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PULL-BACKS IN HOMOTOPY THEORY 

MICHAEL MATHER 

Introduction. The (based) homotopy category consists of (based) topo­
logical spaces and (based) homotopy classes of maps. In these categories, 
pull-backs and push-outs do not generally exist. For example, no essential 
map between Eilenberg-MacLane spaces of different dimensions has a kernel. 
In this paper we define homotopy pull-backs and push-outs, which do exist 
and which behave like pull-backs and push-outs, and we give some of their 
properties. Applications may be found in [3 ; 5 ; 6 and 14]. 

I would like to thank Peter Fantham and Marshall Walker for their help 
with this paper. They have worked with these techniques [3; 14] and helped 
me organise my ideas. 

We work throughout in the topological category Top or the based topologi­
cal category Top*. In fact our descriptions will generally be given in Top*. 
To change to Top simply omit references to the base point. We will denote 
these categories ambiguously by T. 

1. Homotopy pull-backs and push-outs. Let 

f 
A J-—>B 

(1) g\ H/\h 

C -^+D 
k 

denote a square with a homotopy H from h of to k o g. There is another 
square 

Ehtk
 P—+B 

T y T 

c r^D 

k 
where Ehtk = \(byd,c) G B X D1 X C;h(b) = 6(0),k(c) = 6(1)}, D 7is taken 
in the unbased sense, and with the compact-open topology, Ehtk is topologised 
as a subset of B X D 7 X C, p and q are the restrictions of the projections, and 
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226 MICHAEL MATHER 

G((b, 9, c), t) = 0(t). There is also a map, which we call a whisker map, 
w : A —• Ehtk given by w(a) = (f(a),H\a X / , g (a)). This satisfies: 

( i ) i > o « i = / 
(ii) qow = g 

(iii) G ow — H. 
(We prefer writing w rather than w; X 1 in (iii), where a map is composed 
with a homotopy.) We call the square (1) a homotopy pull-back if w is a 
homotopy equivalence. We sometimes call the space A, rather than the whole 
square, a homotopy pull-back for 

C-

B 

-+D 

The square 

c-

•+B 

-*D 

is itself called the standard homotopy pull-back. 
It is obvious that homotopy pull-backs exist for all such pairs of maps 

(h, k), and that the space A is unique up to homotopy equivalence. Later 
we will discuss the pull-back property of this construction, and demonstrate 
a more precise form of uniqueness. Note that the concept of homotopy pull-
back is symmetric in B and C. 

The Hilton-Eckmann dual of this definition is just as good. In this case 
we let Cft0 = B\J A X / U C / a X O ~f(a), a X 1 ~ g(a), * X I, and get 
a square 

and a dual whisker map w' : Cfi0 —> D. Then (1) is called a homotopy push-
out if wf is a homotopy equivalence. (This square is called the standard 
homotopy push-out.) 

Examples. (1) If A is a fibration, then the topological pull-back with the 
static homotopy is a homotopy pull-back. Indeed, in this case the topological 
pull-back is a strong deformation retract of Ehtk. 
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PULL-BACKS 227 

(2) In particular 

X X Y~h-+X 

P2 

Y- -** 

is a homotopy pull-back. (We use * to denote a one-point space.) 

( 3) SIB • * 

1 r\ 
* *B, 

where G(co, t) = co(t), is a homotopy pull-back. 
(4) If / is a cofibration, then the topological push-out is a homotopy push-

out. 
(5) In particular, in Top*, 

-+X 

•>Z V Y 

is a homotopy push-out. (Note, however, that in the unbased theory, the 
inclusions * C X and * C Y may fail to be cofibrations, in which case X V Y 
must be replaced by the long wedge, namely 

I U / U Y/*x 0,* , 1. 

Of course, in Top*, * C X and * C Y are always cofibrations, by definition of 
a cofibration.) 

(6) 

* 2 £ , 

where G(b, t) — [(b, t)], is a homotopy push-out. 
(7) The standard homotopy push-out of 

/ »B 

is, of course, the mapping cone of/. 
(8) If * C X and * C Y are closed unbased cofibrations then X V Y C 
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X X F is a cofibration. (See, for example, Spanier [10, Ex 1.E7, p. 58]). In 
this case 

X V F >X X Y 

- > Z A Y 

is a homotopy push-out. Otherwise it would seem appropriate to define X A Y 
to be the standard homotopy push-out, i.e., the mapping cone of X V Y —• 
XX Y. 

(9) X * Y is the standard homotopy push-out of 

Pi XX Y-

Y 

->X 

2. Homotopy commutative diagrams. In order to be able to discuss the 
properties of homotopy pull-backs and homotopy push-outs, we need to define 
what constitutes a homotopy commutative diagram. 

Let / , g : X —» F be maps and let F, G : X X I —> F be homotopies from / 
to g. Then i7 and G are called equivalent if there is a map H:XXlXl—>Y 
such that 

(i) # o , o, t) = /(*) 
(ii) iJ(x, 1,/) = g(*) 

(iii) i f (s , s, 0) = F(x, 5) 
(iv) H(x, s, 1) = G(x, ^) for all (x, s, t) Ç X X I X L 

If this happens we write F ~ G. This is clearly an equivalence relation. 
Remark. It is our general philosophy to study equivalence classes of homo­

topies, and to ignore differences between higher homotopies. For most pur­
poses this is the appropriate consideration. In an earlier version of this paper 
I used higher coherent homotopies. This approach has now been discussed 
more thoroughly by Vogt [13]. (It should also be noted that Vogt allows, for 
example, a diagram 

/ 

in which/ and g are not nomotopic. We do not do this.) 
Remark. Let + denote the usual track addition of homotopies (given by 

(G + H)(x,t) = G(x,2t) if t ^ \ 
= H(x,2t - 1) if / ^ è) 

and let — denote the reverse, given by 

(-G)(x,t) = G(x, 1 - 0-
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PULL-BACKS 229 

These operations induce the structure of a groupoid on sets of equivalence 
classes of homotopies (in the sense of a category in which every morphism is 
invertible, not in the sense of a set with a binary operation). 

A homotopy commutative diagram is defined to consist of 
HCD1. A set of objects of T and morphisms between them, together with 

the compositions of these morphisms. (This set of objects may include more 
than one "copy" of an object F of T. In this case each morphism to or from F 
must specify which copy is meant, and compositions may not confuse two 

/ 
different copies. For example, the diagram Fi ~» F2, where Yx and F2 are 
different copies of F, does not include f of.) 

