ON REAL ALMOST HERMITIAN STRUCTURES
SUBORDINATE TO ALMOST TANGENT STRUCTURES
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1. Introduction. Some of the most important G-structures
of the first kind (1) are those defined by linear operators
satisfying algebraic relations. Let J be a linear operator
acting on the complexified space of a differentiable manifold V,
and satisfying a relation of the form

2 2
J =1

where \ is a complex constant and I is the identity operator.
In the case X # 0 the manifold has an almost product structure
(2) which in the case X\ = 1 reduces to an almost complex
structure (3). In the remaining case, X\ = 0, the manifold
has an almost tangent structure (4).

It has been shown that the fibre bundle of the tangent
vectors to a differentiable manifold is endowed in a natural
manner with an almost tangent structure under "admissible"
coordinate changes (5). The natural occurrence of such
structures recommends them for further investigation.

Almost hermitian structures subordinate to an almost
complex structure have been studied in (3) and this notion
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has been generalized to the almost product structures in (2).
In the present paper the author extends this treatment to the
almost tangent structures.

Certain degenerate riemannian structures subordinate
to the almost tangent structures have been studied in (6)
under the name of almost euclidean structures. We will see
that the ""subordinate almost hermitian structures' are
non-degenerate riemannian structures.

2. Almost tangent structures. We consider a differentiable

manifold V‘2 of class C°. Let T  be the tangent space at
n X
any point x e V2 . We shall assume that a field of class C*
n
of linear operators J is given on V2 such that at each
X n

point x e VZn’ JX maps Tx into itself; also we suppose that

J is of rank n everywhere in V2 and satisfies the relation
X n

for any x e VZn’ where 0 is the null operator. We then

say that VZn is endowed with an almost tangent structure (4).

Let J(TX) be the image of Tx under JX. It is a vector
space of dimension n and it coincides with Ker JX, the
kernel of the linear operator JX. If VX is a supplementary
space of Ker Jx with respect to TX, we have

T =V ® Ker J
b X x

and as a result J induces an isomorphism of V  with
x x
Ker J . In the sequel we shall write simply J, T, and V
X

for J, T and V respectively.
X X X

Let (ei), i=1, 2, ..., 2n be a basis of T where

(e), oa=1,2, ..., n is a basis of Ker J and (e ,),
e o’
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¥ = g+tn a basis of V. In general, any Greek index will take
the values 1, 2, ..., n and any latin index the values
1,2, ..., 2n. If (ei) is a basis such that Je , = e we
o o
call (ei) a basis adapted to the almost tangent structure or

briefly an AT-adapted basis. If (ej') is another AT-adapted

basis we have

e , = Aﬁ'e
o a' B
_ P p*
ea,* = Ba/'* eB + Aa'*es*
*
with AB,* = AB'. The transformation matrices for the
o o

AT-adapted bases are of the form:

. A 0
(2.1) (A1) =
! B A

where A ¢ GL(n,R), B is an (n,n) matrix, and 0 is the
(n, n) null matrix.

With respect to the AT-adapted bases the tensor Fj ,

associated to J, has components given by the matrix

) 0 0
(F) =
J

I 0
n

where In is the (n, n) identity matrix. In other words
(2.2) F. =6

The set of all matrices of the form (2.1) is an
algebraic subgroup of GL(2n, R) and thus is a Lie group.
It will be denoted by GT. GT can be intrinsically

characterised as the set of matrices of GL{2n, R) which
commutes with J.
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The set ET(VZ ) of all the AT-adapted bases at the
n
different points of VZn has a natural structure as a principal
fibre bundle with base space VZn’ structural group GT’ and
projection mapping p: ET(VZn) - VZn which assigns to an

AT-adapted basis at x the point x itself.

3. Real almost Hermitian structures. Let us suppose we

have defined on V2n a riemannian metric of class
0
C , thatis, a real symmetric tensor G = (gij) for which the

i
components in a system of local coordinates (x ) are functions
0 i
of class C of the (x) and for which the determinant is

everywhere different from 0.

