UNIT GROUPS OF CYCLIC EXTENSIONS

TOMIO KUBOTA

Let 2 be an algebraic number field of finite degree, which we fix once for
all, and let K be a cyclic extension over 2 such that the degree of K/ 2 is a
power [* of a prime number [ It is obvious that the norm group Nk:.eex of
the unit group ex of K, being a subgroup of the unit group e of 2, contains the
group e’ consisting of all I"-th powers ¢ of :Ee. The main aim of the
present work is to prove the converse assertion of this fact in certain special
case. Namely, it is verified that, if / is an odd prime number prime to the
absolute discriminant D(2) of £, then, for any subgroup H of e containing e,
there is an infinite set & of cyclic extensions of degree I’ over £ such that we
have Nxgex = H for every K € & More precisely, the infinite set & is so chosen
that, for eveiy K& &, the first cohomology group of ex is isomorphic to the
direct product of the 0-th cohomology group of ex by a cyclic group 3 of degree
I”, where the cohomology groups are defined by considering ey as an operator
module of the Galois group of K/2. Thus we can also conclude that, if 7, is
the dimension of e and if A, is a subgroup of the direct product of 7, groups
all isomorphic to 3, then there is an infinite set & of cyclic extensions of degree
I” over £ such that the 0-th cohomology group of ex is isomorphic to A, and
the first cohomology group of ex is isomorphic to A; = Ay X 3, where K &€ & and
[ is, still as before, an odd prime number prime to D(2).

In §1, we introduce the convenient notion of fixed extensions,” and, after
preparations in §2, we deduce all the results in §3. As for the case of ex-
tensions with prime degree [, the results of this paper are already obtained in

the previous paper of the author [4].

§1. Preliminaries

1. For a normal field K/©Q, we denote its Galois group by 8(K/2). In

Received October 18, 1957.
L This was first introduced and studied in works of Hasse. See, e.g., Hasse [2].
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particular, if 2 and 2. are respectively the algebraic closure and the maximal
abelian extension over 2 in the complex number field, then we put 4(2/2)=G
and 9(2./2)=G'". Groups G, G' are always considered as compact topological
groups in usual manner.

Let 3 be a (discrete) finite group. We call a continuous homomorphism
£ of G into & a fixed G-extension over 2. A fixed G-extension x uniquely
determines an overfield K, of 2, i.e., the invariant field of the kernel of x. It
also determines a natural isomorphism between the Galois group of 9(X./2) and
the subgroup #(G) of &. We call K. the corresponding field of x. Some of the
properties or invariants of the corresponding field K« of a fixed extension  are
expressed in the following as those of & itself, e.g.,, we say & is ramified at a
place p of 2 if K./Q is so, and the degree of r means the degree (K. : 2). If
® is of order m, then a fixed ®-extension over 2 of degree # is said to be
Droper.

A fixed @-extension # is naturally considered as a homomorphism of 8(K./2),
and, if @ is an abelian group ¥, then « is also considered as a homomorphism
of G'. Furthermore, by the reciprocity law of class field theory, a fixed U-
extension « is considered as a homomorphism of the idéle group I of £ or of
the idele class group Co of 2. These various interpretations of fixed extensions
are occasionally applied as far as no confusion is possible.

The set of all fixed N-extensions over 2 forms an abelian group if we define
the product xx' of two fixed A-extensions «, x' by setting kk'(¢) = £(c)«'(s) for
any ¢ € G.

Let « be a fixed A-extension over 2 and p be a finite or infinite place of 2,
then, using as usual the p-component of an idéle of 2, we can attach to x a
continuous homomorphism «p into ¥ of the multiplicative group 25 * of the p-
completion 2y of 2. By local class field theory, xp is regarded as a homo-
morphism of the Galois group of a maximal abelian extension over 2, and

therefore as a fixed YU-extension over 2. We call xp the p-component of «.

2. Let 1, U be the idele group and the unit ideéle group® of 2, respectively,
and denote by 2 the principal idele group of 2. Let S be a finite set of places

%) We always use the mark x to stand for the multiplicative group of non-zero ele-
ments of a field.

¥ In this paper, we settle no sign condition for the infinite components of a unit
idele, somewhat differently from the definition of Weil [6].
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of £ and x; be a homomorphism of U into 3 such that the g-component® of
xy 1s trivial for every place q of 2 outside &, where 3 is a cyclic group whose
order [” is a power of a prime number I Then «y is, in a natural way, regarded
as a homomorphism of the group Ug,, =pggUp/ Uy, where Uy is the unit group
of the p-completion 2y of 2. On the other hand, set B =2 NT"U; then B™
consists of numbers 8 of 2° such that the principal ideal (8) is the I*-th power
of an ideal of 2, and, writing f=a’"u (a& I, u € U), the mapping # - u followed
by the natural mapping of u into Ugz,, gives rise to a homomorphism ¢z , of
B"™ into Us,,.

