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§ 0. Introduction

The purpose of this paper is to investigate way of dependency of
Gaussian random fields X(D) indexed by a domain D in d-dimensional
Euclidean space Rd. Our main tool is variational calculus, where the
boundary of a domain varies and deforms and we appeal to the white
noise analysis. We therefore assume that X(D) is expressed white noise
integral of the form

(0.1) X(D) = X(D, W) = ί F(D, u)W(u)du,
J D

where W is the Rd-parameter white noise and the kernel F(D, u) is a
square integrable function over Rd, and where D is a bounded domain
with smooth boundary.

Our first interest is in the canonical property of the representation
(0, 1), which claims that the white noise W can be obtained from X(D)
by certain linear operations. In case this is realized, then the W plays
a role of the innovation for a Gaussian process with one-dimensional
parameter.

Profound and, in fact, interesting results have been obtained in line
with the canonical representation theory for Gaussian processes. Among
others two approaches will be presented in this paper as are mentioned
below:

1) The parameter D is taken to be a ball

Ba = {ueRd; \u\> < (u, a)}, aeRd,

and F(D, u) is assumed to be of the form F(a, u) = F(Ba, u) which vani-
shes on the boundary of Ba. Set X(Ba) = X(a), a = (al9 σ2, , ad)eRd.
If the partial derivatives of X(ά)
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exist, then they give us, as is prescribed in Section 2, the white noise
W (see Theorem 2.3). There the Hole theorem plays an important role.
We shall see further that a property like multiple Markov property is
proved for fields with kernel functions of particular type.

2) The second case is concerned with variational calculus. To fix
the idea, we shall restrict our attention to the two dimensional parameter
case (in Section 4 and Section 5). The random fields to be discussed are
expressed in the form

(0.2) X([CJ)= f F(u)W(u)du9

where [Ca] = Ba is a disk with boundary circle Ca with diameter oa.
The circle is deformed by conformal transformations and their infinitesimal
deformations give us variations of X([Ca]). As a result, we are given a
Gaussian random field of the form

(0.3) Y(Ca)=[ F(u(s))W(u(s))ds.

Again, by applying certain conformal transformations to the parameter,
the white noise W is formed out of Y(Ca). The well known theory of
irreducible unitary representation of linear groups provides an essential
tool for our purpose.

It is our hope that our discussion would be generalized to the case
where the parameter space is more higher dimensional.

§ 1. Background

This section is provided for a brief review of some known facts on
white noise analysis.

We start with a GeΓfand triple:

E c L\Rd) c E* ,

where E is a nuclear space and E* is the dual space of E. For a given
characteristic functional

(1.1) C(ξ) = exp [ — I | | f | | 2 j , ξeE,\\.\\ the L2(i?d)-norm,
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WHITE NOISE TO GAUSSIAN RANDOM FIELDS 95

a probability measure μ is introduced in the space E* in such a way

that

(1.2) C(£)= ί
J E*

The measure μ is called a w /ute rco/se measure and μ-almost all cei?*

are viewed as sample functions of white noise.

The Hubert space (L2) = L\E*, μ) is the collection of all the func-

tionals of a white noise with finite variance. A member of (L2) is often

called a Brownίan functional or a white noise functional.

A rotation g of E is a linear isomorphism of E such that

||££|| = | i α for any ξeE.

The collection of all rotations of E, denoted by O(E), forms a group.

This group 0(E) is called the rotation group of E, or sometimes it is called

an infinite-dimensional rotation group without specifying E.

For any g e O(E), we can find the adjoint g* of g in such a way that

(1.3) <x,gξ> = <g*x,ξ>, * e £ * , ξeE.

The collection of all such g* with geO(E) again forms a group and is

denoted by O*(£*):

If we define the product g* ° μ by

(g*oμ)(B) = μ(g*B)9 BaE*,

then the equality

(1.4) £ * o /i = μ

is valid for all g* e 0*(-E*), i.e. the μ is O*CE*)-invariant.

Coming back to the rotation group O(E), there are some important

subgroups of O(E) called whiskers: They are one-parameter subgroups of

O(E) satisfying the following conditions.

(1.5) ( i ) (gtξ)(u) = ξ(Uu))
1/2

ueR«,

w h e r e J - ψ , = ( M - ) i,j = l,...,d,ft = (ψ], • • , ψ f ) .

