COVID-19 Admission Screening, and Assessment of Infectiousness at an Academic Medical Center, Iowa 2020

Authors: Mohammed Alsuhaibani MBBS1,2, Takaaki Kobayashi MD1, Alexandra Trannel MS1, Stephanie Holley MBA1, Oluchi J. Abosi MBChB1, Kyle E. Jenn RN1, Holly Meacham RN1, Lorinda Sheeler PhD1, William Etienne MD1, Angelique Dains RN1, Mary E. Kukla BSN1, Emily Ward RN1, Bradley Ford MD1, Michael B. Edmond MD1, Melanie Wellington MD1, PhD, Daniel J. Diekema MD1, Jorge L. Salinas MD1

Affiliation:

1University of Iowa Hospitals & Clinics, Iowa City, Iowa
2Department of Pediatrics, College of Medicine, Qassim University, Qassim, Saudi Arabia

Corresponding author: Mohammed Alsuhaibani
Email: moa.alsuhaibani@qu.edu.sa; Tel: 319-930-9608; Fax 319-384-7208
University of Iowa Hospitals & Clinics; 200 Hawkins Drive, SW34 GH, Iowa City, IA 52242

Alternate corresponding authors: Jorge L. Salinas
Email: Jorge-salinas@uiowa.edu; Tel: 319-356-8708; Fax 319-384-7208
University of Iowa Hospitals & Clinics; 200 Hawkins Drive, SW34 GH, Iowa City, IA 52242

Keywords: SARS-CoV-2, COVID-19, admission screening, Cycle threshold values

Conflict of interest: None.

Text: (word count: 2692)
Abstract

Objective: Patients admitted to the hospital may unknowingly carry SARS-CoV-2 and hospitals have implemented SARS-CoV-2 admission screening. However, because SARS-CoV-2 RT-PCR may remain positive for months after infection, positive results may represent active or past infection. We determined the prevalence and infectiousness of patients who were admitted for reasons unrelated to COVID-19 but tested positive on admission screening.

Methods: We conducted an observational study at the University of Iowa Hospitals & Clinics from July 7 to October 25, 2020. All patients admitted without suspicion of COVID-19 infection were included and medical records of those with a positive admission screening test were reviewed. Infectiousness was determined using patient history, PCR cycle threshold (Ct) value, and serology.

Results: A total of 5,913 patients were screened and admitted for reasons unrelated to COVID-19. Of these, 101 had positive admission RT-PCR results. Thirty-six patient were excluded because they had respiratory signs/symptoms on admission on chart review. Sixty-five patients (1.1%) did not have respiratory symptoms. A total of 55 patients had Ct values available and were included in this analysis. The median age was 56 years, and (51%) were male. Our assessment revealed that 23 patients (42%) were likely infectious. The median duration of in-hospital isolation was five days for those likely infectious and two days for those deemed non-infectious.

Conclusions: COVID-19 infection was infrequent among patients admitted for reasons unrelated to COVID-19. An assessment of the likelihood of infectiousness using clinical
history, RT-PCR Ct values, and serology may help discontinuе isolation and conserve resources.

Background:
Coronavirus disease 2019 (COVID-19) is a major threat to health care systems and public health worldwide. There have been various policies implemented to mitigate COVID-19 transmission in health care facilities, such as symptom screening for healthcare personnel (HCP) and visitors, optimizing personal protective equipment (PPE), and social distancing\(^1\). Because COVID-19 results in a large proportion of asymptomatic infections (~50%), asymptomatic individuals may contribute to virus transmission in healthcare settings\(^2,3\). Identification of COVID-19 cases early on during their hospital admission could direct interventions to reduce in-hospital transmission and prevent COVID-19 hospital outbreaks. Moreover, hospital admission and serial testing for COVID-19 has been implemented to prevent nosocomial transmission via early isolation and PPE use guidance\(^4,5\).

Knowing each person's COVID-19 status may prevent COVID-19 from spreading in the community and health care facilities. COVID-19 has a mean incubation period of five days, and most patients are infectious for fewer than ten days\(^6-8\). While reverse transcription-polymerase chain reaction (RT-PCR) is widely used for COVID-19 detection, it may remain positive for months after acute infection. Prolonged positivity may represent remnant viral RNA from a past infection instead of persistent infection\(^9-11\). Real-time RT-PCR cycle threshold (Ct) values is the number of nucleic acid amplification cycles needed for the target gene to cross a threshold level. Ct values may
correlate inversely with nucleic acid concentration in a sample. However, Ct values have certain limitations, such as variation based on the type of collected specimen and different thresholds in correlation with positive viral cultures13-15. Ct values can help determine the patient’s infectious status and need for isolation if used in the context of patient history, serology, and previous RT-PCR results16-18. Although transmission-based precautions are essential to prevent infection spread, unnecessary isolation might lead to extra cost and time for health care facilities. Though the utility of COVID-19 admission screening with RT-PCR testing has been reported19, the use of Ct values on admission screening has not been fully explored. In addition, the proportion of patients with positive admission screening who are likely infectious is not well known. This study determined the prevalence of COVID-19 and infectiousness of patients who were not admitted for COVID-19 but tested positive for COVID-19.

