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Abstract

Among all possible semiregular continued fraction expansions of an irrational number the one
with the best approximation properties, in a well-defined and natural sense, is determined. Some
properties of this so called optimal continued fraction expansion are described.
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1. Introduction

This paper is concerned with the approximation of irrational real numbers
by convergents of semiregular continued fraction expansions. A semiregular
continued fraction expansion of an irrational number x is an expansion

(1.1) x = [bo;eibi,e2b2,...] = bo +
 E-±1—

where ek = ± 1 , and bk e Z M , for k > 1, with some constraints on bk and
ek (see [1, Section 1]). Thei&nite truncations pn/qn = [b0; elbl, e2b2, . . . ,
£nbn] are called the convergents of this expansion and they form a sequence
of rational approximations. The approximation constants, 6n , are denned
by 6n = qn\qnx-pn\, for n > 1. Since

n
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482 Wieb Bosma and Cor Kraaikamp [2]

6n may be regarded as a measure of how well x is approximated by the nth
convergent, taking the size of qn into account.

Taking ek = 1 for every k in (1.1), we get the regular continued fraction
expansion of x; for this we reserve the notation RCF(x) = [Bo;BVB2,...].
Its convergents are denoted by Pn/Qn, and its approximation constants by

The main theorem proved in this paper can be formulated as follows.

(1.2) THEOREM. For every x there is a uniquely defined semiregular con-
tinued fraction expansion, whose convergents and approximation constants we
will denote by rk/sk and 6*k, with the following property.

For every semiregular expansion of x and for every N > 1,

i M i N

i4i4
where M = #{j:qj < sN+l}.

It will turn out that this particular expansion is the so-called optimal con-
tinued fraction expansion, studied before in [1] and [3]. We will in the sequel
denote this expansion for x by OCF(;c) = [a0; exax, e2a2, ...].

Theorem (1.2) thus states that among all possible semiregular expansions
the OCF gives the best approximation, in terms of the mean of the approx-
imation constants. We will try to clarify the particular formulation of the
theorem and illustrate it with two consequences.

Firstly, because Bn takes the size of the denominator qn into account,
it is fair not just to compare means of the same number of approximation
constants for different expansions, but rather to compare these means for con-
vergents with denominators up to the same bound, as is done in (1.2). From
the viewpoint of diophantine approximation, the most interesting expansions
yield convergents that are all regular convergents (cf. the next section); two
sequences of convergents of such semiregular expansions of the same x con-
tain infinitely many common rational approximations, unless x is equivalent
to g = (V5- l)/2 = [0; 1, 1 , . . . ] . This shows the strength of the following
corollary.

(1.3) COROLLARY. Let x be some irrational number. Let rk/sk and 6*k

denote the convergents and the approximation constants for the expansion of
x defined in (1.2).

For every semiregular expansion ofx, with convergents and approximation

https://doi.org/10.1017/S1446788700033036 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033036


[3] Continued fractions 483

constants denoted by pjqn and 6n respectively, the following holds:

" 1 *°n+\ i " 1

Secondly, we may assure that the expansions we compare have the same
growth rate of their convergent denominators; this can be done for instance
by restricting to the class of fastest expansions. For this notion, one compares
semiregular expansions with the classical nearest integer continued fraction
expansion, with convergents say Rk/Sk , whose denominators Sk are known
to grow asymptotically as fast as possible. An expansion having the property
that all the convergents are regular convergents is fastest if it has the property
that

^ = ^ => n = k.
% sk

(Notice that for such an expansion, as remarked above, pjqn — Rk/Sk in-
finitely often, for every x not equivalent to g.)

(1.4) COROLLARY. Let x be some irrational number. Let rk/sk and d*k

denote the convergents and the approximation constants for the expansion of
x defined in (1.2).

For every fastest semiregular expansion ofx, with convergents and approx-
imation constants denoted by pjqn and 6n respectively, the following holds:

1 " I "

-E*/>-
n *-" J ~ n

j=i j=i

Once we have established that the expansion of Theorem (1.2) coincides
with the OCF-expansion, we can determine how well x can be approximated
by semiregular continued fractions, by applying results from [3]. It is shown
there that for every k the inequalities 6*k < \ and 6*k_1 + d*k< 2/\/5 hold;
moreover, the distribution of 6*k is given for almost all x. In Section 4 below
we will show that 6*k_l + 6*k + d*k+x < 3/V3. This leads to the following. (In
fact (1.7) is the same as [3, Corollary (5.16)].)