( ϋ ) gt°gs = gt+s

(iii) g4 is continuous in t.
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We are specifically interested in the following four kinds of particular

whiskers :

(1.6) (1) shifts S{:
i

(S{ξ)(u) = ξ(u - tes\ ej = (0,'.>,l9...,0)eB*,j = l,...,d

(2) isotropic dilation τ£ :

(τtξ)(u) = ξ{eιu)e^\ u e R\

(3) rotation ϊe

U3:

(ϊW(u) = ξ(r'itju),

where r9

Uj e SO(d) stands for the rotation of Euler angle θ in the (xt, xs)-

plane, i Φ j , ί, j = 1, . ., d.

(4) special conformal transformations κ{ = VoS{to\

(K!S)(U) = ξ(^ u-*WeJ, Λ ( l - 2tu) + ?\u\rd/\ j = l,-'-,d,

where to is the reflection with respect to the unit sphere.

There are good commutation relations among their infinitesimal gen-

erators of these whiskers, which form a {d(d + 3)/2 + l}-dimensional real

simple Lie algebra. Specially three classes of whiskers (2), (3) and (4)

have an important property, which is the so-called "Conformal invariance

property" of white noise. For details, see [10].

§ 2. Canonical representation

In this section we discuss canonical representations of Gaussian

random fields in terms of white noise, where the parameter space is Rd,

d > 2. We are particularly interested in the "canonical property" of a

Gaussian random field given by white noise integral of the form

(2.1) X(aiW)=[ F(a, u)W(u)du, aeR\

where F(a, u) is a (locally) square integrable function of u indexed by α.

Having been suggested by Hida's theory of representation for one-

dimensional case (see [4]), we shall adopt the following definition.

DEFINITION 2.1. The expression (2.1) of a Gaussian random field

X(a, W) is canonical if for any r > 0, the following equality holds :

(2.2) σ{X(a, W): ae S(r)} = *[ [ ls,r)(u)ψ(u)W(u)du: ψ e L2(S(r))
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where Xsir) is the indicator function of the ball S(r) with radius r and where

σ{ } means the σ-field generated by the random variables in the bracket.

It seems difficult to find the canonical property of a general Gaussian

random field of the form (2.1), so that we start with Gaussian random

fields having special kernels. Such kernels do not come accidentally,

but they do under the view of conformal invariance property of white

noise, where the kernel [(α, u) — \uf] plays an important role (see [10]).

Hence we propose the following Gaussian random field:

(2.3) X(a, W) = JXBa(u)P[(a, u) - \uf]f(u)W(u)du,

where Ba is the ball with diameter oa.

Before we come to this Gaussian random field, we cite

THEOREM 2.1 (Hole Theorem [18]). Let f be a continuous function

with compact support. Suppose that the Radon transform Rf of f vanishes

on every hyperplane not intersecting a fixed compact convex set X. Then

f is zero outside of K.

We are now in a position to state

THEOREM 2.2. The Gaussian random field (2.3) is canonical if f is

not equal to zero almost everywhere and rapidly decreasing at zero, and if

P satisfies the following conditions: there exists a natural number k such

that

P e C(fc) and P(0) = . .. = P<fc~2)(0) = 0, P(fc-»(()) Φ 0 .

Proof. If (2.3) is not canonical, then there exist r0 > 0 and g e L2(S(rQ)),

g Φ 0, such that

(2.4) J **»P[(α, u) - I uf]f(u)g(u)du = 0 ,

for every a e S(r0). In order to use spherical harmonics expansion, let

the product XBa{u)P([a, u) — \uf\ be expressed in terms of the polar coor-

dinates :

P[\a\\u\(a\ K') - \uf] = XBa{u)P[(a, u) - \uf],

where a' = α/|α|, υ! = u\\u\. Then PeUiS*-1 X Sd~ι] as a function of a!

and u'. By the Funk-Hecke Theorem (cf. [16]), we have

(2.5) P[\a\ \u\(a', ur) - \u Σ
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where Δ = {(m, k); m > 0, 0 < k < h(m)} with

m + d — 2 V m J

and where

(2.6) pj\a\, \u\) = K Γ P[\a\\u\t - \uf]C^-^(t)(l - tγ
J \u\/\a\

Here C%~%)β is the Gegenbauer polynomial of degree m, and &m is the

normalizing constant.