DEFINITION 3.1. We will say that G is hermitian with
respect to J if

t
(3.1) GJ+JG = 0
where tJ is the transpose of the matrix J.

In the above case we shall say that V2 is endowed with
n
an almost hermitian structure subordinate to the almost tangent

structure.

The hermitian condition (3.1) can be written in the form

(3.2) g..FJ

Jo_
Flo= 0.
itk T8

THEOREM 3.1. G is hermitian with respect to J if
and only if for any u, ve T we have

(3.3) (u, Jv) + (Ju,v) = 0

where (,) is the inner product defined by G. Condition
(3.3) says that J is skew-symmetric with respect to (,).
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Proof. Let u, ve T; then
(u, Jv) + (Ju,v) = gijul(Jv)J+ gij(Ju)lv‘]

. ik ik j
= giju (Fkv ) + gij(Fku )\'a

k
k

j joi
= +o. F
(gijF gjk i)uv
= 0

for all u, v if and only if (3.2) is satisfied.

If we multiply the condition (3.1) by J we obtain

JGtJ = 0 since JZ = 0.
In other words
k _1

F = 0.
8t

It then follows that for any u, ve T we get

(Ju, Jv)

k, . .1
gkI(Ju) (Jv)

ki, 1 j
8 (Fy ) (F;v))

k1, 1]
F
(g Fy Fyluv
= 0.
We may then state:
COROLLARY 3.1. If G is hermitian with respect to
J then the image space J(T) = Ker J is completely isotropic,

that is, for any u, v e T we have

(3.4) (Ju, Jv) = O.
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Accordingto (3.3) we have for any ue T that
(u, Ju) + (Ju,u) = 0 and thus (u,Ju) = 0. This gives us

COROLLARY 3.2. If G is hermitian with respectto J
then any vector is orthogonal to its transform by J, thatis,
for any ue T we have (u, Ju) = 0.

In the remainder of the paper we shall assume that G is
hermitian with respect to J and shall investigate the resulting

subordinate almost hermitian structure.

To obtain an expression for G relative to an AT-adapted
basis we note that from (3.4) we get

g :(e,e):(Jeaw Je ) = O

and from (3.3) we get

0 G

(3.5) G = 1
-G
1 GZ
where Gi = (gaﬁ*) and G2 = (ga*ﬁ*)' We see from (3.5)

2
that det G = (det Gi) # 0 and thus Cr1 is regular and so

is of rank n. Further, since G is symmetric we have

t
t 0 -Gy
G = G = s
t t
G1 GZ
. t t .
thatis, G. = -G and G_ = G . Hence G is
1 1 2 2 1

skew-symmetric and G_ is symmetric.

2

COROLLARY 3.3. In order that an almost tangent
structure admit a subordinate almost hermitian structure it is
necessary that V2 have dimension 4m for some integer

n
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m, thatis, for some m we have n = 2m.

Proof. This follows immediately since G/1 is an (n, n)

skew- symmetric matrix over a field of characteristic different
than 2 and is of rank n.

THEOREM 3.2. If ¢ is symmetric and non-singular on
Ker J, then we can always define (| such that | is
skew- symmetric and non-singular on T; indeed, it suffices
to define Y(u,v) = ¢(Ju,v) - ¢(u, Jv).

Proof. The symmetry of ¢ implies the skew-symmetry

of .

If y(u,v) = 0 for every ve T, then o(Ju,v) - ¢(u,Jv) = 0
for every v ¢ T. In particular ¢(Ju,v) = 0 for every v e Ker J.
Since ¢ is non-singular on Ker J, Ju = 0, thatis ue Ker J.
But then ¢(u, Jv) = 0 for every v e T. Again, since ¢ is
non-singular on Ker J, u = 0. Thus { is non-singular on T.