(1.5) THEOREM. Let notations be as in (1.2). For every irrational x, and
for every n>2,

(1.6) -yd*<-^= = 0.44721.. . .
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For almost all irrational x,

,, _. ,. l A , . arctanA . . . . . . V3+1
(1.7) hm - > 0. = ——7T = 0.24087... , where G =—x—.v ' n-»oo« £*[ J 41ogG 2

(1.8) REMARKS. The mean of the approximation constants for some other
semiregular expansions (for almost all x) is given by

- r^ rO.36067 . . . for the RCF,
41og2

0.25 for Minkowski's diagonal continued fraction,

v/5— 2
•=-:—•= = 0.24528... for the nearest integer continued fraction,
2\ogG

0.24195... for the a-expansion with a = 0.55821 • • • , which

yields the smallest value for any a-expansion.

For all this see [2] and [7].
Notice how close the value in (1.7) is to j log G = 0.24061.. . . This value

gives an a priori lower bound for the mean of the 6 's for almost all x as
can be seen as follows. Any subexpansion of the RCF forms a subsequence
of RCF-convergents with density at least log G/ log 2 (a.a.); see [1, Section
3]. Therefore we get a lower bound for the mean by computing the mean
of the fraction of size log G/ log 2 of the regular convergents with smallest
value of 6 . Since log G < \ and since the values of 0 are equidistributed
up to 0 = \ with density 1/ log 2, this is the mean of all 0 's smaller than
log G, which is \ log G (for almost all x). However, the regular convergents
thus selected (that is, those corresponding to 0 < log G) will not in general
form together a semiregular continued fraction expansion (several consecu-
tive regular convergents may be omitted); that explains why the value \ log G
is not attained.

The rest of this paper is organized as follows.
In Section 2 we study the distribution of Qn , belonging to the RCF ex-

pansion. In Section 3 it is shown that the OCF-convergents are obtained by
throwing out the badly approximating regular convergents. In Section 4 we
prove some interesting results about three consecutive approximation con-
stants. In Section 5 we use the results of Sections 3 and 4 to show that the
OCF-expansion has the property stated in Theorem (1.2) above.

Since so much is known about the OCF, we are also able to prove that
this expansion with optimal approximation properties is periodic precisely
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for quadratic irrationals, and we can derive some statistics on its partial
quotients, in Section 6.

Most results in this paper hold for rational x as well as for irrational
numbers, but to avoid awkward notation they are only stated for irrational
x, for which the semiregular expansions are infinite.

2. Selenius's theorem

In this section we fix an irrational number x and study the approximation
properties of different expansions of x.

Every semiregular continued fraction convergent is either a regular conver-
gent or a so-called intermediate convergent; more precisely, every semireg-
ular expansion of x will have among its convergents at least one of the
regular convergents Pn_JQn_x, Pn/Qn whenever Bn = 1, and it will
contain at least one of Pn_xIQn_l and the intermediate convergents
between Pn_xIQn_x and PJQn when Bn > 1. But if Bn > 1 then
Qn-\\Q.n-\X - Pn-\\ < 1/2, while for intermediate convergents P/Q one
knows Q\Qx - P\ > 1/2. Thus, in looking for expansions with the best ap-
proximation properties, we may as well restrict ourselves to those expansion
all of whose convergents are regular convergents. (For all this, see [1].)

Since such expansions necessarily have Pn_xIQn_x among their conver-
gents if Bn > 1, the only remaining problem will be that of determining the
distribution of the values of 8 n = Qn\Qnx - Pn\ whenever a block of m
consecutive partial quotients equal to 1 occurs in the regular expansion.

First an obvious observation that will be used frequently.

(2.1) LEMMA. Let RCF(x) = [Bo; 5 , , . . . , Bk_1, Bk, ... ] and suppose
that RCF(x') = [Bo; 5 , , . . . , Bk_x ,Bk,...] with Bk^Bk. Then

, k is even and x < x , or
B,, < B, ** '( k is

1 kis
k k I k is odd and x > x'.

We will sometimes abbreviate a block of m consecutive l's as partial
quotients in a continued fraction by lm .

(2.2) THEOREM. Let x be an irrational number and

say Bn*\, Bn+l = ... = Bn+m = l, Bn+m+l?l.Ifm is odd then

Qn>en+2> ••• ' Qn+m-\ > ^ a n d ^ n + l ' Qn+3 ' • • • ' ® <
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If m is even then

Moreover, if m = 0 mod 4, m = 2k then

and

k-2 ' "n+A:+l ' ®n+/t+3 » • • • ' ®n+m-l > /F '

if m = 2 mod 4, w = 2A:

j * is defined by

(2.3) f = l n + k~l ^ 9»+*-i > ®"

PROOF. Recall (cf. for instance [6, page 29]) that

so in particular, for 0 < e < m - 1

Q *
n+e ~ rn . 1« p /? 1 -I- ffl • 1 m ~ ' ~ e

First suppose that m is odd. By Lemma (2.1),

[0; \e,Bn> . . . , 5 , ] < [ 0 ; 1, 1, ...] = g if and only if e is even

and similarly

[0; lm-l~e, Bn+m+l ,...]< g if and only if e is even.