Now we state the following three Lemmas.”

LemMma 1. Let ¥ be a power of a prime number 1, 3 be a cyclic group of
order I’ and let S be a finite set of places of 2. Then the restriction to U of a
fixed B-extension k over @ which is unramified at every place of 2 outside < is
characterized as a homomorphism ky of U into 3 which has trivial a-component
for every place q of 2 outside S and which satisfies r:u(:\;,»(B”’)) =1.

Lemma 2. Let h, be the index (1: QXY°U). Then the number of all fixed
B-extensions « over 2 unramified at every place q of R outside S is equal to
by s (Ug,y t ¢g,,(B™)).

Lemma 3. The kernel of ¢z

(2thd

consists of the numbers 5 & B such that 8

is, for every Y E S, an I'-th power in the p-completion Qp of 2.

§ 2. Covering of an unramified field

3. Denote by I, U the idéle group and the unit idele group of 2, respec-
tively, and let B be a cyclic group whose order is a power [ of a prime number
I Set, asin §1, 2 BY=02"NT"U and consider the mapping S — a defined for
an element € B with f=a"u (a€l, ue U). If e is the unit group of £,
then the above mapping gives rise to an isomorphism of B™/e2*" onto the
group C* consisting of all elements of I/2°U whose orders divide /*. Any
homomorphism 7 of C'* into B is therefore regarded as a homomorphism of
B™/e2*" into B, and vice versa. Whenever no confusion is possible, ¥ may
also be considered as a homomorphism of B or of a subgroup of I. Take

4 This can be defined quite similarly to that of a fixed abelian extension.
5 As for the proofs of these lemmas, see Kubota [5], $1.
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such a homomorphism / and denote by By’ the subgroup of B™ which is the
kernel of 7. Suppose furthermore that I/=2. Then we have (B : By’)
= (Q(&p, "YB™) 1 2(¢p, "NBY)), where ¢p is a primitive I*-th root of unity.”
Therefore, by Lemma 3 and by the theory of Kummer extensions, there are infi-
nitely many prime ideals p of £ prime to [ such that Np—1=0 (mod. [*) and that,
if we denote by ¢,, the homomorphism of §1, 2 with the set &={p} of a
single place p, then the kernel of ¢, ., coincides with By’. We call such a

p a prime ideal of 2 which bzlongs to the homomorphism %.

4. Let K' be an unramified cyclic extension over £ such that the degree
(K': @) divides a power [” of a prime number /, and let K be an overfield
of K' such that K/2 is cyclic of degree I and that there is at most one
prime ideal of £ which is ramified in K/9. Then we say that K is a covering
of degree I of K'. We propose to show that, for any K' and [, we can
always find a covering of degree I”".of K', provided that =2 It suffices
to prove that, if 3 is a cyclic group of order [”, then, for any unramified
fixed 3-extension «' over £, there is a covering « of degree I of &/, ie, a
proper fixed 3-extension & over £ such that r is ramified at most at one
prime ideal of 2 and that «' is a power of &.

Using the notations in 3, let ¥ be the homomorphism of C into 3
which is naturally induced by «' and let p be a prime ideal belonging to 7.
If Uy is the unit group of the p-completion £, of 2, then we can find an
isomorphic mapping 7p of Up/Uy onto 3 such that we have Zy(ep.(8)) = Z(3)
for every f& B"™, where X is considered as a homomorphism of B as in
3. Let I'™” be the degree of x' and denote by ry the homomorphism of U
into 3 whose p-component coincides with 7y and whose ¢-component is
trivial for every place q = p of £. Then, since we have Zg‘_r(fp_»(ﬁ)) =7"7"(B)
=1, there is, by Lemma 1, a fixed 3-extension x; over £ such that the
restriction to U of x; coincides with #y. If now a is an idele of 2 which
represents an element of C'”, then we have a’u=a (u€ U, « € 2°) and conse-
quently a”u”” =a”" &€ B™. Therefore we have x(a)=7(a""™") = Lp(ep..(a" ™))
=/p(u” ™) = k:(u) = £7"(a), where 7 is considered as a homomorphism of B™.
This shows that &'xi induces a trivial mapping on C’ and therefore we

have «'s! =kt with an unramified fixed 3-extension r. over 2. Setting

6) See Hasse [3], §1, Satz 1, 2.
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- t
k=rl'k2, we have «'=«".

Thus we see that, for every prime ideal p of
belonging to %, there is a fixed 3-extension & over 2 with & =" and with

at most one ramification place p, which proves our assertion.

