious; but it is thought that a sufficient indication is given by fig. 3 , which is drawn for the illustrative case in which x is defined by $x(t, y)=3 t+\frac{1}{2}$.

3. The Main Result

We shall now prove that L^{n} is decomposable into n endless Hamiltonian lines. Since this result is trivial for $n=1$ and easily established diagrammatically [(1), fig. 1] for $n=2$, we shall henceforward assume that $n \geqq 3$. Let f be a one-ended Hamiltonian function for L^{n-1} such that $f(0)=0$ and, for every $u \in V^{n-1}, i \in P_{n-1}$, the set $\left\{x \in \hat{I} \left\lvert\, u+x e^{i} \in f\left(2 P-\frac{1}{2}\right)\right.\right\}$ is unbounded above and below. (Such an f exists by Lemma 2.) Let ϕ^{i} be the monomorphism of K into L^{n} defined by

$$
\phi^{i}(z)=\sum_{j=1}^{i-1} f_{j}\left(z_{2}\right) e^{j}+z_{1} e^{i}+\sum_{j=i+1}^{n} f_{j-1}\left(z_{2}\right) e^{j}
$$

for every $z \in V(K) \cup E(K)$, where $f_{j}(\theta)$ is the j th component of $f(\theta)$. We shall write
$\pi(i, x, y)$ for $\phi^{i}(\delta(x, y))$, where $x \in \hat{I}, y \in \hat{J}$. (Thus $\pi(i, x, y)$ is an i-couple of L^{n}.) For a fixed $i \in P_{n}$ and $y \in \hat{J}, \pi(i, \hat{I}, y)$ will denote the set of all couples of the form $\pi(i, x, y), x \in \hat{I}$. A couple c of L^{n} will be called admissible if $c^{\prime}=\pi(i, x, y)$ for some $i \in P_{n}, x \in \hat{I}, y \in \hat{J}$, and good if $c^{\prime}=\pi(i, x, y)$ for some $i \in P_{n}, x \in \hat{l}$, $y \in 2 P-\frac{1}{2}$. If $c=\pi(i, x, y)$, we define $Y(c)$ to be y.

Lemma 4. For every $i \in P_{n}, y \in \hat{J}$, the set of those $x \in \hat{I}$ for which $\pi(i, x, y)$ is good is unbounded above and below.

Proof. Let $i \in P_{n}$ and $y \in \mathcal{J}$. Then for any $x \in \hat{I}$, clearly

$$
\pi(i, x, y)^{\prime}=\phi^{i}\left(\delta(x, y)^{\prime}\right)
$$

0
Fig. 3.
which consists of the edges

$$
\begin{equation*}
\phi^{i}\left(\left(x \pm \frac{1}{2}\right) e^{1}+y e^{2}\right)=u+\left(x \pm \frac{1}{2}\right) e^{i}, \tag{7}
\end{equation*}
$$

where $u=\phi^{i}\left(y e^{2}\right)$. Let u be a j-edge; then clearly $j \neq i$. If $\alpha \in \hat{J}, \pi\left(j, u_{j}, \alpha\right)$ consists of the edges

$$
\phi^{j}\left(u_{j} e^{1}+\left(\alpha \pm \frac{1}{2}\right) e^{2}\right)=\phi^{j}\left(\left(\alpha \pm \frac{1}{2}\right) e^{2}\right)+u_{j} e^{j},
$$

and so coincides with (7) if the pairs of vectors $\phi^{j}\left(\left(\alpha \pm \frac{1}{2}\right) e^{2}\right), j^{u}+\left(x \pm \frac{1}{2}\right) e^{i}$ coincide. These pairs of vectors are the pairs of end-vertices of the edges $\phi^{j}\left(\alpha e^{2}\right),{ }_{j} u+x e^{i}$ respectively, and so coincide if ${ }_{j} u+x e^{i}=\phi^{j}\left(\alpha e^{2}\right)$, i.e. if $v+x e^{k}$ $=f(\alpha)$, where

$$
v=u_{1} e^{1}+u_{2} e^{2}+\ldots+u_{j-1} e^{j-1}+u_{j+1} e^{j}+u_{j+2} e^{j+1}+\ldots+u_{n} e^{n-1}
$$

and $k=i$ or $i-1$ according as $i<j$ or $i>j$ respectively. So $\pi(i, x, y)^{\prime}=\pi\left(j, u_{j}, \alpha\right)$ if $v+x e^{k}=f(\alpha)$, and hence $\pi(i, x, y)$ is good if $v+x e^{k} \in f\left(2 P-\frac{1}{2}\right)$. But, by our choice of f, this last property holds for a set of x-values unbounded above and below. Thus the lemma is proved.