Hence

Qn+e > (g + 1 + g)~ = —=. if and only if e is even.

Next suppose that m = 2k is even; suppose that m>4 (the case m = 2 is
easily checked along the same lines). Let e be even, 0 < e < m - 4 . Then
by (2.1),

[ 0 ; l * , Bn, ... , Bx]<[Q;\e+2, Bn, . . . , 5 , ]
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since e is even, and

[0;lm-l-e,
s ince m — \—e is o d d , so

Analogously one proves that 0 n + e < &n+e+1 for e odd, 1 < e < m - 3 . If
moreover k is even we get again by Lemma (2.1) that

> ([0; lm~k, B n + m + l , ...] + [0; lk~l, B n , ... , B

~en+k-\
and likewise that &n+k < &n+k+x •

Now we have

en+fc-2 = maX(en+k-2 ' ®n+k-l ' ®n+k) '

n+jt_1, en+k, en+k+l), and

min(6n , 6 n + 2 , . . . ,

But by a theorem of Tong [12], max(6,, 0 / + 1 , 6J+2) > 1/v^ and thus we
see that

e)
implying

® ® ® ® ® ® >

If fc is odd we find, analogously to the above, that

©a+fc-2 < e
n + fc- l a n d en+k >

By the same argument as above then

fc_!, en+k) = max(en + j t_,, en+k, en+k+l)

so with 6 ; . = max(0n+fc_1, Qn+k) we find

This completes the proof of (2.2).
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In [10] the method we employed to prove the above theorem was applied
in such a way that 0 n , 0 n + 1 , . . . , Qn+m_l could be ordered by size for every
block of m consecutive l's; the order depends only on m and on the relative
sizes of [0; Bn+m+l, ...] and [0; Bn, . . . , 5 , ] . For our purposes however,
the theorem and the following corollary suffice.

(2.4) COROLLARY. Let RCF(JC) = [Bo; Bx, B2, ... ] and suppose that
Bn*l> Bn+l = Bn+2 = • " = *„+* = l> Bn+m+i * U for some n,m>\.
Let Z denote the set Z = {n, n + 1, . . . , n + m - 1} and put k = [m/2j.
Then a unique subset Y c Z exists with the following properties:

(i) #Y = k;
(ii) if n + d i Y then n + d+l zY.for every d with 0 < d < m - 2;

(iii) 6,. < 0,, for every i e Y and I e Z\Y;
(iv) O, > l/v/5 for every I e Z\Y.

PROOF. Define Y by

n + l,n + 3,...,n + m-2}, for m odd;

Y = m-2}, forw = 0 mod 4;

, n + 5, ... , n + K - I, j ,

n + k+l,n + k + 3,...,n + m-2} form = 2mod4;

with f* such that ;** + j * = 2n + 2k - 1, where j * is as in (2.3). The
result now immediately follows by Theorem (2.2) in each of the cases.

(2.5) REMARKS. We mention some cases in which the above result is also
valid, but that were left out of (2.4) for simplicity. If the expansion of x
starts by [BQ; 1, . . . ] , that is if n = 0, the condition Bn = BQ ̂  1 can be
omitted. If m is infinite, then (i) should be replaced for instance by

(i)' VA: #(7nZf e) = I I I , where Zk = {n, n + l , ... , n + k - l } n Z .

Finally (2.4) holds for rational x too.

3. Connection with optimal continued fractions

In this section we show that the convergents of the optimal continued frac-
tion expansion of x can be obtained from the regular expansion by skipping
those convergents corresponding to index sets Z\Y as in (2.4). This is of
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importance to us, since it will be shown in the next section that the expansion
with the best approximation properties, as in Theorem (1.2), actually is the
same as the OCF.

We will not repeat the original definition of the OCF here as this is rather
complicated (see [1], and [3]). That definition consists of an algorithm to
compute successive partial quotients, without reference to the regular expan-
sion. Here we prefer to define the OCF by describing the convergents in
terms of a subsequence of the regular convergents.

(3.1) DEFINITION. Let {PJ/QJ}°°=-I be the RCF-convergents of x = [Bo;
By, B2,...]. The sequence of optimal continued fraction convergents of x
is obtained by applying the following rules.

(i) If Bj+l > 1 then PJ/QJ is an OCF-convergent.
(ii) If Bj+l = 1 then

-— is an OCF-convergent

p
either -^- is not an OCF-convergent,

p
or ; - 1 is an OCF-convergent and &j < ©7+1.