THEOREM 3.3. If ¢ is skew-symmetric and non-singular
on Ker J, then we can always define a riemannian structure
(,) on T whichis hermitian with respect to J; indeed, it
suffices to define (u,v) = o(u, Jv) + ¢(v, Ju).

Proof. Clearly (,) is symmetric. Also, by an argument
similar to the above we can show that (,) is non-singular.
Finally we note that for any u, ve T we have

(u, Jv) + (Ju, v) = ¢(u, JZV) + &(Jv, Ju) + $(Ju, Jv) + o(v, Jzu) = 0.

b

thus (,) is hermitian with respect to J.

From (3.2) we may write

J ok Jok
F +g FIFS =0
& i kEm T8t i T m
or
ik

. FIF° = 0.

(3.6) ik’ i m
DEFINITION 3.2. Let F_ = gij‘i]; then from (3.2)

1
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we have F. +F.. = 0 and the (Fi_j) are components of a
Ji 1)

real exterior 2-form F which we will call the fundamental
form of the almost hermitian structure. We note that this

definition means F(u,v) = (Ju,v).

Let the matrix (gl‘]) be the inverse of (g..). Then

1]
from (3.6) we obtain F, Fk = 0 or
ik’ m
jk
. F =
(.7) ik® mj® 0

THEOREM 3.4. Given a real exterior 2-form (F'j)
i

of rank n and a riemannian metric (g..) both of class
ijS ———

Coo and defined on V2n such that (3.7) is satisfied, one can

always define an almost tangent structure and a subordinate
almost hermitian structure with hermitian metric (g..) and
1)

fundamental form (Fij)'

Proof. Let us define a linear operator J on T by the

tensor
J kj
Fi = Fice
hj kh_, 1 _ kho 1j _
Then FiFh = Fikg Fhlg = (Fithlg )g© = 0; thus
3% = 0. Alsorank J = rank (F) = rank (FG 1) = n
1

K
since (g J) is regular and (Fik) is of rank n. Hence, J

defines an almost tangent structure on V2 . Moreover, we have
n
k k 1k 1k 1 1
F.g. tF.g . =F. HE, . =F. 6.+ 6. =F _+F.. = 0,
ngk 1ng Jlg ki 11g gk_] jli Fil ] ji ij

Hence (3.2) is satisfied and (g,.) is hermitian with respect
1)
to J. The resulting almost hermitian structure has fundamental

k
form F,g . = F, as asserted.
i7kj ij
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4, H-adapted bases. Let us consider the matrix H

defined by
(4.1) 0 0 0 I
m
0 0 -1 0
m
H = (hij) = 0 I 0 0 ;n=2m
m
I 0 0 0

m

where IIn is the (m,m) identity matrix. We will examine

the question of whether it is possible to transform a riemannian
metric (gij)’ hermitian with respect to J, into a matrix of

the form (4.1) by a transformation of AT-adapted bases. If
(ei) is an AT-adapted basis let us consider the vectors vi e T

such that v, = szeﬁ and Vo o xgeﬁ* +XS*ep3‘ Clearly, the
(vi) form an AT-adapted basis. Our question may be restated
i x
in the following manner: do scalars (xJi), where XB* = XB,
o o
p* . .
x = 0, exist such that the equations
o
k 1
4. A I .x. = h_.
(4.2) (Vi VJ) gklxli hiJ

will be satisfied.

The system (4.2) is equivalent to the systems:

a B
4.3 = h
( ) gaﬁ*x)\xp Ak
o B a 3 o B
+ + = h
(4.4) gaﬁ*x)\ *X},L ga*ﬁx)\xp:k & *ﬁ*x)\XH Ak
l O I
K - m _ _ ’
-1 0
m
X = (x), and Y = (xi*) Then we may write (4.3) and
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(4.4) in matrix form as follows:

(4.5) XG1tX - K

t
(4.6) YG1X—XGitY + XG, ' = o

Our question now is whether there exists solutions X and Y
satisfying the systems (4.5) and (4.6).