5. Still using the same notations, we make another observation. We
denote by S={p, ..., I} a set of prime ideals, prime to /, of £ and by
Ug the group of unit idéles u of £ such that, for every i, the p;-component
ui of u satisfies the condition #; =1 (mod. p;). If p; completely decomposes
in the field 2(¢p, V) and if the factor group I/2*I”Ug is isomorphic to
the direct product of ¢ cyclic groups of order [*, where t is the rank of the
group I/@"T'U, then we call S a parametric set of degree I of 2 and the
class field Z, over 2°TI”Ug the complete covering attached to S. It follows
from Lemma 2 that, for any parametric set of degree [* of @, the order of
tz.,(B"™) is equal to that of I/2*I"U and therefore the kernel of ¢z , is
e,

Now, we propose to prove the existence of parametric sets of arBitrary
degree [°, provided that I/=x2. Let &,...,¢ be a base of the group C
consisting of all elements of I/9*U whose orders are powers of 7, and let
Zi, ..., 7t be a set of homomorphisms of C'™ into 3 such that the restric-
tion of 7; to the group {&}NC"™ is an isomorphism into 3 and that 7; is
trivial on {¢;} N C™ (i j), where {¢;} is the group generated by ;. Then
Z’s form a base of the group consisting of all homomorphisms of C' into
3. Choose for every i a prime ideal p; of 2 belonging to Z; and set &= {y,,

.., I}, Then it follows from the results of 4 that, for every unramified
fixed 3-extension «; over 2 which is trivial on every {¢;} with i = j, there is a
covering #; of x} which is unramified at every place of £ except pi. This
means that the factor group I/2*I” Ug contains the direct product of ¢ cyclic
groups of order !*. On the other hand, 7i, . . ., /: regarded as homomorphisms
of B™ form a base of the group consisting of all homorphisms of B™/e2*"
into 3. Therefore it follows from the definition of & that the kernel of ¢z ,
is e2”” and consequently the order of tz,.(B'") is equal to the order of the
group I/2°T"U. Hence, by Lemma 2, the number of all 3-extensions x over
2 unramified at every place of 2 outside & is equal to ). Thus we see
that the group I/2* ) ¢ Ug is just the direct product of ¢ cyclic groups of order

I, whence S is a parametric set of degree I of £.

https://doi.org/10.1017/50027763000022078 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000022078

226 TOMIO KUBOTA

§3. Unit groups and their norms

6. The main purpose of this section is to prove the following

THEOREM 1. Let B be a cyclic group whose order 1' is a power of an odd
Dprime number | prime to the absolute discriminant D(2) of 2. Denote by e
the unit group of 2 and let H be a subgroup of e containing e’. Then there
are infinitely many proper fixed 3-extensions x over £ such that we have

Nk, oe«= H, where e. is the unit group of the corresponding field K. of k.

7. Let I, U be the idéle group and the unit idele group of 2, respectively,
and let Z; be the class field over 2*YU. Then, under the assumptions in
and ¢ is a primitive I’-th root of unity. For, since the assumptions imply
that 2(¢n)/2 is an extension of degree I[*™'(I—1) containing no unramified
subfield except £ itself, &,/2 has £({p) as the largest abelian subfield and
has £ itself as the largest unramified abelian subfield. From this follows that

there is a parametric set S={p;, ..., p:} of degree I of £ such that the
Z,/82

1

substitutions ( ) form a base of the Galois group 8(Z;/2), because the
signifying condition in §2 of p; concerns only the decomposition of p; in 2,.
We take such a parametric set & and fix homomorphisms 7;, of Uy onto 3,
where Uy, is the unit group of p;-completion 2y of £.

Now, we can find subgroups Hi, ..., Hs of e containing H such that
e/H; is cyclic and that we have OH.:H. Let ¢; be the index (e : H;) and
¢, be a primitive ci-th root of unity. Then, since we have (£(¢, “Ve) :
2(Ce,, “YVH;)) =¢;,” there is a prime ideal g; of £ prime to [ such that Ny -1
=0 (mod. ¢;) and that we have H;=e N Ug, where Uy, is the unit group of
the gi-completion £y, of £ and e is regarded as a subgroup of U;,. We take
such a prime ideal g; for every 7, and fix homomorphisms 73 of U, into 3
with the kernel Ug. Let n; be a generator of the prime ideal of 2p, and ¢
be a generator of 3. Then, setting Zp(x;) =1, we can extend 7y, to a homo-
morphism of the whole multiplicative group 25, We also extend Z%; to a
homomorphism into 3 of £;; in an arbitrary way.