(3.2) REMARKS. By definition, P_x = 1 and Q_, = 0 .
Notice that as a consequence of (3.1), in case Bj+l = 1 and Pj_l/Qj_l is

not an OCF-convergent, then necessarily 6 _t > 8 ; .
Note that a semiregular expansion x = [bQ; e ^ j , e2b2, ...] is completely

determined by the sequence of convergents pk/qk '• the relation is given by
the recurrence relations

P-i = 1, Po = b0, Pk+i = bk+xpk + ef c + 1^_! ,k Q)

a.x = 0, q0 = 1, gk+i = bk+lqk + ek+{qk_x

That the above definition of the OCF describes the same semiregular expan-
sion (for every x) as the definition given in [1] is proved in [1, Corollary
(4.20)].

(3.3) PROPOSITION. Let {PjIQj}0^^ be the RCF-convergents of x = [BQ;
BX,B2,...]. Then

P
-^- is not an OCF-convergent <t=* BJ+l = 1, 0 ; _ 1 < 6 ; and Qj > QJ+l.

PROOF. Notice that it is never the case that Qk = 0fe+1 since x is irra-
tional.
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The implication " <= " is immediate from part (ii) of Definition (3.1).
For " =*• " we do the following. Suppose that PJ/QJ is not an OCF-

convergent; then Bj+l = 1 by (3.1)(i). Moreover, Pj_l/Qj_l must be an
OCF-convergent. But then (3.1)(ii) implies that 0 , > 0 ; + 1 .

It remains to prove that 0 , , < 0 . . In case B, > 1 this is immediate
from the inequality

and the relations

So we may assume that Bj = 1. Suppose now that 0 j_ l > 0 ; this will lead
to a contradiction in the following way. We have

P
Bj = 1, jj~l is an OCF-convergent, and 0 _j > 0

so we get from (3.1)(ii) that

P . ,
Qj_2 > Qj_l and -^— is not an OCF-convergent.

The last assertion implies in particular that B-{ = 1. Altogether we get

(3.4) B,_x = Bj = Bj+l = 1, 0 ._ 2 > ©._, > 0 . > 0 . + 1 .

We use Theorem (2.2) to see that this is impossible: first of all, the length of
the block of l's of which Bj_x, Bj, Bj+l forms a part must be even, since
otherwise the corresponding values of 0 would be alternately smaller and
larger than l/\/5 by (2.2), which is clearly not the case in (3.4). If Bj+2 > 1
then Qj_2 < &j by (2.2), again contradicting (3.4). Therefore also Bj+2 = 1,
but now (2.2) says that 0y_2 > 0;. can only hold if 0 ; _ , < 0 ; + 1 . This also
contradicts (3.4) and it finishes the proof.

Thus (3.3) gives another description of the OCF. Below we give yet an-
other one, this time establishing the connection with the considerations of
the previous section.

(3.5) PROPOSITION. Let {PJ/QJ}'*!^ be theRCF-convergents of x = [Bo;
Bt , B2 ,...]. Then

p. f ^ + i > 1 or

jj- is an OCF-convergent <=> < Bj+l = 1 and j satisfies the
1 \ following condition.
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Let Z = {n,n+ I,..., n + m - 1} be such that j e Z , with n,m as in
(2.4). Then j £Y, where Y c Z w as in (2.4).

PROOF. First we prove "=*•."
If Bj+l ^ 1 then PJ/QJ is always an OCF-convergent by (3.3). So assume

for the rest of this proof that B-+1 = 1. Suppose that Pj/Qj is an OCF-
convergent but j £ Y; this leads to a contradiction in the following way.

From Pj/Qj € OCF and the fact that the OCF forms fastest expansions
(which means by [1, Remark (3.11)] that [(m + l)/2\ RCF-convergents out
of m are skipped in passing to the OCF) we see that m > 2.

Let us first assume that n < j < n + m- 1, which entails in particular
m > 3 . Then Bj = Bj+l = Bj+2 = 1 and j <£ Y implies by (2.4) (ii) that
both ; - 1 and j + 1 e Y. From (2.4)(iii) we see that 0;._j < Sj and
9,. > ej+l but together with Pj/Qj e OCF these contradict (3.3).

Next let n = j ; then 5 > 1 so Pj_l/Qj_1 e OCF and moreover, 6 _j <
0,. (just as in the proof of (3.3)). By (2.4)(ii) and (2.4)(iii) again j i Y
implies that ; + l e Y and that Qj > 6 ; + 1 . But now we have Pj/Qj e OCF,
0y_, < Qj and 8,. > 6 ; + 1 while Bj+1 = 1; these contradict (3.3).

Let finally j = n + m - 1. As before j $ Y implies j - I e Y and
©,_, < 6 , • In this case (3.3) tells that Pj_x/Qj_x € OCF, but then both
Pj-JQj-i and Pj/Qj e OCF which contradicts the fact that the OCF forms
a fastest expansion; it is incompatible with the need to skip l(m + l)/2j out
of PJQn,..., Pj_x/Qj_x, Pj/Qj = PH+m.1/Qn+m.l without skipping two
consecutive elements.