In (4.5) we may regard K as the normal form of the
congruence class of skew-symmetric matrices of rank 2m.
It then follows that one can always find a regular matrix X
satisfying this system (7).

Given a regular matrix X satisfying (4.5) we may write
(4.6) in the form

(4.7) By +v'B = C

t
where B =XG1 and C:XGZtX. Let Z =B Y; then (4.7)

becomes
t
(4.8) Z + Z = C

which will have infinitely many solutions if C is symmetric.
. . t .
Since Cr2 is symmetric then XG2 X = C is symmetric and

(4.8) always admits solutions. Moreover both X and G1 are

regular so that B is regular and X = t(B_iz) will be a
solution of (4.7). Hence we can always find scalars (xq)
i

such that (4.2) is satisfied. We thus have proven

THEOREM 4.1. If (gij) is a riemannian metric

hermitian with respect to J there always exists an AT-adapted
basis such that (g..) will have the form (4.1).
1)

DEFINITION 4.1. We shall say that any AT-adapted
basis satisfying the conditions (4.2) is adapted to the almost
hermitian structure, or briefly is H-adapted.
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Let (e) be an H-adapted basis and let (6') be the

2
corresponding dual basis. We will denote by ds  the quadratic
form defined by G. One then has

2
ds

I

i

. (6%6P™ _ 6% oPy

af*

a(1) B(2)*  a(1)* _B(2)
Saipt® 0 S0 e

(X2 B _ a(2) (1)

“ 5 ()p(1) )

where o(1) = 1, 2 ., m, ofl2) = o(1)tm, o(1)* = o(1)+n,

and o(2)* = o(2)+n = ao(1) +m + n. We then can write

m
dSz = 2 > (ea(i)eaf(z)* _ ea/(i)*ea(Z)

) .
o(1)=1

Also the fundamental form can be written

F

o' A(i<]) =

F.
1)

ki j ¥ ] )
F.OAQ = 09N 07 (o<
N A 8 A 07 (%< j)

m
ea(1)*,\ e{3(2)* I ea(i)*/\ ea(Z)*
o(1)=1

Ea(1)B(2)*

Suppose now that (e,) and (ej') are both H-adapted
1

bases; then

i,
4.
(4.9) S T Mgy
, A o\ 0 K
where A_= (A )= , Ac¢GL(2m,R), and G =
© B Al K 0

We may then write (4.9) in the form

G = AGA
(0] O
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0 K A 0 0 K\ [t t 0 A.KtA

A B
or - B t t t
-K 0 B Al \-K 0 0 tA -AKA BK A-AK B
Hence,
(4.10) AKtA = K
(4.11) AKtB - BKtA = 0.

We thus see that a transformation matrix between two
A 0

H-adapted bases is of the form where A,B satisfy
B A

the conditions (4.10), (4.11) respectively.

A 0
Let G be the set of matrices of the form
H
B A
where A,B satisfy (4.10), (4.11) respectively. The set
GH is the subset of GT consisting of matrices orthogonal with

t
respect to G, thatis matrices M such that MG M = G.

THEOREM 4.2. GH is a subgroup of GL(4m, R).

Proof. It suffices to show that if M, M' ¢ GH then

MM'! GH and M-1 € GH. Let M, M' € GH; then

t t. .t t
(MM")G (MM!') = MM'G M'M = MGM = G and

M it = M rvétytmyt = Gl

It follows that MM' ¢ GH and M'1 € GH.

Since the conditions (4.10), (4.11) define GH as an

algebraic subgroup of the Lie group GT, then necessarily GH

is itself a Lie group.
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Let EH(VZn) be the set of the H-adapted bases at the
different points of V2n and let p: EH(VZn) - VZn be the

mapping which to an H-adapted basis at a point xe¢ V makes
n

correspond x itself. EH(VZn) then has, with respectto p, a

natural structure of a principal fibre bundle with base space

VZn and structural group GH.