By the existence theorem of Grunwald,” there are infinitely many proper

7> See footnote 6.
8 See Hasse [3].
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fixed 3-extensions « over 2 such that we have % =7p, kg, =7 for the local

components &y, xy; of £ and that there is only one ramification prime ideal
r outside the set {p, ..., Py i, ..., s}

8. We propose to show that the proper fixed 3-extensions x in 7 have

v. . N (4 Kx/ .Q B by
the required properties of Theorem 1. Since we have x(w'T———) = /pa),

(w2 '

=7(a) for a € 2%, it follows from the definition of 74 that we
have Ni oe« C H and, on the other hand, it follows from the definition of
Zp; and from a property in 5 of parametric sets that no element of B outside
e is a norm of K./Q. The latter result implies that, if an ideal a of
is principal in K., then it is principal in 2, because from a= (a")(a" € K)
necessarily follows o'’ = (Ngoa®) and Nigoa“ € B"Y. Hence, denoting by (a)
a principal ideal of 2, by (a3) an “ambig” principal ideal of K./2 and by
a an ideal of 2, we heve ((af) Na: («))=1, where a general element of a
group stands for the group itself. Therefore, if af is an “ambig” ideal of
K./ 2, we have ((a}) : (@) = ((af)a : a) = (a§ : a)/(af : («f)a). Since the group
(a5)/(a) is isomorphic to the first cohomology group of e. as a 8(K./Q)-
group, we have, by Herbrand’s relation,”” ((a§) : (a))=10"+ (e : Nxwoes). Thus
we obtain (e : Nggoed) =17+ (a5 : a)/(a§ : (a§)a). The factor I« (af : a) of
this formula is estimated as follows: ™"+ (a§:a)=1""+TTe(p:) * ITe(qi) + e(x)
s . (e: H), where we denote by e( ) the ramiﬁcationi order v;ith respect
to Ki/2. As for (a5: (af)a), we make the following investigation. Suppose
that »;=%; in K, and let K., p; be the PB;-completion of K.. Then, since we
have 7p(x;) =x( T{_i{_g's/g,_) =1, there is a generator I7, of the prime ideal of
K, g, with the norm =; to 2. If there is a relation P™ ... P/ = («f)q,
then we have 17" ... II{" € KX1U,, where K) is the principal idéle group
of K., U, is the unit idéle group of K. and II; is regarded as an idéle of
K, with P;-component 77; and with other components 1. Denoting by & the
parametric set {p;, ..., p} and by Uz the group defined in 5, we have
Ky oU, CU"Ug, whence z/"...nM"e 2°I"Uz. Since, however, the set of

(le/ V“Q ) is a base of §(Z;/2), an elementary property of finite abelian groups
1

9 This notation expresses the image by « of the automorphism determined by the
norm residue symbol. )

1) See Chevalley [1], $10.
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of type (I, ..., I") shows that, if Z, is the complete covering attached to
Z of £, then the set of reciprocal images (z;, Z,/2) form also a base of
0(Z,/2). This means that the relation =7 ... z}" e 21" Ug is impossible
unless we have mu=...=m =0 (mod. /). Thus we have (a§ : (af)a) = I*

and therefore (e : Nk oe«) = (e : H). This, together with Nxoe« C H obtained

above, proves our assertion.

9. We incidentally observe here the structure of the group (aj)/(a) of
8. Since ((af) Na: (a))=1, we have (af)/(a)= (af)a/a. It is eventually
shown in 8 that we have ((a0) : (a))=1"+(e: H) and that aj/(as)a is the
direct product of ¢ cyclic groups of order !*. Therefore the character group
of aj/(a5)a is a direct factor of the character group of af/a. Since a5/a is
isomorphic to the direct product of ¢+ 1 cyclic groups of order [* by the
group e/H, (aj)a/a= (af)/(a) must be isomorphic to the direct product of
e/H by 3.

10. The unit group e. of the corresponding field K. of a proper fixed
3-extension x over £ is considered as a 3-group because the Galois group
9(K./R2) is canonically isomorphic to 3, and the results which we hitherto
obtained allow us to know a little about the cohomology groups of the 3-
group e« Since 3 is cyclic, we may consider only the 0-th and the first
cohomology groups. Namely, Theorem 1, together with 9, immediately yields

Tueorem 2. Let B be a cyclic group whose order 1" is a power of an
odd prime number 1 prime to the absolute discriminant D(2) of 2. Denote
by e« the unit group of the corresponding field K. of a proper fixed 3-extension
£ over 2 and by H'(3, e) resp. H'(B, e) the O-th resp. the first cohomology
group of the B-module e.. Furthermore, let A, be any subgroup of the direct
product of ro groups all isomorphic to 3B, where rq is the dimension of the
unit group e of 2, and set A= A, *xX 3. Then there are infinitely many fixed

B-extensions « over 2 such that we have H'(3, e) = A, H'(3, e) = A,.

It is easily seen that Theorem 1 and Theorem 2 hold even in the case
where the order of the cyclic group 3 is not a power of a single prime
number ! but an odd natural number prime to the absolute discriminant D(Q)

of 2.
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