This proves that Bj+l = 1 and Pj/Qj e OCF always imply that j eY.
The converse is just a matter of counting, using that the OCF forms fastest

expansions.
That proves (3.5).

4. Three consecutive approximation constants

In this section we prove some results concerning triples (0*_i, Q*n , Q*n+\) •
The reason to include them here is that we need one of them for the proof
of our main theorem. Although only standard techniques are involved, our
proofs of these results are very lengthy and we will only sketch them.

We need two auxiliary results. The first concerns general semiregular ex-
pansions.
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(4.1) LEMMA. Let x = [b0; elbl, e2b2, ...] be a semiregular continued
fraction expansion of x, and let 6n be defined as before. Then for n > 1,

(4-2) n̂+l = W ( V l t . + VlV1 " 4Sn+A-A " KM-

PROOF. The main ingredient of the proof is that for every n,

(4.3) 0n_, = -r—^— and 6n = £"+1 "

where tn and vn are defined by

which is the "shift" of the expansion of x over n places, and
qn_l

The proof of (4.3) is analogous to that of the special case of the regular
expansion that we used before, and which can be found in [6, page 25].

Using that

'n+l

and that

we find from (4.3) that

_ en+2?n+l _ ( Sn+l

— fin+2

tnvn

~'nvn

Combining this with

1 A n 43 A 1 / I + l W /I V t i l t '

- ^ n + l d n _ l 0 n = 1 - , l + f v , 2 = , l + f v v 2

completes the proof of (4.1).

(4.4) REMARKS. We will use (4.1) only for the OCF, but the result is in-
teresting in itself. Special cases can be found in [4] also.
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(4.5) LEMMA. For every x and every n > 1;

where U = {(w , z) e R x R:w > 0, z > 0, 4io2 + z2 < 1, w2 + 4z2 < 1}.

Lemma (4.5) appears as [3, Theorem (5.1)(i)]; in the second part of that
theorem in fact a distribution function for (0*_,, 0*) over n is given, for
almost all x. It is a consequence of the ergodic theory, developed in that
paper.

(4.6) THEOREM. Let OCF(x) = [a0; elal, e2a2, ...] and let 0* for n > 1
be its approximation constants, as before. Let also for n > 1,

Then the following hold for n > 2 :

(4.7) L <d* +e* + d— n—\

* ' n~~i ft fl+i ~~

and

Moreover, the bounds in (4.7)-(4.9) are sharp.

PROOF. The proof of (4.6) is laborious, but the idea is very simple. Use
(4.2) in the special case of the OCF to express 0*+1 as a function of 0*_j,
0*, an+l,en+l and en+2. Next determine the subspaces IIg a e of
II on which en+l, an+l and en+2 are constant. It turns out that the clo-
sure (under the ordinary euclidean topology) of each of Ilg a e is a
compact piece of I I . On these the sum, product and sum of the recipro-
cals of 0*_,, 0* and 0*+1 are now functions of the two variables 9*n_l and
0*, which can easily be shown to take on extremes only on the boundaries.
Calculating these extreme values gives (4.7)-(4.9).

The result stating that the bounds are sharp follows from the fact that the
density function for pairs (0*_,, 0*) is nonzero on n [3, Theorem (5.1)(ii)].
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By way of example, we give the proof outlined above in some detail for
one "generic" case. We consider IIj a x, with a > 2, and we take its closure
II, a j in order not to have to worry about the boundaries. To find these
boundaries, we take a closer look at how Lemma (4.5) is proved in [3]. It
is shown that (tn ,vn)eT for every n > 1, where T c [ - 1 , 1] x [0, 1]
consisting of (t, v) such that

a n d ^ ^

With e(t) denoting the sign of t,

defines a surjective, two-to-one mapping i//:T -> II , sending (tn, vn) to
{0*n-i. 0*n) by (4.3). On T an operator W is defined explicitly (as in [3,
Definition (4.8)]) by

where
\\\\l+e(t)v

This W has the property that W"(x, 0) = {tn, vn), for x e [-\, \]. Now
n i , a , i = ^ T i > a , i ' if we define T1>fl^ as {(*,«) 6 T:e(0 = e(t') = 1
and fi(t, v) = a} , where we have put (t', v') = 'Wit, v). An elementary
calculation then shows that II, a x consists of (w, z) € II for which

z<-\w + - and 4w2 + 8a(a+ \)wz + (2a2 + 2 a + l)2z2 > (2a + I)2.