HCD2. For each pair 0, 7 : B —> C in the diagram, a homotopy H0y from 
13 to 7 such that 

HCD3. Hptp is equivalent to the static homotopy. 
HCD4. If 0, 7, 8 : B -> C then Hfi,y + Hy,5 ~ HfitS, and 
HCD5. Ha : A —•£,0,7 : B-+C and e: C^>D then H(0poa,ecyoa ~e o Hp>y o a. 
A commutative diagram becomes a homotopy commutative diagram when 

provided with the appropriate static homotopies. Such a diagram is called flat. 
We will specify a homotopy commutative diagram by giving the set of 

objects and maps together with enough homotopies so that the others, at 
least up to equivalence, can be deduced from HCD4: & 5. (In most cases there 
is, in fact an obvious choice for the missing homotopies. Also, we may omit 
mention of some or all homotopies if there is no need to be specific about them.) 

Examples. (1) The squares we have already been dealing with, which have a 
homotopy across them, are homotopy commutative diagrams. 

(2) The cube mentioned in the following définition. 
We say that a homotopy commutative square 

A- •+B A'-

c- •+D 

if there is a homotopy commutative cube 

A- • £ 

+B' 

is equivalent to C^W 

Ô' 
+D' 
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with the given squares as upper and lower faces and with all the vertical maps 
homotopy equivalences. (The condition on the homotopies for homotopy 
commutativity is 

/4 o G + F, o 0 + 5' o F2 ~ Ft o a + y' o Fi + G' o/i .) 

We define equivalence of other diagrams similarly. 

We will need the following eleven results, which we prove in Appendix 1. 

LEMMA 1. On squares, this is indeed an equivalence relation. 

LEMMA 2. Let f : A —* B be a homotopy equivalence, and suppose we are given 
two maps g, h : X —> A and a homotopy H from fog to f oh. Then there is a 
homotopy G from g to h such that f o G ^ H. 

COROLLARY 3. / / / : A —> B is a homotopy equivalence, g, h : X —> A are maps 
and G, H are homotopies from g to h such that f o G ~ f o H, then G ~ H. 

The next two results are the duals of the last two. 

LEMMA 4. Let f : A —> B be a homotopy equivalence, and suppose we are given 
two maps g, h : B —> Y and a homotopy H from g of to h of. Then there is a 
homotopy G from g to h such that G o f ^ H. 

COROLLARY 5. / / / : A —> B is a homotopy equivalence, g, h : B —> Y are maps 
and G, H are homotopies from g to h such that G of ~ H of, then G ~ H. 

LEMMA 6. If a square is equivalent to a homotopy pull-back then it is a homo­
topy pull-back. 

COROLLARY 7. / / , in the homotopy commutative cube above, the upper and lower 
faces are homotopy pull-backs and the last three vertical maps are homotopy 
equivalences, then so is the first. 

The next two results are the duals of the last two. 

LEMMA 8. / / a square is equivalent to a homotopy push-out, then it is a homo­
topy push-out. 

COROLLARY 9. / / , in the homotopy commutative cube above, the upper and 
lower faces are homotopy push-outs and the first three vertical maps are homotopy 
equivalences then so is the last. 

We say that a homotopy commutative square 

i A1 
B =—>C 
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PULL-BACKS 231 

has the pull-back property if, given another square 

u 
X-

v\ 

B-

-+A 

; >C, 

f 

then 
PB1. There is a map 0 : X —> P (also called a whisker map) and 
PB2. There are the necessary extra homotopies so that, with G and H, 
PB3. The diagram 

X-

ÏA 

is homotopy commutative and, further 
PB4:. If 

v\ r 

is another such homotopy commutative diagram, then there is a homotopy 
M from <t> to </>' such that K + a o M ~ K' and 0 o M + V ~ L. 

We refer to PB4: by saying that the diagram of PB3 is essentially unique. 
The push-out property is defined dually. 

THEOREM 10. A square has the pull-back property if and only if it is a homo­
topy pull-back. 

THEOREM 11. A square has the push-out property if and only if it is a homo­
topy push-out. 

3. Elementary properties of homotopy pull-backs and push-outs. 

LEMMA 12. Let 

A >B •C 
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232 MICHAEL MATHER 

be a homotopy commutative diagram. If the left and right squares are homotopy 
pull-backs then so is the large square. 

Proof. It is well known (Spanier [10, p. 99], for example) t h a t / : C —* F 
may be factored as 

cL>c-*F 

in such a way that / ' is a homotopy equivalence and / " is a fibration. Then 
there is a commutative diagram 

D •+E-

C. 

f 

•+F 

f 
'C 

'D-

f" 

•+*E- -*• F 

in which the diagonal maps are the identity except for/ ' : C —* C. 
Let 

Pl >C i V 

s\ and 

>F D-

+ Pi 

— > E 

be the fibred pull-backs (i.e., P\ —> E and P2—*D are the induced fibrations). 
These are flat homotopy pull-backs. Hence, by Theorem 10, there is a homo­
topy commutative diagram 

B yC 

*C 

¥ E- -> F 

and, for the same reason, this extends to a homotopy commutative diagram 

A yB >C 
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By Corollary 7, B—> Pi is a homotopy equivalence and, similarly, so is 
A -> P2. Thus 

£>- St 
>F 

is equivalent to 

- *C 

£>- -+F. 

But the latter is a fibred pull-back and hence a homotopy pull-back. Thus, by 
Lemma 6, the large square of the original diagram is a homotopy pull-back. 

LEMMA 13. If, in the same diagram, the left and right squares are homotopy 
push-outs then so is the large square. 

Proof. This is the dual of the last result, and has the dual proof. 

LEMMA 14. If, in the same diagram, the right and large squares are homotopy 
pull-backs, then so is the left square. 

Proof. Let 

be a homotopy pull-back. Then, by Theorem 10, we have a homotopy com­
mutative diagram 

-+B- - • C 

KP. 

D-

- • B-

- • £ 

D-

+ F^ 

y E-

kC 

•> F. 

Applying Lemma 12, 

• > C 

D- •+F 

is a homotopy pull-back and hence, applying Corollary 7 to the outside 
squares, A —> P is a homotopy equivalence. We now apply Lemma 6 to the 
left hand half of the diagram to get the required result. 

Note: Reference in [5; 6] to Theorem 14 of this paper should be to Theorem 
47. 
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LEMMA 15. If, in the same diagram, the left and large squares are homotopy 

push-outs then so is the right square. 

Proof. This is the dual of the last result, and has the dual proof. 