5. H-connections. We will call H-connection any
infini tesimal connection (3) defined on the fibre bundle EH(Vzn).

Given a covering of V N by neighbourhoods endowed with local

cross sections of EH(\Z/'Zn) an H-connection may be defined in
each neighbourhood U by a form Wi with values in the Lie
algebra L(GH) of the group GH. Such a form may be
represented at x e V2n by means of a matrix of order 2n
whose elements are real valued linear forms at x; it will be

denoted locally by Wy S (w}) where (w}) € L(GH).

To determine the form of the elements of L(GH) we
recall that GH consists of matrices of GL(4m, R) which

commute with J and are orthogonal with respect to G. The
Lie algebra of GH consists of tangent vectors at the identity
to curves in GH. Thus, by differentiation of the relations
defining elements of GH’ we find that L(GH) consists of

(4m, 4m) matrices which commute with J and are skew-
symmetric with respect to G. Hence L(GH) consists of

matrices of the form
t
(5.1) M = where G M + MG = 0.
B A

With respect to an H-adapted basis the conditions (5.1)
can be written
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[ _
+ = (
- t -K 0 0 0
K 0 0t s A J
or
(5.2) K'A + AK = 0
and
(5.3) -K'B +BK = 0.
Now (5.2) can be written
0 1 t t A A 0 I 0 0
m A1 A3 + 1 2 ) m - ( )
-1 0 tA ¢ A3 A4 —Im 0 0 0
2 A
4
t a (1) B(2)
A = A + A = 0
Ay tha =0 8(1) T Pa(2)
t
or A -A =0 or a(1) B(2)
2 2 A - A = 0
B(2) (1)
t
A -A =0 a(2) B(1)
3 A - A = 0
’ B(1) ~ “a(2)
Also, (5.3) can be written
-0 I tB tB B B 0 I 0 0°
m / 1 3 1 2\ m
- \ + j =
- B -
Im 0 tB tB B3 4/ Im 0 0 O
2 4
t a(1) B(2)
- = 0 A - = 0
By By playe ~ Paf2)x
t _ _aB a(2) p(2) _
or B_+B = 0 where B = (Aa/*)’ or AB“)>=< + Aa(1)* = 0
t (1) B(1)
B_+B = + A = 0
3PPy =0 Apx T Paa)

Clearly, EH(V2 ) may be considered as a sub-bundle
n
of the fibre bundle E(V2 ) of all bases. Thus any H-connection
n
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defines canonically a linear connection with which it may be
identified.

Conversely, let us be given a linear connection and
a covering of VZn by open sets, each furnished with a local
section of EH(VZn)' This connection may be defined on each
neighbourhood by a local form, with values in gl (4m, R),
represented by a matrix (wj) whose elements are real valued

local Pfaffian forms. In order that the given connection be
able to be identified with an H-connection it is necessary and

sufficient that (W;) belongs to L(G); thatis

£
(5.5)
L e T e T O e e
(5.6)
B(1) a(2) o PR e(@) p(1)  _e(t)

Va(1)x T Vp(2)x a()x T VB Vo2 T Vp(2)x

As shown by H. Eliopoulos (4) the conditions (5.4)
express that the tensor J = (F;.) has absolute differential
zero (which is a necessary and sufficient condition that the

given connection be an AT-connection).