For the sum 0*_, + 8* + 6*+l on II, a x, we need by (4.3) to look at the

function R(w, z) = w + z + (w + a\/\ - 4wz - a2z). Since the partial
derivative of R with respect to z is negative on Ft, a , , extremes will be
found on the boundaries; in fact R(w, z) takes on the minimal value I/a

in the point (0, I/a) and the maximal value (a + 2) /y (a + I)2 + 1 in the

point ((a + l ) / 2 ^ / ( a + l ) 2 + l , l/\J(a+ I)2 + 1. That proves (4.7) in this
case.

The extremal values for the product and the sum of the reciprocals in this
case are found by considering instead of R the functions

G(w, z) = wz(w + aVl - 4wz - a z)
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and
1 1 1

H(w,z) = - + +z w + aVl -4wz -a z
The cases en+l = - 1 or en+2 = - 1 can be dealt with similarly; the case

that a = 2 needs special attention, but follows in similar vein.
Checking all these cases completes the proof of (4.6).

( 4 . 1 0 ) C O R O L L A R Y . For every x , and for every n > 2 ,

(4.13)

Moreover, the bounds in (4.11)—(4.13) are sharp.

PROOF. This is an immediate consequence of (4.6) and the fact that an +
Sn > 2 for every n, since an > 2, and an > 3 if both en+l = - 1 and

In other words, the arithmetic, geometric and harmonic means of three
consecutive optimal approximation coefficients are all bounded by 1/A/5.

In fact we see easily that this holds for an arbitrary number of consecutive
optimal approximation constants.

(4.14) COROLLARY. For every x, for n > 1 and for every N > 2,

^ 4
(4.16)

JV—1

The constant l / \ /5 is best possible in each case.

PROOF. For the arithmetic mean as in (4.15), this is a consequence of the
special cases N = 2, proven in [3, Theorem (5.9)], and N = 3, which is
(4.11) above.
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By a famous theorem of Cauchy the arithmetic mean R, the geometric
mean G as in (4.16), and the harmonic mean H as in (4.17), always satisfy
H<G<R.

The results are seen to be sharp by a density argument, as in the proof of
(4.6).

That proves (4.14).

(4.18) REMARK. Of course it is also possible to derive analogues of (4.7)-
(4.9) for two consecutive approximation constants. For the arithmetic mean
we get for instance

where yn+l = t|H^~1 . These bounds are sharp, except for the upper bound in
the case that en+l = - 1 and an+l = 2 (where it can be improved to 2/>/5).

Since we do not need results of this type, we leave it at this.

5. Optimal approximation

Now we are ready to prove the main theorem. Throughout this section we
use the following notation.

We fix an arbitrary irrational x, let again (rk/sk)k>l denote its sequence
of OCF-convergents and ipklQk)k>\ its sequence of convergents for
some other semiregular continued fraction expansion. Furthermore 6*k =
sk\skx - rk\ and 6k = qk\qkx - Pk\ for k > 1. We also introduce an aux-
iliary arithmetical function r\; for every N > 1 we denote by rj(N) the
number of convergents among {pklQk)k>x with denominator up to ^ + 1 , so
r](N) = #{k: qk < sN+l} . Note that r\ depends on the semiregular expansion
under consideration; but irrespective of this expansion we have the following.

(5 .1) L E M M A . For every N > \ , rj(N) > N.

PROOF. Suppose that for some x we have, for some semiregular expan-
sion, that r](N) < N for certain N > 1; fix that expansion and take the least
iV0 with this property. Then qN > sN + 1 . We can now find a new semireg-
ular expansion, for instance by taking qN = sN+l for N > No, satisfying
rj{N) < N for every N > NQ . This contradicts the fact that OCF(x) forms
a fastest expansion: our newly defined continued fraction skips at least one
more regular convergent [1, Section 3].
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(5.2) THEOREM. Let M > 1 be such that pM/qM is not an OCF-conver-
gent. If r\{N)>M, then

N

=1 j=\

PROOF. The idea of the proof is to supplement the sequence 8\,... , 8*N

with elements I/N/5 until it consists of r\(N) elements (note that n{N) > N
by (5.1)) and to show next that the mean of this new sequence is larger than
that of 8*,..., 6*N and smaller than that of 8X, ... , 0^(Ar).

First note that M exists: because the OCF is a fastest expansion, no strict
subsequence of OCF-convergents forms a continued fraction expansion; by
assumption {pk/qk)k>\ differs from the OCF-expansion, so we must have
pMlqM $. OCF for some M.