Similarly, for Qflwli/] = f(u)g(u), we have

(2.7) Q[\u\u']= Σ q*,*(\u\)S*,ti(u'),
(m,k)eJ

where qmΛ(\u\) = *4 f Q[\u\u')Sm,k(u')dσ(u') .

Now, inserting (2.5) and (2.7) into (2.4), we get

(2.8) Σ KSm,M') ΓPΛM, s)qUs)si-ids = 0, |α| ̂  r0.
(TO,*) JO

This yields the equation

(2.9) ΓpJIαl .βJg^^s '^dsΞO, 0 < \a\ < r0> (m,fe)eJ.
Jo

From (2.6) and (2.9) we have

P ' g ^ y - ' i f P[|Φ* - s2]C -̂2>/2(0(i - tψ-^dλds = o,
JO Us/|α| J

for any (m, k) e Δ .

By changing the order of integration, we get

(2.10) Γ C%-iy\t)(l - tψ~*)/ι{ * }dt ΞΞ 0, (m, A) e Δ ,
JO

where {*} is a function of t expressed in the following form:

(2.11) Γ'q^ismialst-s^-'ds.
Jo

By [15], the expression (2.11) must be a polynomial of t with degree

less than m. But qm,k(s) is a rapidly decreasing function of s and therefore

we come to know the expression (2.11) must be zero i.e.,
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(2.11') ίXqm,k(s)P(xs - s^-'ds = 0, 0 < x = \a\t < r0, (m,k)eΔ.
JO

This is a well known Volterra integral equation. The hypothesis on P

guarantees that qm,k(s) Ξ O , 0 < s < r0, for any (m, h) e Δ. (See [19]). We

then conclude that Q(\u\uf) = f(u)g(u) = 0.

While the hypothesis on f(u) Φ 0 implies that g(u) must be zero,

which contradicts the choice of g(u) is not zero. This completes the proof.

Remark. The function P(y) in Theorem 2.2 can be replaced by R(y)

such as

R(y) = y-βR(y), 0 < β < 1,

(Also see [19]).

The simplest example of P(y) in Theorem 2.2 is P(y) = yA', that is,

Then the Gaussian random field

(2.12) X(a) - ί [(a, u) - |w|2]^/(w)W(w)d^

is iV-times differentiable for any / satisf^ng the assumption given in

Theorem 2.2. For such a random field, a partial converse holds.

THEOREM 2.3. Let a Gaussian random field X(a) be given by

(2.13) X(a, W) = ί F(a, u)f(u)W(u)du ,
jBa

where F(a, u) is a polynomial in the variables of a and u, where f(u) Φ 0

is a rapidly decreasing function at zero.

(1) If X(a) is N-times differentiable, then F(a, u) must be of the form

F(α,M)= [(a,u)-\u\ψFN(a,u),

where FN(a, ύ) does not vanish almost everywhere on the boundary of Ba.

(2) // dN/(daildaί2 - daiN)X(a) is an additive process for some ίu i2,

-, ίN, then the kernel FN(a, u) in (1) must be independent of a.

Proof. (1) Suppose that (2.13) is differentiable. Then, the difference

X(af) - X(a) = f [F(a\ u) - F(a, u)]f(u)W(u)du

(a', u)f(u)W(u)du
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should have the variance of order O(\a' — af). Noting that

ί'
is order O(\a' — α|), we can see that F(a, u) must be zero on the boundary

of Ba. Hence we can claim t h a t F(a, u) has a factor (α, u) — \uf\

F(α, u) = [(a, u) — \uf]Fx{a, u), Fx\ a polynomial.

Repeating this argument as many times as N, we finally come to the

conclusion.

(2) For the proof, we refer to [11].

Remark. The random field defined by (2.12) may be said to be an

(N + l)-ple Gaussian Markov field in the restricted sense, being a higher

dimensional generalization of this notion introduced in the paper [4] by

Hida.

§ 3. Restriction of parameter

We now pause to prepare some background in order to apply the

linear operator to Gaussian random fields. The basic idea is the following:

When we apply variational calculus for Gaussian random fields, we are

given their values on the boundary of a domain in question. Namely,

the parameter is restricted to a lower dimensional manifold. Further,

we have to deal with the field even when the boundary is made to

deformed. We therefore provide necessary background systematically in

order to carry on the analysis of fields when the parameter is restricted.

There is a convenient tool, for this purpose, called the causal calculus.