LEMMA 16. / / , in the same diagram, the left and large squares are homotopy 
pull-backs, it does not follow that the right square is a homotopy pull-back, even if 
E is path-connected. ( I t does so follow if we also assume t h a t all the spaces are 
CW-complexes. See Lemma 37 below.) 

Proof. If we are in Top*, we obtain an example as follows. 
Let 5 = { (0 ,0 ) , ( 1 , 0 ) , ( | , 0 ) , ( | , 0 ) , . . .} in R2, and let X be the join in R2 of 

(0, 1) with 5 . We use (0, 0) as base point. 
Now &X is contractible, since the homotopy type of SIX does not depend 

on the choice of base point in X and X is itself contract ible if (0, 1) is the 
base point. On the other hand, X with (0, 0) as base point is not contractible, 
as follows. Let H : X X I —* X be a contract ion. Then H~l(f), 1) contains 
points arbitrari ly close to (0, 0) X I bu t no point of (0, 0) X I and so is not 
closed. 

T h u s the following diagram, with trivial homotopies and ident i ty maps, 
is an example: 

* • * >X 

T T T 

* >x >x. 
In T o p we replace X by X V X. We leave the details to the reader. 

LEMMA 17. If, in the same diagram, the right and large squares are homotopy 
push-outs, it does not follow that the left square is a homotopy push-out, even if A, 
B and D are connected and all the spaces are CW-complexes. ( I t does so follow if 
we also assume t h a t B and D are simply connected. See Lemma 41.) 

Proof. Let L be Epstein 's space [2] .This is too complicated to describe here, 
bu t has the following properties: 

(i) L is a connected CW-complex ; 
(ii) L is not contract ible; 

(iii) the suspension 2 L of L is contractible. 
T h u s 

L >L • * 

I I I 
L • * • * 

(with trivial homotopies and identi ty maps) provides an example. 
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Note: Reference in [6] to Theorem 17 of this paper should be to Theorem 50. 

4. The first cube theorem. The purpose of this section is to state and 
prove the following theorem. We draw attention to the fact that we place no 
restriction on the spaces involved. We work throughout this section in Top. 

THEOREM 18. Suppose that we have a homotopy commutative diagram 

A' —+B' 

(2) 

in which 
(i) the left and rear faces are homotopy pull-backs, and 

(ii) the top and bottom faces are homotopy push-outs. 
Then the front and right faces are homotopy pull-backs. 

We will need several lemmas to prove this result. The main technique is to 
use the weak covering homotopy property {WCHP). (See Dold [1].) We first 
remind the reader of the definition of this property. 

A map p : E —> B is said to have the WCHP if, given a map / : X —> E and 
a homotopy H : X X I —> B such that H(x, t) = pf(x) whenever 0 ^ / ^ J, 
there is a homotopy H : X X / -» E with p o H = H and / = H\X X 0. 

LEMMA 19. Let 

E' >E 

be a topological pull-back and let p have the WCHP. Then this square, with the 
static homotopy, is a homotopy pull-back. 

Proof. Let ËPtf C EPtf be the subset given by 
ËPJ= {(e,d,b');p(e) = 0(0 all* É [0,*]}. 

Then ËPtf is a weak deformation retract of Epj and E' is a weak deformation 
retract of Ëpj. Hence the result. 

Let p : E' —> B be a map and E C E'. Then a weak deformation retraction of 
E' to E over B is defined to be a homotopy H : E' X / —> E' such that 

(i) 1B, = H\Ef X 0 
(ii) H(E XI) CE 

(iii) H(E' XI) CE 
(iv) p o H is static. 
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LEMMA 20. Let p : E' —> B be a map, E C E', and suppose that there is a weak 
deformation retraction of Ef to E over B. If p\E : E —» B has the CLIP then p has 
the WCHP. 

Proof. This is obvious. 

LEMMA 21. In order to prove Theorem 18, it is sufficient to prove the theorem 
in the case where f\ and f^ are fibrations, where the rear face is a topological pull-
back (with the static homotopy), and where the left face is flat. 

Proof. We first show that /2 may be assumed to be a fibration. Again, by 
Spanier [10, p. 99], / 2 may be factored as 

B' *B' B, 
in which f% is a homotopy equivalence and fi" is a fibration. Form a cube 

A' >B" 

(3) 

as follows. L e t / 2
/ ~ 1 be a homotopy inverse f o r / / , and let K be a homotopy 

from f2'~
l o / 2 ' to lB>. Then the maps in (3) are the same as in (2) except those 

involving B". A' - » B" is the composition of A' - » B' -> B"', B" -> B is f2", 
/2

/"1 

and i ? " —• D' is the composition of B" > B' —» Z)'. T h e homotopies across 
the front, rear, left, and bot tom squares are the same as in (2), and if 

A'— +Bf B'-— yDf 

L, Ms 

C— >D> B > D 
are the other two faces in (2), then the corresponding faces in (3) are 

a' 
A'' 

C'~ 

•+B" 

L, 

— • # / 

Bf 

B-

-+D' 

Ms 

~+D 

where L = y' o K o a and M is given by Lemma 4. 
Now (2) is clearly equivalent to (3). Hence we may assume that /2 is a 

fibration. 
Symmetrically, we may assume that /3 is a fibration. 
It follows easily from Lemma 4 and Corollary 5 that we may assume that 

the rear face is a topological pull-back (with the static homotopy). 
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By altering the map A' —> C by a homotopy, we may also assume that the 
left face is flat. This proves the lemma. 

We work from now on in the case described by this lemma. 
Suppose we are given 

in which /2 and fz are fibrations, the rear face is a topological pull-back, and 
the left face is flat. We make the following construction. 

Let Â be the topological pull-back in the left face, so that we get a commu­
tative diagram 

^ ' -^ 

in which, of course, 0 is a homotopy equivalence by Theorem 10. Let M be 
the mapping cylinder of <t> (with Â at the "one" end). Let A" C M X / be 
given by 

An - ( ( m , / ) ; w G ^ X O i f ^ i w e I i f ^ f | . 

Now let ZV = B' \J A" U C ' / V , 0, 0) ~ a ' ( a ' ) , (â, 1) — /3"(â). 

7T 
/ 1 • 

/ ' / f ' / r i l \ 
* / s 

/ 

Ï / 

/ - 0 t = \ * 3 

Picture of D\ 

Define a homotopy K : Af X I -~> Di by 

X( 0 ' , 0 = (a', 0, 3*/2) for t S \ 

= ( a ' , 3 / / 2 - M ) for* g * g | 
= ( 0 ( a ' ) , l , 3 * / 2 - | ) forf S t. 
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Then we have a homotopy commutative square 
A' >W 

>zv. 
LEMMA 22. This is a homotopy push-out. 