Lemma 5. If $\pi(i, x, y)^{\prime}=\pi(j, \bar{x}, \bar{y})$, then $|\bar{x}| \leqq y$.
Proof. The hypothesis clearly implies that $i \neq j$. Let $k=j$ or $j-1$ according
as $j<i$ or $j>i$ respectively. Clearly $\pi(i, x, y)^{\prime}=\phi^{i}\left(\delta(x, y)^{\prime}\right)$, which consists of the edges $\phi^{i}\left(\left(x \pm \frac{1}{2}\right) e^{1}+y e^{2}\right)$; the j th component of each of these vectors is, by the definition of ϕ^{i}, equal to $f_{k}(y)$. But $\pi(j, \bar{x}, \bar{y})$ consists of the edges $\phi^{j}\left(\bar{x} e^{1}+\left(\bar{y} \pm \frac{1}{2}\right) e^{2}\right)$, and the j th component of each of these vectors is, by the definition of ϕ^{j}, equal to \bar{x}. Hence $\bar{x}=f_{k}(y)$. But, since $f(0)=0$, it is clear that $\left|f_{k}(y)\right| \leqq y$; hence $|\bar{x}| \leqq y$.

Definition. If, for each $m \in P, S_{m}$ denotes the finite sequence $a_{m 1}, a_{m 2}, \ldots$, $a_{m \psi(m)}$, then $S_{1} S_{2} S_{3} \ldots$ will denote the infinite sequence

$$
a_{11}, a_{12}, \ldots, a_{1 \psi(1)}, a_{21}, a_{22}, \ldots a_{2 \psi(2)}, a_{31}, a_{32}, \ldots, a_{3 \psi(3)}, \ldots
$$

For any positive integer α, there are only finitely many elements (t, y) of Z for which $|t|=\alpha$; hence these elements of Z can be arranged in a finite sequence s_{α}. Let s denote the sequence

$$
\bar{s}_{1} s_{1} s_{2} \bar{s}_{2} s_{3} s_{4} \bar{s}_{3} s_{5} s_{6} \bar{s}_{4} s_{7} s_{8} \ldots,
$$

where \bar{s}_{α} is the sequence whose only term is $\left(0,2 \alpha-\frac{1}{2}\right)$; thus s is an arrangement of the elements of Z in an infinite sequence. Let $\left(t_{m}, y_{m}\right)$ be the m th term of s. Let σ be the infinite sequence $\sigma_{1} \sigma_{2} \sigma_{3} \ldots$, where σ_{m} denotes the finite sequence

$$
\left(1, t_{m}, y_{m}\right),\left(2, t_{m}, y_{m}\right), \ldots,\left(n, t_{m}, y_{m}\right)
$$

Thus σ is a sequence of ordered triples; let $\left(i_{r}, \tau_{r}, \eta_{r}\right)$ be its r th term.
Lemma 6. If $q<r, i_{q}=i_{r}$ and $\tau_{r}=0$, then $\eta_{r} \geqq \eta_{q}+2$.
Proof. The above hypotheses imply that $\left(\tau_{q}, \eta_{q}\right)$ is an earlier term of s than ($0, \eta_{r}$), which, by the definitions of Z and s, clearly implies that $\eta_{r} \geqq \eta_{q}+2$.