Methods:

The University of Iowa Hospitals & Clinics (UIHC) is an 811-bed academic medical center. On June 11, 2020, COVID-19 RT-PCR screening testing of all patients on admission regardless of symptoms was initiated. UIHC has separate COVID-19 test orders for symptomatic and asymptomatic patients. If the patient has symptoms consistent with COVID-19, an order labelled “symptomatic PCR” is entered. If the patient has no symptoms consistent with COVID-19, or if the test is done as part of surveillance (admission or pre-procedural testing) an order labelled “asymptomatic PCR” is entered. We conducted a single-center observational study of patients without suspicion of COVID-19 who tested positive in RT-PCR upon admission screening. All
patients with positive asymptomatic PCR test orders admitted from July 7 to October 25, 2020, were included in this study. The reason for admission was considered unrelated to COVID-19 when the screening was done using the asymptomatic PCR test order. We prospectively included all patients with positive asymptomatic tests on admission. Then, we reviewed their medical records to ensure they did not have respiratory signs/symptoms consistent with COVID-19. We excluded patients with respiratory signs/symptoms compatible with COVID-19 at the time of admission, and patients without available Ct values. RT-PCR admission screening was performed via nasopharyngeal swab using the TaqPath COVID-19 Combo Kit (ThermoFisher Inc.). Tests were processed according to the latest Instructions for Use under Food and Drug Administration (FDA) Emergency Use clearance which, over the course of this study, saw evolution of the interpretive software to minimize false positive results as well as other minor changes collated in current Revision J of the package. Throughout, samples were extracted with a ThermoFisher KingFisher Flex instrument and PCR reactions were performed on a QuantStudio 5 thermocycler per the manufacturer's instructions. Prior to August 2021, we used a centrifugation and vortexing procedure that minimized false positive calls generated by the interpretive software. By protocol we manually inspected all amplification curves to exclude these early errors, wherein mixing and boundary-layer optical effects generated baseline noise that was interpreted in rare instances as a positive result by the interpretive. Our convention for reporting positive results was concordant with current Revision J of the ThermoFisher protocol, wherein either two positive targets (of three) or one positive target confirmed through retesting defined a positive result. Procedures and yield of the assay therefore did not
change substantively over the course of the study and the rise of S-gene PCR dropout strains such as B.1.1.7 was unlikely to effect positive-result calling with manual inspection of data, the presence of the ORF1ab and N-gene targets, and the stated interpretive criteria that do not require amplification of all targets. For serology testing, Roche assay was used to determine SARS-CoV-2 total antibodies. If the specimen was positive via Roche assay, it was tested by DiaSorin SARS-CoV-2 IgG assay.

The outcomes were: 1) prevalence of SARS-CoV-2 positivity among patients who were admitted for reasons unrelated to COVID-19, 2) infectiousness (i.e., likely infectious and likely non-infectious, more details below) in those with a positive test admitted for reasons unrelated to COVID-19, 3) the duration of in-hospital isolation for patients deemed likely infectious 4) their estimated additional cost due to COVID-19 isolation per day, and 5) exposure events by patients who were likely infectious. Data were obtained from the electronic health record, including age, sex, admission diagnosis, symptoms, mean RT-PCR cycle Ct values for N, S, and ORF1ab genes, and COVID-19 serum antibodies. Infectiousness was determined by the UIHC Program of Hospital Epidemiology. Information on isolation time and exposure events for HCP and patients with their follow-up COVID-19 test results were obtained from a dataset previously created by the Program of Hospital Epidemiology. The median duration for in-hospital isolation was calculated based on first to last day of hospital isolation or discharge date if isolation was not discontinued during hospitalization. Two hospital epidemiology fellows (M.A. and T.K.) reviewed patients' medical records and the dataset, and one infection preventionist (A.T.) collected Ct values for all patients with positive RT-PCR admission screening.
Infectiousness was determined using patient history, Ct value, and serology. Infectiousness was categorized into: likely infectious if Ct values ≤29, and likely non-infectious if two samples (or one if only one available) had Ct values ≥30 +/- positive SARS-CoV2 serology and/or history of a positive PCR or antigen result in the past 90 days if available. We used Ct value of < 29 for likely infectious patients based on studies that showed no viral growth in culture when CT value > 3015,22,23. Serology (IgM & IgG antibodies) or repeated PCR tests were used in some cases to add certainty for discontinuing isolation in some cases (e.g., past infection). All HCPs wore medical grade face masks and eye protection for all patient care. In our hospital, we use the time-based U.S. Center for Disease Control and Prevention (CDC) protocol to discontinue isolation24. In-hospital exposure events were traced only for likely infectious patients.