Proof. There is a weak deformation retraction of A" to the subset 

Ax = { O , t) ; m Ç 4 ' X 0 if t < ±, m G A if * > ±} 

keeping ends fixed. Hence there is a weak deformation retraction of Di to 
^ ' U i i U C ' , keeping W and C" fixed. 

Now, similarly to the proof that the mapping cones of homotopic maps are 
homotopy equivalent, B' \J A\ U C is homotopy equivalent to the standard 
homotopy push-out. Hence the result. 

Let Di be the standard homotopy push-out of 
A OL - • 5 

P 

C, 
that is to say, Z ) , = 5 U 4 X / U C/(a, 0) ~ 
/ 5 : Z»i' -> Di be /2 on B', fs on C" and, on A", let 

/ 6 ( a ' , M ) = ( / i (o ' ) .0 

/«(<M) = ( / i (5) ,0-

Then we have a homotopy commutative diagram 

A' >B' 

(4) 

a (a), ( a , l ) ~ ( 3 ( a ) . Let 

in which the vertical faces are flat. 

LEMMA 23. / 6 /zas ifte WCHP. 

Proof. Let £ i , £2 C P>\ be the open sets given by 

£2 = A X ( i 1] W C. 

By Lemma 20, fb has the WCHP over each of £1 and £2 . (£1, £2} is obviously 
a numerable covering of D\. Hence, by Dold [1, Theorem 5.12 (a)], /s has 
the WCHP. 
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COROLLARY 24. The front face of (4) is a homotopy pull-back. 

Proof. This follows from Lemma 23 and Lemma 19. 

Proof of Theorem 18. Under the circumstances given by Lemma 21, we 
clearly have a homotopy commutative diagram 

in which the maps D\ —» D' and Di —> D are homotopy equivalences. 
Therefore 

ZV >D' 

T \ 

D1 yD 

is a homotopy pull-back. Hence so is 

C vDf 

C *D. 

The right hand square follows similarly. Thus we have proved the theorem. 

5. The second cube theorem. The purpose of this section is to state and 
prove the following theorem. Again we remark that there are no restrictions 
on the spaces involved. Note also that, in view of Lemma 37 below, if we 
consider only the case where all the spaces are CW-complexes, Theorem 25 is 
an easy corollary of Theorem 18. 
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THEOREM 25. Suppose we have a homotopy commutative diagram 

A' VW 

in which 
(i) all the vertical faces are homotopy pull-backs, and 

(ii) the lower face is a homotopy push-out. 
Then the upper face is a homotopy push-out. 

We break the proof into several lemmas. 
We say that a homotopy push-out 

A >B 

C- -+D 

is in standard form if there are subsets B (Z B and C C C such that 
(i) B ^BKJ A X [0, \]/a X 0 ~ a(a), * X [0, £] where a is some map 

from A to B ; 
(ii) C ̂  A X [ i l ] U C / a X l - ? W , * X [è, 1] where p is some map 

from A to C', 
(iii) D ^ J U i X [ 0 , l ] U C / f l X 0 ~ a ( a ) , a X l ~ / 3 ( a ) f * X [0, l ] ; 
(iv) the maps are the obvious inclusions (where A is identified with A X J) 

and the homotopy is static. 

LEMMA 26. 4̂ homotopy push-out is equivalent to one in standard form. 

Proof. Given a homotopy push-out 

A S Kg 

C- - • £ > 

the definition constructs a homotopy push-out in standard form and the two 
are obviously equivalent. 

LEMMA 27. i7 suffices to prove the theorem in the case where the lower face is 
in standard form. 

Proof. Given a homotopy commutative cube 
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> £>' 

+ *D 
satisfying the conditions of the theorem we obtain, by the previous lemma, 
a homotopy commutative diagram 

A': >B' 

-+D' 

A- •+B 

-+D 

-+B 

•+D 

in which the lowest face is in standard form, and the lower vertical maps are 
homotopy equivalences. It follows readily from Lemma 6 that the large vertical 
squares are homotopy pull-backs. Hence, by considering the large cube, it 
suffices to prove the theorem when the lower face is in standard form. 

LEMMA 28. It suffices to prove the theorem when we also suppose that the map 
Df —> D is a fibration. 

Proof. Let D' —> D be factored into a homotopy equivalence and a fibration 

/ / / / ' 
D' » ZV > D, 

again as in Spanier. Then we obtain a homotopy commutative cube 

A'. • B' 

LC- •+ZV 

•+B \w 

c- • > D 
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in which the maps and the homotopy into D' have been composed with / / and 
the other maps (except / / ' ) and homotopies are unchanged. 

Clearly 

*B' A' 

is equivalent to 

¥Bl 

+ DS 

so it suffices to prove that the latter is a homotopy push-out. 

LEMMA 29. It suffices to prove the theorem when we also assume that the vertical 
faces are topological pull-backs with static homotopies. 

Note, however, that although the top face is therefore commutative, we 
put no restriction at this stage on the homotopy across that face. 

Proof. Let 

be the topological pull-back. Since / / ' is a fibration this is a homotopy pull-
back (with the static homotopy) and hence has the pull-back property. Thus, 
if 

C +DX' 

is the front face of the cube, there is a homotopy commutative diagram 

C 

in which / / ' oK-\-8oL^H, and 0 is a homotopy equivalence. Then we 
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obtain a homotopy commutative diagram 

A' vB' 

C- - • A ' 

->5v 

C- -*• D 

from which we can extract the homotopy commutative cube 

A' >B' 

T / -

A-

-> ZV 

+ 5 . 

VC- -+Z) 

and the front face has the required form. 
Clearly 

>B' A'-

is equivalent to 

•+B' 

•>£> / 

so we may assume that the front face has the required form. 
Similarly we may assume that the right and rear faces have the required 

form. 
Now the left face is, say, 

A,' h > C / 

/ . " 

-+C 

in which / 3 " is a fibration, the square is a topological pull-back, and there is 
some homotopy across the square. 

Since fz" is a fibration there is a homotopy H : Ai X I —* Ci such that 
(i) / , " oH = F, 

(ii) H\Ai' X 0 = ft. 
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Let H\Ai X 1 be ,8/. Then we get a homotopy commutative cube 

* ZV 

• D 

in which the left face is flat, and if the top face was 

AS •Bx ' AS • i V 

ft it is now 

C1>—sr+D1' 

where M = J — 6 / H. This completes the lemma. 