We shall now select in succession admissible couples $c_{1}, c_{2}, c_{3}, \ldots$ of L^{n}. For each r, c_{r} will be $\pi\left(i_{r}, \xi_{r}, \eta_{r}\right)$ for some $\xi_{r} \in \hat{I}$; so the selection of c_{r} will be determined by that of ξ_{r} and vice-versa. First, we take c_{1} to be a good element of $\pi\left(i_{1}, \hat{I}, \eta_{1}\right)$; this is possible by Lemma 4. Suppose we have selected the admissible couples $c_{1}, c_{2}, \ldots, c_{r-1}$ (and the associated numbers $\xi_{1}, \xi_{2}, \ldots, \xi_{r-1}$), where $r \geqq 2$. Let

$$
A_{r}=\max _{q=1}^{r-1} \max \left(\left|\xi_{q}\right|, \eta_{q}, Y\left(c_{q}^{\prime}\right)\right)
$$

($Y\left(c_{q}{ }^{\prime}\right)$ is defined since c_{q} is admissible.) We now choose ξ_{r} (or c_{r}) in accordance with the following instructions; the possibility of the choice in Cases (i)-(iii) follows from Lemma 4.
(i) If $\tau_{r}>0$, choose ξ_{r} so that $c_{r}=\pi\left(i_{r}, \xi_{r}, \eta_{r}\right)$ is good and $\xi_{r}>A_{r}$.
(ii) If $\tau_{r}<0$, choose ξ_{r} so that c_{r} is good and $\xi_{r}<-A_{r}$.
(iii) If $\tau_{r}=0$ and none of $c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{r-1}^{\prime}$ belongs to $\pi\left(i_{r}, \hat{l}, \eta_{r}\right)$, choose ξ_{r} so that c_{r} is good and $\left|\xi_{r}\right|>A_{r}$.
(iv) If $\tau_{r}=0$ and at least one $c_{q}^{\prime}(q<r)$ belongs to $\pi\left(i_{r}, \hat{l}, \eta_{r}\right)$, let c_{r} be one such c_{q}^{\prime}.
Then c_{r} is certainly admissible since it is good in Cases (i)-(iii) and conjugate to some $\pi\left(i_{q}, \xi_{q}, \eta_{q}\right)$ in Case (iv).

We now prove that, if $q<r, c_{q}$ and c_{r} are disjoint (i.e. have no edge in common). Since this is obvious if $i_{q} \neq i_{r}$ from the fact that c_{q} is an i_{q}-couple and c_{r} an i_{r}-couple, we shall assume that $i_{q}=i_{r}$. Then $c_{q}=\pi\left(i_{r}, \xi_{q}, \eta_{q}\right)$ and $c_{r}=\pi\left(i_{r}, \xi_{r}, \eta_{r}\right)$ are disjoint if $\delta\left(\xi_{q}, \eta_{q}\right), \delta\left(\xi_{r}, \eta_{r}\right)$ are disjoint, which is the case if either $\xi_{q} \neq \xi_{r}$ or $\eta_{r} \geqq \eta_{q}+2$. But, in Cases (i)-(iii), $\left|\xi_{r}\right|>A_{r} \geqq\left|\xi_{q}\right|$ while, in Case (iv), $\eta_{r} \geqq \eta_{q}+2$ by Lemma 6.

We next prove that, in Case (iv), there can in fact have been only one possible choice for c_{r}. For suppose, if possible, that $\tau_{r}=0, p<q<r$ and $c_{p}^{\prime}, c_{q}^{\prime}$ both belong to $\pi\left(i_{r}, \hat{l}, \eta_{r}\right)$. By Lemma 6, there is no $\rho<r$ such that $i_{\rho}=i_{r}$ and $\eta_{\rho}=\eta_{r}$; hence $c_{\rho} \notin \pi\left(i_{r}, \hat{I}, \eta_{r}\right)$ for any $\rho<r$. Therefore there is no $\rho<r$ (and hence a fortiori no $\rho<q$) such that $c_{\rho}=c_{q}^{\prime}$; so c_{q} cannot have been chosen according to the rule for Case (iv). We therefore have, by Lemma 5,

$$
Y\left(c_{q}^{\prime}\right) \geqq\left|\xi_{q}\right|>A_{q} \geqq Y\left(c_{p}^{\prime}\right),
$$

contrary to the hypothesis that $Y\left(c_{p}^{\prime}\right)=Y\left(c_{q}^{\prime}\right)=\eta_{r}$; this contradiction proves that the choice of c_{r} must have been uniquely determined.