Estimated additional cost due to isolation per day was calculated as [(donning and doffing time x hourly salary of each HCP x room entries per patient room/day) + (cost of PPE items x room entries per patient room/day)]. The cost of PPE, PCR and serologic testing, and hourly staff salary were obtained from our institution's human resources and procurement services. PPE included masks, N95 respirators, gowns, gloves, and eye shields. The frequency of room entry was calculated by asking COVID-19 unit personnel to log entry and exit times in a log. PPE donning and doffing time were obtained by observing 20 randomly selected COVID-19 inpatient rooms during infection prevention team rounds. The frequency of room entries and donning and doffing time were collected over a one week period and were used to calculate the total cost. Observations were conducted at both intensive care and non-intensive care units.
The cost of PPE, and PCR and serologic testing were based on post-COVID-19 pandemic cost per each in U.S. dollars.

This study was approved by the Institutional Review Board of the University of Iowa. We used Stata Statistical Software (College Station, TX: StataCorp LLC) to present and describe the data.

Results:

From July 7 to October 25, 2020, a total of 5,913 patients were admitted for reasons unrelated to COVID-19 and screened for SARS-CoV-2. Of these, 101 had positive RT-PCR results. Thirty-six patients (34%) were excluded because they had COVID-19 symptoms on chart review, leaving a total of 65 (1.1%) who were admitted for reasons unrelated to COVID-19, of whom 55 had Ct values available and were included in this analysis.

The median age for patients admitted for reasons unrelated to COVID-19 who tested positive was 56 years (range 0–91). Twenty-eight (51%) were male and three (5%) were <18 years. The most frequent admission reasons were neurological (36%), gastrointestinal (16%), and trauma (16%).

Serologic testing was done for 19 (35%) patients and it was positive for eight patients, indeterminate for two patients, and negative for nine patients. Follow-up RT-PCR testing was performed in 23 patients (42%) and was negative in 14 patients. The median time of follow-up testing was two days (range 1–17 days). The final interpretation by the hospital epidemiology team revealed 23 cases (42%) were likely infectious and 32 (58%) likely non-infectious. Nine patients were categorized into the
likely non-infectious category based on a single Ct (≥30) value and lack of repeated or previous testing. All patients were discharged from the hospital except for two patients who died due to arrhythmia and extensive subarachnoid hemorrhage. Of 23 likely infectious patients, six were placed in non-COVID-19 semi-private rooms before admission screening was available. These six cases led to seven exposures (six patients and one HCP). Of the six exposed patients, three were not tested because they had recently recovered from COVID-19, two patients died due to non-COVID-19 reasons before the testing date, and one patient was discharged and did not return for follow up testing. The HCP was exposed through an aerosol-generating procedure without proper protection and tested negative. Of 23 patients without fever or respiratory symptoms but deemed likely infectious on admission, a total of 11 (47%) developed fever or respiratory symptoms during their hospital stay (mean Ct value 21).

The average time spent for donning and doffing before entering a COVID-19 patient room was 140 seconds (range 100–180). The mean frequency of patients' room entry was as follows: 13 times for nurses, five times for respiratory therapists, and four times for physicians (22 room entries per patient room/day). The median duration of isolation for likely infectious patients was five days (range 1–10), while the median duration of isolation in likely non-infectious patients was two days (range 1–2). The cost of COVID-19 PPE was $162 per patient room/day. Because non-infectious patients remained in isolation three days less than infectious patients, non-infectious patients were associated with 264 fewer PPE items and at least $486 less cost per admission. The PCR cost was $33.5 per test and the average serologic testing cost was $21 (range
$11-$31). The estimated excess testing cost based on our strategy was $54.5 per admission.

Discussion:

Evaluating Ct values, history, and serology for patients with positive RT-PCR testing on hospital admission was helpful to determine patient's infectiousness. Our study demonstrated a low prevalence of SARS-CoV-2 positivity (~1%) in patients admitted for reasons unrelated to COVID-19. Most patients were likely non-infectious (58%). We were able to discontinue isolation three days earlier than for those deemed likely to be infectious. Estimating COVID-19 infectiousness on admission helped us preserve PPE and other hospital resources.