LEMMA 30. It suffices to prove the theorem when we also assume that the top 
face is flat. 

Proof. Let the top face be 

where we note tha t 7 ' o a = h' o $'. T h u s P\A' X 0 - P | . 4 ' X 1. 
W e claim tha t there is a homotopy Pr '.A1 X I —* C from (3' to /3r such tha t 

h' o P ' -^ P , as follows. Since the cube is homotopy commuta t ive , f\ o P is 
equivalent to the static homotopy. Hence, s ince / 4 is a fibration, P is equivalent 
to a homotopy P " with the proper ty that / . i o P" is s tat ic. Then the image of P " 
lies in the image of h', so t ha t P" factors through C as, say, 

P' hf 

A' X / - > C -> D ' 

as required. 
Now, by performing the homotopy — P ' on 0', we see tha t the cube is 

equivalent to the same cube bu t with the stat ic homotopy across the top and 
/ 3 o P' across the left face. But 8 0 /3 o P' is stat ic, and hence / 3 o P ' is s tat ic . 
T h u s the whole cube is equivalent to the flat cube. This completes the lemma. 
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Completion of Theorem 25. We may assume that we have a flat cube 

in which the lower face is in standard form, D' —> D is a fibration, and the 
vertical faces are topological pull-backs. Further, by the particular way that 
/4 was constructed, over A X [1, f], f\ is topologically equivalent to the map 
/ i X l : i ' X li,î]-*A X [ i f ] . Thus 

D' = fcl{B VAX [0, §]) U (4 ' X [ i f]) U / 4 - H 4 X [f, 1] U C). 

B u t / r 1 ^ U i X [ 0 ( a ) - 5 ' a n d / r 1 ^ X [f, 1] U C) ~ C. 
Hence the top face is a homotopy push-out, as required. 

To complete this section we give a result which helps to make this theorem 
useful. 

LEMMA 31. Let 

be homotopy commutative, and letf4 : Df —> D be a map. Then there is a homotopy 
commutative cube 

A'-

A-

'C-

+ B' 

j 
-+B 

-> D' 

G 7 s Y 

in which the vertical faces are homotopy pull-backs. 
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Proof. T a k e three homotopy pull-backs 

C-
Ô' 

-•£>' A'-

h U h 
->c 

fz f: 

c- •+D +C 

thereby defining fu f2, /3, fi', 7', 5', F 2, Fz and ^4. Form the diagram 

A' B' 

•c • + D' 

->.B, 

C- -> D. 

Then we have a diagram 

with homotopies F3 from /4 0 7 ' to 7 0 / 2 and F4 o fi + 5 o F2 + G 0/1 from 
/ 4 o 5' o 7' to 7 o a 0/1. Hence, by the pull-back property, there is: 

a) a whisker map a' : A' —> 5 ' ; 
b) a homotopy G' from 7' o a' to ô' 0 7 ' ; and 
c) a homotopy Fi from f% o a' to a o /1 such that 

/4 o ( - G ' ) + F ! o a ' + T o F 1 ~ f , o H 8 o F ! + G 0/1. 

But this is precisely the condition we need to make 

A' >B' 

kC- ->>£>' 

A- •+-B. 

kc- -• D 

homotopy commutative. That the rear face is a homotopy pull-back follows 
from Lemmas 12 and 14. 
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6. The case of CW-complexes. For convenience we work throughout this 
section in Top*. 

Let / : P —-> B be a map. Then we define the fibre of / to be the homotopy 
pull-back 

F • P 

1 A 
T K • 

* >B. 
Of course, this is defined only up to equivalence. We sometimes call F the 
fibre, rather than the whole square. 

If / is a fibration we may take F to be the inverse image of the base point of 
B. Thus the following lemma does little more than assert the existence of the 
exact sequence of a fibration. However, we would like to mention the proof 
given. 

LEMMA 32. Let 

F • P 

i A 
* >B 

be a homotopy pull-back. Then there is a long exact sequence 
. . . n n F - > UnP - • UnB -> Tln-iF^ . . . -> IloB. 

Proof. That UnF —» UnP —•> TLnB is exact is immediate from the pull-back 
property. 

Let 
ft • * 

I A 
F—^—>p 

be the homotopy pull-back. Then, by Lemma 12, F' o^ 9.B. Thus we get a 
homotopy commutative diagram of homotopy pull-backs 

12P •SIB • * 

(4) * • f • p 

I \f 

* >B 

where the map from HP to SlB is 12/, as follows. 
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The given diagram gives rise to a homotopy commutative diagram 

S2P • * 

SIB- 1 
¥ P 

- * * > 

- • 5 

and, by the uniqueness part of the pull-back property for the lower square, 
the map UP —> SIB must be homotopic to S2/. 

The long exact sequence now follows by applying the first sentence of the 
proof to (4). 

LEMMA 33. If B is connected and F is contractible and P and B are CW-com­
plexes, then f is a homotopy equivalence. 

Proof. It follows immediately from the exact sequence that UnP —•> UnB 
is an isomorphism for all n. Hence, by the J. H. C. Whitehead theorem, / is 
a homotopy equivalence. 

COROLLARY 34. Suppose that 

-KP 

c -+B 

is a homotopy pull-back, P and B are CW-complexes, and B is connected. If g is 
a homotopy equivalence then so is f. 

Proof. The fibre of g is contractible and hence, by Lemma 12, so is the 
fibre of / . 

COROLLARY 35. Suppose that 

A 

C-

• + P 

-+B 

is a homotopy pull-back, P and B are CW-complexes, and U0C —» U0B is onto. 
If g is a homotopy equivalence then so is f. 

Proof. The given square is obviously equivalent to a static square, so we 
may assume the given square is static. If we consider each component of B 
separately, together with its inverse images in P , C, and A, we can introduce 
base points and apply the previous corollary. 
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LEMMA 36. Let 

be a homotopy pull-back, and suppose that A, B, C have the homotopy types of 
CW-complexes. Then P has the homotopy type of a CW-complex. 

Proof. This is a corollary of Milnor [7, Theorem 3, p. 276]. 

LEMMA 37. In the homotopy commutative diagram 

A *B >C 

suppose that all the spaces are CW-complexes, that U0D —» T10E is onto, and that 
the left and large squares are homotopy pull-backs. Then the right hand square is 
a homotopy pull-back. 