We now show that, for each $r \in P, c_{r}^{\prime}$ is a term of the sequence (c_{m}). If c_{r} was chosen by Rule (iv), this is immediate. In all other cases, c_{r} is good and so $c_{r}^{\prime} \in \pi(j, \hat{I}, y)$ for some $j \in P_{n}, y \in 2 P-\frac{1}{2}$. By the definition of σ, there is a unique p such that $\left(i_{p}, \tau_{p}, \eta_{p}\right)=(j, 0, y)$. Since the conjugate of an i_{r}-couple cannot be an i_{r}-couple, $i_{r} \neq j=i_{p}$ and hence $p \neq r$. Moreover, $p<r$ would imply that

$$
y=\eta_{p} \leqq A_{r}<\left|\xi_{r}\right| \leqq Y\left(c_{r}^{\prime}\right)
$$

by Lemma 5, contrary to the assumption that $Y\left(c_{r}^{\prime}\right)=y$. Therefore $p>r$. Since $\tau_{p}=0, p>r$ and $c_{r}^{\prime} \in \pi(j, \hat{I}, y)=\pi\left(i_{p}, \hat{I}, \eta_{p}\right), c_{p}$ must be chosen by Rule (iv), and, since we have just shown that Rule (iv) in fact gives only one choice, it follows that $c_{p}=c_{r}^{\prime}$; hence c_{r}^{\prime} is a term of our sequence $\left(c_{m}\right)$.

If $(t, y) \in Z, i \in P_{n}$, there is a unique r such that $(i, t, y)=\left(i_{r}, \tau_{r}, \eta_{r}\right)$; define $x_{i}(t, y)$ to be ξ_{r} for this value of r.

Lemma 7. If $(t, y),(\bar{z}, \bar{y}) \in Z$ and (\bar{z}, \bar{y}) is a later term of s than (t, y), then
(a) $x_{i}(\bar{\tau}, \bar{y})>x_{i}(t, y)$ if $\bar{l}>0$,
(b) $x_{i}(\bar{t}, \bar{y})<x_{i}(t, y)$ if $\bar{i}<0$.

Proof. The hypotheses imply that $(i, t, y)=\left(i_{q}, \tau_{q}, \eta_{q}\right),(i, \bar{t}, \bar{y})=\left(i_{r}, \tau_{r}, \eta_{r}\right)$ for some q, r such that $q<r$. Moreover, if $\tilde{\tau}>0$, i.e. $\tau_{r}>0$, then ξ_{r} is chosen in accordance with Rule (i) and so $\xi_{r}>A_{r} \geqq \xi_{q}$, which, since $\xi_{r}=x_{i}(\bar{z}, \bar{y})$, $\xi_{q}=x_{i}(t, y)$, establishes (a). Similarly, if $\bar{t}=\tau_{r}<0, \xi_{r}$ is chosen in accordance with Rule (ii) and so $\xi_{r}<-A_{r} \leqq \xi_{q}$, which establishes (b).

Let H_{i} be the spanning subgraph of L^{n} whose edges are precisely the i-edges of L^{n}. Let S_{i} be the set of all i-couples in the sequence $\left(c_{m}\right)$. Since we have seen that the terms of this sequence are disjoint and that the conjugate of each term of the sequence is also a term of the sequence, it follows that the subgraphs $H_{i} * S_{i}$ constitute a decomposition of L^{n}. Since, moreover, these are
spanning subgraphs of L^{n}, it suffices to prove that they are all isomorphic to L^{1}. But H_{i}, S_{i} are the images under ϕ^{i} of M, C_{i} respectively, where C_{i} is the set of all couples of the form $\delta\left(x_{i}(t, y), y\right),(t, y) \in Z$. Therefore $H_{i} * S_{i}$ is the image of $M * C_{i}$, and so it suffices to prove that $M * C_{i} \cong L^{1}$. To do this, it suffices, by Lemma 3, to show that the hypotheses of that lemma are satisfied by the function $x_{i}: Z \rightarrow \hat{I}$. But this follows at once from Lemma 7.

REFERENCES

(1) G. Ringel, Über drei kombinatorische Probleme am n-dimensionalen Würfel und Würfelgitter. Abh. Math. Sem. Univ. Hamburg 20 (1955), 10-19.
(2) E. Vázsonyi, Úber Gitterpunkte des mehrdimensionalen Raumes. Acta Litt. Sci. Szeged, Sect. Sci. Math. 9 (1939), 163-173.

Department of Mathematics University of Aberdeen