Previous studies revealed that SARS-CoV-2 positivity on admission screening or pre-procedural screening was seen in 0.3–13% of asymptomatic patients5,18,19. In low COVID-19 prevalence areas, universal hospital admission testing does not yield a considerable number of asymptomatic COVID-19 cases as community incidence rates may correlate with the incidence of asymptomatic cases25,26. In our study, we found that positive SARS-CoV-2 RT-PCR in patients admitted for reasons unrelated to COVID-19 represented only 1.1% of hospital admissions. The wide range of positivity in different studies is likely due to different definitions of symptomatic vs. asymptomatic and community incidence. Identifying and isolating all persons with COVID-19 is critical in health care settings to prevent nosocomial transmission and outbreaks. Therefore, we decided to continue this strategy of COVID-19 admission screening for all admitted patients.
One novel aspect of our study is the assessment of infectiousness of COVID-19 using Ct values in conjunction with clinical history, and serology in patients not suspected of having COVID-19. Persistent RT-PCR positivity for a long duration beyond the infectivity period has been reported7,22,27. Bullard et al. documented that a combination of COVID-19 duration of symptoms and RT-PCR Ct values may determine COVID-19 infectivity15. However, previous studies evaluating the utility of admission screening did not use this strategy and could not evaluate infectiousness in asymptomatic patients with positive RT-PCR25,26. In our study, we found that 58\% of patients admitted for reasons unrelated to COVID-19 who tested positive were likely non-infectious. This result suggests that hospitals may conserve PPE, HCP time and cost for patients who are likely non-infectious.

The risk of COVID-19 exposure and transmission in healthcare facilities has been reported in the literature, particularly at the peak of the pandemic28,29. However, determining the source of transmission (community vs. healthcare associated) is still ambiguous because of increasing COVID-19 cases in the community and symptoms of COVID-19 that could start beyond 48-72 hours of hospital admission30. Patients hospitalized in shared rooms have a higher risk of exposure and limiting use of shared rooms has been suggested to minimize the possibility of infection transmission28. In our experience, most of exposed persons were patients in shared rooms (6/7, 86\%). Because most exposures happened in a shared room while waiting for admission screening results, asymptomatic patients with a pending COVID-19 admission screening may need to be admitted to a private room.
Determining the need for isolation precautions is essential to prevent nosocomial transmission. The use of a PCR assay that returns lower Ct values (ThermoFisher), on average, than most commonly used assays likely resulted in a conservative estimate of infective patients, therefore promoting safety. However, there is still a need for further standardization of CT values for comparison and portability of our methods into other institutions using different PCR assays. During the COVID19 pandemic, PPE supply chain and stockpiles were tremendously affected, which stressed healthcare systems. Several urgent interventions such as PPE reprocessing and reuse were implemented to preserve PPE supply. We found that our strategy to determine the infectivity of asymptomatic COVID-19 patients helped us shorten in-hospital isolation time by three days, therefore preserving PPE. Hospitals with limited PPE or private rooms are likely to benefit most from this strategy and might be able to utilize hospital resources more effectively.

Our study has several limitations. It was performed in a single academic center and the results might not be generalizable. The asymptomatic patients were not followed beyond the date of discharge for the development of symptoms. There was a possibility of patient or provider bias when providing or collecting symptom data, which may impact the type of test order (symptomatic Vs. asymptomatic). Observations investigating room entries and time for donning and doffing were not conducted for all COVID-19 cases but on randomly selected COVID-19 inpatients. The costs saved by earlier discontinuation of isolation was an estimated cost for PPE that utilized by HCP and their time during donning and doffing in intensive care and non-intensive care units. Because this analysis used real world infection prevention and clinical information, not
every patient had complete data for infectiousness evaluation. Also, Ct values can vary enormously between different samples and laboratories36. Despite these limitations, our experience of estimating admitted asymptomatic patients' infectiousness and exposure events via Ct values targeting three genes may be helpful to other health centers.

Conclusion

COVID-19 was infrequent among patients admitted for reasons unrelated to COVID-19. An assessment of the likelihood of infectiousness utilizing history, RT-PCR Ct values, and serology may help discontinue isolation and save PPE and hospital resources.

Funding: No funding.

Conflict of interest: All authors report no conflict of interest.
References:

35. Implementing Filtering Facepiece Respirator (FFR) Reuse, Including Reuse after Decontamination, When There Are Known Shortages of N95 Respirators. Centers for Disease Control and prevention.