Let N be such that n(N) > M, so qM < sN+l. We define an injective
map

<f>: {k: 1 < k < N] -> {m: 1 < m < ri{N)}

as follows. Define n(k) for 1 < k < N by the relation sk = Qn,k\ between
OCF- and RCF-convergents. If Bn{k)+l > 1, there exists at least one m such
that

(5.4) Qn(k)<qm<Qn(k)+x, with 1 < m < r,(N)

by [1, Lemma (3.1)]; we let </)(k) be the smallest of these integers m .
Now suppose that Bn{k)+l = 1. If rk/sk = pm/qm for some m with

\ < m < tj(N), we put <f>{k) •- m; otherwise let « be the largest integer
for which Bn > 1 with n < n{k). If n{k) - n is even (or zero) we let
<t>{k) be such that Pm/Qm = Pn{k)+JQn(k)+\ > w h U e f o r n(k) ~ n o d d w e

let (f>(k) be such that P^/q^ = Pn(k)-\IQn(k)-\ • ^n a n v c a s e s u c ^ ^(^)
exists again by [1, Lemma (3.1)]. Thus <f> is well defined and injective and
it has the property

(5.5) if ^ = — for some m, then <j)(k) = m.

Next we define A: {m: 1 < m < n(N)} ^ R by

f ®*s-Uni\ if m e im(0)> ^ e image of <j>;
X(m) = { * 1_'

' ' ' otherwise.

Since <f> is injective, X takes on each of the values 0*, B\ , . . . , 6*N exactly
once, and the value l/\/5 precisely n(N) - N times. But we can show that
in this way

(5.6) X{m) < 6m
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for 1 < m < t](N). For, suppose first that m e im(^). If PmlQm is
an OCF-convergent, then 6m = 6*,-\lm-, = Mm); if pmlqm is not an OCF-
convergent, it is either a secondary regular convergent (if Bn(k)+X > 1) and
satisfies 6m > j by Legendre's theorem, while | > #I-i(m) = ^(w), or it
is a regular convergent that is not an OCF-convergent, in which case 6m >
el-\m)=*(m) by (2.4) and (3.5).

On the other hand, if m £ im(0) we see from (5.5) that PmlQm is not
an OCF-convergent, and (5.6) holds again by (2.4) and (3.5).

Since we have on the same grounds the strict inequality X[M) < 6M, we
get that

(5.7)

and thus

n(N) •iv) n ~f\T\_jy

N

^ by (5.1) and (4.15).

This proves (5.2).

This also proves Theorem (1.2), and its immediate consequences (1.3) and
(1.4). Moreover, the uniquely determined expansion of Theorem (1.2) is now
known to be the OCF-expansion.

6. Periodicity and partial quotients

The results of the previous sections yield an algorithm to compute the
OCF expansion once the RCF is known: if Bn+l > 1 then Pn/Qn is an OCF
convergent; if Bn / 1 , Bn+l = Bn+2 = .-. = Bn+m = l, Bn+m+l / 1 then we
can determine the set Y as in (2.4) which tells us by (3.5) precisely which
convergents to skip. In other words, this gives us a singularization algorithm.
An interesting consequence of this is the periodicity of OCF-expansions for
quadratic irrationals, due to the fact that this singularization scheme almost
only depends on m (the length of the block of l's). There is only a slight
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complication in the case that m = 2 mod 4 caused by the definition of j * in
(2.3). Still, the following holds.

(6.1) THEOREM. The OCF of x is periodic if and only if x is a quadratic
irrational number.

PROOF. Since every periodic semiregular continued fraction converges to
a quadratic irratinal number [8] we only need to prove one direction here.
If the period of RCF(x) contains no l's (as partial quotients), the period of
the OCF is the same as the one for the RCF of x, for instance by the first
part of (3.5). If precisely m consecutive l's occur in the period of RCF(x),
then for m odd or divisible by 4 the recipe for skipping RCF-convergents to
find the OCF-convergents is periodic again because it depends only on m,
not on x or n. If in is 2 mod 4 however, there is dependence on x in
finding the set Y of (2.4). Suppose that RCF(x) has preperiod of length q,
period length p, and suppose that this period contains m consecutive l's
somewhere, with m = 2k, k odd; say

R C F ( x ) = [ B 0 ; B l , B 2 , ... , B q , B q + X , ... , B n , l , B n + m + l , ... , B q + p ] ,

with #„ # 1, Bn+m+l ^ 1; here the bar denotes the period. We may as well
write for RCF(x),

[B0;Bl,B2,...,Bq, Bq+X, ... , Bn, 1 ,

* ' "n+m+l ' m • • ' q+p ' 9 + p + l » • • • » "n+p > * J >

with Bq+l = Bq+p+l, ... , Bn= Bn+p . Since k is odd, it is not hard to see
that

(6-2) en+p+k-l < en+p+k ** Vn+p > Tn+p+m '

if we use as before that Qn+p+lc_i equals

1

[ 0 ; I * " 1 , B n + p , . . . , * , ] + [<>; l f e , B n + p + m + l , B n + p + m + 2 , . . . ] + 1

and that

e i

Let j > 0 be minimal such that

BH+p_j * Bn+p+m+l+j with n + p - j > 1.