As in [6], [14] we introduce stochastic partial differential operator such

as

(3.1) dt; teRd.

It actually stands for a partial differential operator dj(dW(t)) acting on

functionals f(W) of white noise. Since f(W) can be thought of as

f(W(t\ teRd\ where W(t), teRd, is taken to be the system of variables

of /, it is reasonable to introduce a partial derivative in the variable

W(t), t being fixed.

The adjoint operator df for dt can be defined in a usual manner.

Namely,
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(3.2) <dtf(W), g(W)> = <f(W), dfg(W)} .

It can easily be seen (see [13], [14]) that each df plays the role of the

creation operator acting on the space of generalized white noise func-

tionals.

We have, in particular,

(3.3) f f(t)dfldt={ f(t)W(t)dt, feU(R').
J Rd J Rd

Denote the operator ί f(i)d*ldt by W(f).
J Rd

As is discussed in the paper by Hida, Lee and Si Si [11], the integrand

f can be a generalized function, which is often taken from the space

H-{d+ί)/2(Rd), the Sobolev space over Rd of order — (d + l)/2. For example,

in the case where the generalized function is supported by a manifold

M (ci? d ), the integral (3.3) may be viewed as a smeared Gaussian random

variable by a generalized function defined on the parameter set M. Note

that M may be a lower dimensional manifold.

The above assertion can be justified by the following observation.

Suppose / in (3.3) is an H~{d + ί)β(Rd)-ϊunction. Then, we can provide a

test functional which is a Gaussian random variable given by

(3.4) jξ(t)W(t)dt= W(ξ),

where ξ e H^d + ί)/\Rd). The bilinear form < W(f), W(ξ)} has the value </, ?>

as is well known. Note that </, ξ) = </, ξM} holds, where ξ* is the

restriction of ξ to M. This means that / may be viewed as a (generalized)

function on M. Now, coining back to W(f), we understand that, so far

as / runs through the class of generalized functions with support M, W(f)

can be dealt with as if it were a linear functional of the white noise on

M evaluated at /, although it can never be an ordinary white noise

functional. For details, see [9].

Remark. Here one can also see an advantage of using the integral

representation introduced in [5].

§ 4. Subgroup of C(2)

In this section we restrict our attention to the two-dimensional

parameter case. The conformal group is now C(2), which involves two
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shifts, the isotropic dilation, the rotation on R2 and two special conformal

transformations. Now introduce a notation g which denotes a diίfeomor-

phism of J?2 = i?2U{oo} such that ge C(2) can be expressed in the form

(gξ)(u) = ξ(gu)\J(gu)\1/2, J being the Jacobian.

We set

= {g; geC(2)}.

Let S be the collection of all plane circles and let So be the subset

of S which consists of circles passing through the origin. There are two

interesting subgroups of C(2) in connection with So:

ίo = {geC(2): gS0 = S0],

ϊ(Ca) = {ge C(2): gCa = Cα}, Ca e So,

where Ca is the circle having a as the antipodal point to the origin.

It is easy to see that Jo is generated by {ΐβ, τt9 it], £?}. This group Jo,

acting on So, is transitive.

The family {/(Cβ); αei?2} is a system of subgroup of the Io such that

ϊ(Ca) Π /(Cδ) = {identity map}, a Φ b. Every member of the ϊ(Ca) comes

from the suitable combination of [τt, κ)9 ίc
2

t}. To find an expression of the

member of ϊ(Ca), a = (au a2), set

(4.1) g\ = τlos{1^ait)κi i = 1, 2 ,

where r is a function of t. Noting the commutation relation

we take τ to be (log(l — (1$)/^ so that g\ becomes a one-parameter

group, i = 1, 2.

The infinitesimal generator ĉ  of g\t] turns out to be

(4.2) ί = 1, 2,

where τ and /c* are infinitesimal generators of τt and A:J, respectively.

The commutation relation between ai9 i = 1, 2, is

(4.3) [au a2] = a2κ' - axκ
2

If we set β = α^z — θ2«i> then we have
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[at9 β] = atβ9 i = 1, 2.

Summing up these results, we obtain

PROPOSITION 4.1. Let Cα, a = (au α2), be given. Then the infinitesimal

generators {at} of {gϊ} span a two-dimensional Lie algebra:

(4.4) V[au a2] = V[au β], a, φ 0,

= V[a2, β], α2 φ 0,

where V is the vector space with the product in (4.3).