Proof. Let 

yB' 

and 

be homotopy pull-backs, and let B —> B', A —» A' be the corresponding whisker 
maps. Then we have a homotopy commutative diagram 

By applying Lemma 8 to 
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we see that 

-+B 

A'- + B' 

is a homotopy pull-back. However, by hypothesis and Lemma 12, 

A • c A ' yc 

and 

D- -*F L>- ->F 

are both homotopy pull-backs, so A —* A' is a homotopy equivalence. 
Now UQD —> n 0 £ is onto, by hypothesis, so it follows easily that UQAf —» 

IIo-B' is onto. But J5 and 2?' have the homotopy types of CW-complexes (the 
latter by Lemma 36). Hence, by Corollary 35, B —> B' is a homotopy equi­
valence, which gives the desired result. 

We now study the dual situation. 
L e t / : A —» B be a map. Then we define the cofibre of/ to be the homotopy 

push-out 

Of course this is defined only up to equivalence. We sometimes call K the 
cofibre, instead of the whole square. 

LEMMA 38. For any Abelian coefficient group G there is a long exact sequence 

H°(K;G) -*H°(B;G) ->H°(A;G) ->Hl(K',G) -> . . . 

Proof. Hn(X; G) = [X : K(G, n)], and the proof is dual to that of Lemma 32. 

LEMMA 39. If A and B are CW-complexes, A is simply connected and K is 
contractible then f is a homotopy equivalence. 

Proof. This is well known, so we omit the proof. 

COROLLARY 40. / / 

A— >C 

i s 
B >D 

is a homotopy push-out, A is a simply connected CW-complex, B is a CW-complex 
and gis a homotopy equivalence then f is a homotopy equivalence. 
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Proof. The cofibre of g is contractible, and hence so is the cofibre of / . 

It is obvious that a homotopy push-out of CW-complexes has the homotopy 
type of a CW-complex. 

LEMMA 41. In the homotopy commutative diagram 

A +B >C 

suppose that all the spaces are CW-complexes, that A is connected and B and D 
are simply connected, and that the right and large squares are homotopy push-outs. 
Then the left square is a homotopy push-out. 

Proof. Dually to the proof of Lemma 37, we put in homotopy push-outs to 
form the diagram 

Since A is connected and B and D are simply connected, it is clear that Er is 
simply connected. The rest of the proof is dual to Lemma 37, and is left to 
the reader. 

Appendix 1. In this appendix we give the proofs which we omitted in 
Section 2. We give them in a different order. 

LEMMA 2. Let f : A —> B be a homotopy equivalence, and suppose we are given 
two maps g, h : X —» A and a homotopy H from fog to f oh. Then there is a 
homotopy G from g to h such that f o G ^ H. 

Proof. Let f : B —> A be the inverse homotopy equivalence, let F be a 
homotopy from / ' of to lA and let F' be a homotopy from f of to \B> 

If H' is a homotopy from fog to / o h, possibly different from H, define a 
corresponding homotopy G from g to h by 

G = (-F) og+f'oHf + Foh. 

This is defined at least up to equivalence. We will show how to choose Hf so 
that foG~H. 

Now, foG~fo(-F)og+fof oH'+foFoh. Thus foG~ H if 
and only if H ~ f o {-F) o g + f of o Hf + f o F o h 
i.e.JoFog + H + fo (-F) oh~fof'oH'. 

https://doi.org/10.4153/CJM-1976-029-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-029-0


252 MICHAEL MATHER 

Now / of is homotopic to 1B by F' so t ha t 

fof'oH'~ Ffofog + Hf + (-F) of oh. 

T h u s / o G ^ H if and only if 

H' ~ (-F')ofog+fo Fog + H +fo (-F)oh + F'ofoh 

and so we choose to define Hf by this equation. This gives the required result. 

COROLLARY 3. / / / : A —> B is a homotopy equivalence, g, h : X —> A are maps 
and G, H are homotopies from g to h such that f o G ^ / o H then G ~ H. 

Proof. G — H is a homotopy from g to g, and hence may be thought of as 
a map k : X X Sl —> A. Clearly G ^ H if and only if k extends over X X D2, 
i.e., if and only if k ^ g o pi : X X Sl —> A. 

B u t / o G ^ / o H, s o / ok~fogopi : X X S1 —* B. Hence, by the lemma 
above, k ~ go pi and G ^ H, as required. 

Lemma 4 and Corollary 5 are the duals of the last two results and have the 
dual proofs. 

Before we prove Lemma 1 we need an extra lemma. 

LEMMA 42. Let fi : A —> A' be a homotopy equivalence, with inverse fî : A' —» 
A, and let HA be a homotopy from / / o / i to 1A. Similarly, let f2 : B —> B' be 
a homotopy equivalence, with inverse f2' : B' —» B and let HB be a homotopy from 
fî o / 2 to 1#. Consider the diagram 

in which there is one homotopy, as marked. Then there is a homotopy FÎ from 
f2' o a! to a ofi such that 

f?f o Fi + Fi 0 /1 ^ HB o a: — a o HA. 

Proof. The condition showTs t ha t we want 

Fi 0 /1 ~ —f2' o Fi + HB o a — a o HA. 

Such a homotopy F\ exists by Lemma 2, and is unique by Corollary 3. 

LEMMA 1. On squares, equivalence is an equivalence relation. 

Proof. T h e reflexive and transi t ive properties are obvious. We show tha t 
equivalence is symmetr ic . 
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Thus, we suppose that we are given a homotopy commutative cube 

**D' 
in which the maps/* are homotopy equivalences. The condition for homotopy 
commutativity may be written 

/ 4 o G + F± o 13 + è' o F2 — G' o / i — y' o Fx — Fz o a ~ 0. 
L e t / / be a homotopy inverse of ft for each i. Then we will define homo-

topies Ft to make the following diagram homotopy commutative. This will 
complete the proof of the lemma. 

Choose homotopies HA, f rom/ / o / i to 1^, and HB} Hc, HD similaxly. Then 
the homotopies F/ are given by the previous lemma. This defines the cube, 
and it just remains to check that, if 

K = /4 ' o G' + FA' o & + ô o TV - G o / / - y o F,f - Fz' o a! 
then K ~ 0. 