To interpret the conditions (5.5) and (5.6) let us
introduce the absolute differential of the metric tensor, assuming
the conditions (5.4). We have

k Wk
- - W -

V&ij iBkj ~ Vj ik
which leads to

Vgaﬁ = 0
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= - W)\g - w)\
Ve aoANpE | pEark

VEa(1)p(1)*
Ve (2)B(1)*
VEa(1)p(2)%x
VEa(2)p(2)%
VEuxpg T T VB
VB kg = —wt

VB (1)%p(1)*
VEa(1)kp(2)*
VEa(2)%p(1)*

VB (2)%p(2)%

A
axBapx T VpxBoay

from which we obtain:

SR al@)
o(1) T p(1)
g

-

e

from which we obtain:

B(2) |, _a(2)
Vo) T V()%
Bl1) . _al2)
a1y T a2y
P (1)
a(2)* B(1)*

_ B _a(1)
T TVa2)x T V2

It can be seen from the above equations that the condition
Ve = 0 is equivalent to the conditions (5.5) and the

ap*

condition Vga* B

0 is equivalent to the conditions (5.6).

Hence the conditions (5.5) and (5.6) are equivalent to the
vanishing of the absolute differential of (g,.) provided we
1)

assume (5.4). We may then state

THEOREM 5.4. A necessary and sufficient condition

that a given linear connection on VZ
n

be an H-connection

is that the tensors (Fj) and (g_j) have absolute differential
— i

zero,
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We say that a linear connection defined on a differentiable
manifold furnished with a metric (gij) is euclidean if Vgij = 0.

The theorem 5.1 then says that we may identify the H-connections
with the euclidean AT-connections.

6. Holonomy groups of the H-connections. Let us

consider an H-connection; any horizontal path constructed on
E(VZ ) relative to the linear connection identified with the given
n

H- connection and beginning at an H-adapted basis z ends at an
H-adapted basis z'. One deduces from this that the holonomy
group (3) at z of this connection is a subgroup of GH.

Conversely, let VZn be a differentiable manifold furnished
with a linear connection and let us suppose that at a point

x of V2n there is a basis z such that the holonomy group

qu of the connection at z is a subgroup of GH. Let us
consider at the point x the tensors (gij) and (F;) for which
the components with respect to the basis z are defined by:

0 K 0 0

-— i -—
(gl_]) - _K 0 ) (FJ) -

These tensors are invariant under  (since qJZ is a subgroup
z
of GH). By parallel transport on VZn we obtain the tensors

(gij) and (Fj,) defined on the whole manifold. Now at the

i_h k k
i =0 + =0 d
point x we have FhF_j and Fj gki Fi gkj and these
relations remain true at any point of VZn' Thus VZn may be

endowed with an almost hermitian structure subordinate to an
almost tangent structure. Since the tensors (g..) and
1]

(Fl,) are invariant under q;z they have absolute differential
J

zero (3); thus the given connection may be identified with an
H- connection. We may then state

THEOREM 6.1. A necessary and sufficient condition
that a linear connection in Verl be an H-connection of an

131

https://doi.org/10.4153/CMB-1968-015-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-015-3

almost hermitian structure subordinate to an almost tangent
structure is that the holonomy group of the connection.be a

G...
subgroup of u

In general, the holonomy group is independent of position
only if V is connected.
Zn
Suppose now that V2n is a differentiable manifold
furnished with a metric (gij). We will say that a basis z
defined at a point of V2n is adapted to the metric if the

components of the metric tensor with respect to z are

0 K

(g..) =
L K 0

There will be such an adapted basis only if (g,j) has the
i
proper signature. Let us be given on VZn a euclidean

connection and let us suppose that there exists at the point x
of V2 a basis z, adapted to the metric, such that the holonomy
n

group qJZ in this connection is a subgroup of GT. By assumption

Vg.j = 0; the metric tensor is thus invariant under . It
i z

follows that ¢ 1is a subgroup of G Then, as in theorem 6.1,
z

e
we may endow V2 with an almost hermitian structure

n
subordinate to an almost tangent structure for which the metric
coincides with the initial metric. The given connection can
then be identified with an H-connection. We have thus proven:

THEOREM 6.2. A necessary and sufficient condition
that a euclidean connection in V2 be an H-connection of an
n

almost hermitian structure subordinate to an almost tangent
structure is that the holonomy group of the connection be a

subgroup of GT .
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