§ 5. Variational calculus based on conformal group

We are now in a position to investigate the Gaussian random field

X(a), a e R2, by exploiting the one parameter groups that have been pre-

pared in § 4.

Let X(a) be given by

(5.1) X(a)= f F(u)W(ύ)du,
J Ba

where F(u) is a locally square integrable function.

First, we apply κ\ to X(a) to obtain

(5.2) (
dt

= f F(u)~^-\u\2W(u)dύ + [ {κιF){u)W{u)du,
J Ca \a\ J Ba

where the dύ, in the first integral, denotes the line elements ds and

where W(ύ), in the first integral, must be understood as the restriction

of W to the boundary Ca as was discussed in Section 3,

Similarly, applying κ\ and τt to (5.1), we get

(5.3) (<UO(α) = A (
at

= f F(«)-^-|«P^(«)dδ+ f (JF)(u)W(u)du,
J Ca I (Z j w 5 α

and

(5.4) (δ,X)(a) = ^-(τ tX)(α)
αί ί=o

= f F(u)Άw(u)dύ+[ (τF)(u)W(u)du,
JCa \a\ JBa
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respectively.

In the equations of (5.2), (5.3) and (5.4), the two integral can be

discriminated by evaluating their variances; more precisely, the first term

is of infinite order from our understanding that the kernel function is a

generalized function, while the second term has order 0{*Jδa), where da

denotes the differential of a e R2. We can therefore choose the first

integral terms which are dominant.

Now the first integral can be rewritten as the following expression:

(5.5) Y(a) = Y(Ca) = ί G(a, u(s))W(u(s))ds,
J Ca

where we should note that G(α, u)(ll\u\)2 is a square integrable function.

This looks like an ordinary Gaussian random field. We can therefore

apply to the Y(a) the transformations that come from the prepared one

parameter groups {g\\ and we obtain the following expressions:

For g], we have

(5.6) (δgιY)(ca) = j L ( \
aτ U=o

- f {axG)(μ)W{u)(r* + r/2)mdu(s),
J Ca

where r = a^cosθ + a2sinθ, r' — —a^smd + a2cosθ, and where θ — s/\a\

— ta.n~1(aila2).
Similarly, for g2

τi we have

(5.7) (δg>Y)(Ca) = 4-
aτ

= ί (a2G)(u)W(u)(r
J c*

Without loss of generality, we may set a — (0, α2) to avoid unessential

complexity. With this assumption we observe the following transforma-

tions. By the reflection to, the elements u = (u9 v) e Ca, g\u e Cα, and

glu e Ca are transformed to

JL(ϋfi), I ( U H U ) and J_(β-ϋ,l),
a2 \v / a2 \v / a2 \ v /

respectively.

Then g\t] plays as translation operator, while g}t} does as the dilation

operator. If we add the operator refα, which is the reflection with respect
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to the line passing through the origin and its antipodal point α, then the

group ©α generated by the subgroups {g\t}, g\t)9 refα} admits an irreducible

unitary representation on the Hubert space spanned by the W(f), f being

a function on Ca. Thus, if we invoke the result by GeΓfand and Naimark

[3], we can pick out the white noise W(ύ), ueCa, and eventually W(ύ),

u e R2, out of the original random field X(a), a e iϋ2. From this result,

the {VF(w)} may be thought of as a generalization of "innovation" using

the action of the group C(2).

Now we summarize the above results as a theorem:

THEOREM 5.1. Let X(ά) be the Gaussian random field given by the

formula (5.1). Then,

(1) we can fcrm Gaussian random fields Y(a) as in (5.5) by applying

ϊ(Ca) to X(a) in (5.1):

(2) we can recover the original white noise W(u) by applying the

transformation group ©α to Y(a).

Concluding Remark

Before closing this article, we state some remarks.

In Section 4 and Section 5, we have used variational calculus for

only two-dimensional case and the domain of integration are chosen from

much restricted class i.e. Ca, a e i?2.

It seems that there are at least two directions for further development

in line with our approach:

(1) generalization to higher dimensional case, and

(2) generalization of the choice for domains of integration

For the first direction, an innovation process may be obt; d, using

C(d), d > 3, by a similar but somewhat more complicated nmtiiod with

the same idea.

For the second direction, we note that some results for a more general

class of curves are reported in Si Si [17] and in Section 5 of Hida and

Si Si [12].
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