We claim that K o / i ^ 0, as follows. 
(i) TV o p' o / i ~ - / / o ô ' o F2 + F/ o / 3 o /3 + 8 0/3 ' o ^ since F2 is a 

homotopy from / 3 o /3 to 0' o /1 
~ - / / o « ; o f t + [ - / / o F4 + #z> o 5 - Ô o iJc] o j8 + Ô of/ o F2 | 

by the definition of FA. 
(ii) <5 o TV o / i ^ S o [-/3 ' o F2 + Hco/3 - (3oHA] 

(hi) G o / i ; o / i ^ 7 0 a o i ï A — HD o y o a + f* ofAo G + HD o ô o ft — 
Ôo/3oHA 
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(iv) 7 0 ^ / 0 / 1 ^ 7 0 [— f2 oF1-\-HBOa — ao HA]. 
(v) Fz o a! 0/1 ~ —fi O / O ^ I 7̂ 3' 0/2 o a + 7 o / 2 ' o Fx 

~ - / / o 7' o Fi + [—j/V 0^3 + ^ 0 7 - 7 0 ifB] o a + 
) o / 2 ' o Fi. 

Hence 

X o / i ^ / Z o G ' o / i 

- /4 ' o b' o F2 - U o ^4 o |S + if a o <5 o 0 - Ô o if c o /3 + 

Ô 0 / / 0 F 2 

- <5 o / 3 ' oF2 + ôoHco(3-ôo(3oHA 

+ ôo (3oHA -HDoÔo/3-fAofAoG + HDoyoa 

— 7 O a o iJ^ 
+ 7 o a o H A — 7 0 ifj5 o « + 7 o /2 ' o Fi 

- 7 o /2 ' o F\ + 7 o ifB o a - J?2) 0 7 0 a + / / o f t o a 

+ /4 ' o 7' o Fi 

and this expression cancels down to 

U o [Gf 0/1 - <5' o F2 - F, o /3 - / 4 o G + Fz o a + 7' o Fi] 

which is equivalent to the static homotopy since the original cube is homotopy 
commutative. 

Now K ofi~ 0 ofi implies K ~ 0, by Corollary 5. Hence the last cube is 
homotopy commutative and we have shown that equivalence of squares is 
symmetric and hence an equivalence relation, as required. 

We now move to Lemma 6. This has been proved in much greater generality 
by Vogt [13]. However, for completeness, we include a proof here. We need 
three lemmas. 

LEMMA 43. Letf : A —> A' be a homotopy equivalence, with inverse f : A' —> A, 
and let H be a homotopy from f of to 1A. Then there is a homotopy Hf from 
f of to 1A>, unique up to equivalence, such that 

Hof ~ ff oH' 

and 

foH~H' of. 

Proof. H of is a homotopy f rom f o f o ff to f ' . Hence, by Lemma 2, there 
is a homotopy H' from/ of to 1A> such that H of ~ f o H'. By Corollary 3, 
such Hr is unique up to equivalence. 

Now we notice that, if K is a homotopy from ko to ki and L is a homotopy 
from /o to h and K o L is defined, then 

ko o L ~ K o U + k\ o L — K oli. 
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Thus 

foHof'~fofoH' 
~H'ofof + H' -H' 
~H'ofof 

so t h a t / o H ~ Hf of by Corollary 3. This completes the lemma. 

LEMMA 44. Under the circumstances of Lemma 42, let HA and HB be as 
constructed in Lemma 43. Then, in the following diagram, which has two homo-
topies, 

A' • £ ' 

,y\u 
-*>B 

h 
A' % £ ' 

we have 

f2 o Fi' + Fi o / i ' ~ HB' oa' - a' o HA'. 

Proof. We calculate as follows: 

h' o (/2 o TV + ^ oh') + FJ of, o / i ' ~ / 2 ' o / 2 o TV + 
(HB oa - a o HA) o / i ' 

~ (#* o / 2 ' o a ' + F i ' - f f . o a o/ i ' ) + (HBoa-aoHA) o / i ' 
^ i7B o / / o a ' + F i ' - a o i7A o / / 
~ / 2 ' o HB' o a' + Fi' - a o / i ' o HA

f by Lemma 43 
~ ( / / o HB' o a' - f2

f o <*' o HA
f) 

+ (/2' oa'o HA' + FS -a o / / o HA') 

~h' O (HB
f O a' - a' O HA') + F,f Of, o / / . 

Therefore/2 ' o (/2 o F, + Fx o / / ) ^ / 2 ' o (HB o a' — a o HA) and hence, 
by Corollary 3, 

f2 o TV + Fi o / i ' ~ # V o a' - a' o HA
f 

as required. 

LEMMA 45. Given 
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in which the maps ff are homotopy equivalences, the induced map f : Ey>s —» Ey*t8' 

is a homotopy equivalence. 

Proof. Clearly, if we changefL by homotopies and alter Fz and FA accordingly, 
we will change / by a homotopy. 

Now use Lemma 42 above on each square to construct the homotopy com­
muta t ive diagram 

B-

2 

T 
B'-

F3 
I/4 
•K 4 

+D'+-

B 

1/4' 

•+D+-

C 

h 
c 

f 

•c. 

Then , clearly, the composition 

/ 
-"Y , 8 y' ,8' 

is homotopic to the identi ty. By Lemma 44, we can construct a homotopy 
commuta t ive diagram by put t ing the lower half of the diagram above on top 
of the upper half. T h u s the composition 

H,y' §' ~ ' Illy t8 ' Hiy' §' 

is also homotopic to the ident i ty . This completes the result. 

LEMMA 6. If a square is equivalent to a homotopy pull-back then it is a homo­
topy pull-back. 

Proof. The si tuation we are given is a homotopy commuta t ive cube as 
shown on page 229, in which the lower face is a homotopy pull-back and all the 
vertical maps are homotopy equivalences. We wish to show tha t the upper 
face is also a homotopy pull-back. 

Let w : A -^ E7yô, and w' : A! —* Ey> tv be the whisker maps. Define g : Eyj —> 
Ey>,y by 

where 

te,c) = (Mb),d',fz(c)) 

e'{t) = Fz(b, 1 - 3 0 ^ t ^ 1/3 

= /40(3* - 1) if 1/3 S t S 2 /3 

= FA(c, 3t - 2) if 2 /3 S t. 

Now g is a homotopy equivalence, by the previous lemma. Hence we need 
only show tha t g o w ^ w' o f\ to complete the proof of the lemma. 
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Well, g ow : A —> Ey> j> is given by 

g ow(a) = (/2 oa(a), ( - Fz o a + / 4 o G + 0 o F4) |a X / , / 3 o /3(a)) 

and w' ofi : A —+ Ey> ts> is given by 

w' o / i ( a ) = (a' o / i ( a ) , G' o/x |a X / , 0' o / ^ a ) ) . 

Bu t G' ofi~ —b'oFi — F 3 o a + / 4 o 6 : + / 5 o f 4 + F2 o y' 
so ze/ o / i is nomotopic to the map from A to Ey> t&> given by 

a n ( a ' o / i ( a ) , - Ô ' o ^ - F 3 o a + / 4 o G + 0 o F4 + ftoT'|fl X I, 

P'oMa)) 

and this is obviously homotopic to g o w. This completes the proof of the lemma. 

COROLLARY 7. If, in the homotopy commutative cube on page 229 the upper and 
lower faces are homotopy pull-backs and the last three vertical maps are homotopy 
equivalences then the first map is a homotopy equivalence. 

Proof. Let w' : A' —> Ey>tv be the whisker map in the lower square. Then 
w' o / i is a homotopy equivalence by Lemma 6. But w' is a homotopy equi­
valence, and hence so i s / i . 

Lemma 8 and Corollary 9 are the duals of the last two results. 

LEMMA 46. The homotopy commutative square 

E/,9 

B-

-+A 

-+C 

has the pull-back property. 

Proof. Suppose we are given a homotopy commutat ive diagram 

Define 4> : X —> Eft0 by </>(x) = (u(x), H\x X / , v(x)). Then we obviously 
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get a homotopy commutative diagram 

X 

in which the homotopies K and L are static. 
Now suppose that we have another such homotopy commutative diagram 

L e t ^ W G i X C 7 X 5 be denoted by (<t>i(x), 02 '(x), fa'(x)). Then homo­
topy commutativity means that 

/ o K' + 4>2
f + g o U ~ H. 

That is to say, there is a map N : X X I X I —* C such that 

N(x, 0, t) = / o u{x) 

N(x, 1, 0 = g ov(x) 

N(x, s, 0) = H(x, s) 

N(x}s, 1) = foK'(x, 3s) for 5 ^ | 

= 0 2 ' ( * ) ( 3 s - 1) fo r i ^ ^ ^ f 
= goLf(x,3s - 2) forf S s. 

t = 0 

t = 1 
/oX1 

5 = 0 

goLf 

s = 1 
Diagram of N 
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We will use this to construct a homotopy M from <f> to <f>' satisfying axiom PB4:. 
We define maps Mi : X X I -> A, M2 : X X I X I -> C, Ms : X X I -> B 

so that we can set M{x, s) = (Mi(x, s), M2(x, s, •), M~3(x, s)), as follows. 

ilfi(x, s) = 

M2(x, s, t) 

Mz(x, s) = 

u(x) for s ^ \ 
K'(x,2s - 1) for § ^ s 

= (N(x, t, 2s) for 5 ^ | 
~ \N(x, %(2s + 5/ - 1 - 4*0, 1) for \ ^ s 

v(x) 
L'(x,2 

for ^ ^ J 
25) for \ ^ s. 

Now it is simple to check that 
(i) M(x,s) e Efy, 

(ii) M is continuous; 
(iii) M(x,0) = 4>(x); 
(iv) ilf(x, 1) = 4>'(x)\ 
(v) a o M ~ K'\ 

(vi) / 3 o M ~ -Z, ' . 
This completes the lemma. 

THEOREM 10. A square has the pull-back property if and only if it is a homo­
topy pull-back. 

Proof. If a square is a homotopy pull-back then it follows readily from 
Lemma 46, using Lemma 2 and Corollary 3, that it has the pull-back property. 

Conversely, suppose that 

P- •+A 

B >C 

has the pull-back property. Then we get homotopy commutative diagrams: 

In the usual way, the compositions 

v . * • ' P -> Ef,g and P -> Eft0 

must be homotopic to the respective identity maps. Hence 

-f,g 
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is a homotopy equivalence, and the given square is a homotopy pull-back, as 
required. 

THEOREM 11. A square has the push-out property if and only if it is a homo­
topy push-out. 

This is the dual of the previous theorem and is left to the reader. 

Appendix 2. In this appendix we give two results which are needed in [5] 
and [6]. 

Versions of Theorem 47 have been given by Ganea [4], Nomura [8; 9] and 
Svarc [11]. We work in Top*. 

THEOREM 47. In the homotopy commutative diagram 

P >A 

UA 
suppose that the outside square is a homotopy pull-back, the inside square is a 
homotopy push-out, and A, B, C are connected. Let F and G be the fibres of A —» C, 
B —> C respectively. Then the fibre of Q —> C is F * G. It follows that, if A —> C is 
r-connected and B —> C is s-connected then Q —> C is at least (r -\- s -\- ^-con­
nected. 

Proof. By Lemma 31 we can construct, from the given diagram, a homotopy 
commutative diagram (with some spaces K and L) : 

in which the vertical squares are homotopy pull-backs. 
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By applying Lemma 12 to 

K- -*P- +B 

•+A- -*C 

and Lemma 14 to 

we see that the outside top square of (5) is a homotopy pull-back, so that 
K ^ F X G in such a way that the maps K —* F and K -^ G are homotopic 
to the projections. 

By Theorem 25, the square 

is a homotopy push-out, so that L o^ F * G. This proves the theorem. 

We now assume that we are working with CPF-complexes. 

LEMMA 48. Let A —> B be n-connected. Then there is a homotopy commutative 
diagram 

in which Bf is obtained from A by attaching cells of dimension ^ n + 1. 

The proof is clear. 

COROLLARY 49. / / 

A >B 

C- ->£> 

is a homotopy push-out and A —» C is n-connected, then so is B —-> D. 
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Proof. Replace A —* C by the map A —> C given by the previous lemma. Let 

A >B 

be the topological push-out. Since A —> C is a cofibration, this is also a homo-
topy push-out, and B —> Df has the same homotopy type as B —•» Z). But Z>' is 
obtained from Z> by adding cells of dimension ^ w + 1. Hence the result. 

The following is a type of relative Hurewicz theorem. 

THEOREM 50. For any r-connected map A —> C with C s-connected there is 
a map from the suspension of the fibre to the cofibre which is (r + s + ^-con­
nected. 

Proof. Take the homotopy pull-back 

F  •+A 

- * C , 

so that F is the fibre of A —-> C, and construct successively three homotopy 
push-outs 

(thereby defining P, Q and K) to obtain a homotopy commutative diagram 

— M -
/ 

rP-

V 

- • . * 

• i f . 

By Lemma 13, K is the cofibre of A —* C. Also by Lemma 13, Q c^ 2T7. Thus 
we have the desired map from XF to K. 

By Theorem 47, P —» C is (r + 5 + 1)-connected and hence, by Corollary 
49, 2T7 —> X is (r + 5 + l)-connected, as required. 
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