Now either

(6.3) n+p-j>n + m + l
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or

(6.4) n+p - j <n.

In the first of these cases it is clear from periodicity that

Vn+p > Tn+p+m «• Vn+ip > Tn+ip+m for every i > 1,

and therefore

f 0 r

In the second case we see that the period lk, Bn+m+l, ... , Bq+p, Bq+p+i,

••• ' Bn+P » 1<: i s symmetric, and two cases have to be distinguished again.
If the period length p is even we get

Vm,„ > Tn,_,m «=> F . > T . for every i > 1,

and thus

6n + p + f c_! < en+p+k & en + i p + f c_, < en + ,p + / t for every i > 1

as before; if the period length p is odd however we find

^n+ip+k-i<en+iP+k f o r / o d d ,
n+p+k \

> °w+,p+jfc I o r * even-

But then we have periodicity again, with period length p if (6.3) holds or
(6.4) holds with p even, and with period length 2p if (6.4) holds with p
odd. This proves (6.1).

(6.5) EXAMPLE. Let co = (-39 + \/3029)/58 (cf. [5]).
In the table we show the first 16 partial quotients and convergents of the

RCF for co; the fifth column shows the values of 6 . The sixth column shows
the partial quotients for Minkowski's diagonal continued fraction (DCF) ex-
pansion, which can be defined as the expansion one gets by selecting precisely
those regular convergents that satisfy 6 < 1/2 (cf. [8, Section 45], [7]). The
seventh column gives the first partial quotients for the nearest integer contin-
ued fraction (NICF) expansion of co, the eighth those for the OCF. All of
these expansions are periodic; the bold partial quotients in the table together
constitute the period (the DCF and the OCF both have a preperiod). A blank
in a column indicates that the regular convergent of that row is skipped. We
see that the OCF skips the maximal number of regular convergents (3 in every
period) just like the NICF, but unlike the DCF. At the same time the OCF
selects only convergents with 8 < 1/2, just as the DCF does; the NICF does
not have this property.
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TABLE

n
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

RCF P
3 1
1 1
1 2

3
5
8
13

\ 47
60
107
167
274
441
715

3 2586
1 3301

Q
3
4
7
11
18
29
47
170
217
387
604
991
1595
2586
9353
11939

e
0.5116...
0.4238...
0.4520...
0.4551...
0.4176...
0.5271...
0.2362...
0.5269...
0.4095...

0.45424578...
0.45424554...
0.4179...
0.5279...
0.2363...
0.5262...
0.4192...

DCF

4
-2
1
1

2

-5
-2
1
1

2

-5

NICF

4

-3

-3
-2

4

-3

-3
-2

4

OCF

4
-2

2

-3

-5

-3
-2

2

-5

The example also illustrates how the first two regular periods together are
used for one OCF-period; this is because the period length (7) of RCF(tw) is
odd and it contains 6 (= 2mod4) consecutive l's (see Table above.)
In the rest of this section we have collected some facts about the partial
quotients of optimal continued fractions. Let x be any irrational num-
ber and let SRCF(x) be some semiregular expansion of x, so SRCF(x) =
[b0; elbl, e2b2...]; then MSRCF(x, B ,k) will denote the number of partial
quotients among the first k in this particular expansion that equal B . So

' B' k) = = B}.

(6.6) THEOREM. For every irrational number x and every semiregular ex-
pansion SRCF(x) that is fastest, we have

(6.7) •^SRCF(;C > 2 , fc) < -MOCF(X > 2 , A;) for infinitely many k > 1;

moreover, for every B > 1 both

lim TrA/sRCF(x, B, k) and lim TM^^X , B, k)
k—•oo AC h—•oo AC

will exist for almost all x, and then

(6.8) li ]l i m ] - M S K C F ( x , 2 , k ) < l i m ^ A f O C F ( x , 2 , k ) .
k,—•oo AC k,—^oo AC
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PROOF. We sketch a proof.
All we have to do for (6.7) is to analyze what happens after every possible

singularization according to fastest expansions; so we look again at a sequence
of regular partial quotients Bn ^ 1, 1, . . . , 1, Bn+m+i ^ 1. For odd m,
every fastest expansion singularizes in the same way since there is only one
way to singularize [{m + 1)/2J of the l's.

If m is even, say m = 2k, there are several strategies possible: one may
singularize the first, third , . . . , m- lth 1, or one may singularize the second,
fourth , . . . , mth 1 or one may switch from the first to the second strategy
somewhere in between. If one uses the first or the second strategy, k -1 new
quotients 3 are introduced and 1 extra 2 (while also either Bn or Bn+m+l is
increased by 1); if one switches strategy somewhere however, k - 2 new 3's
are created and 2 extra 2's (while also both Bn and Bn+m+l are increased
by 1). Thus one sees without too much difficulty that the number of 2's is
maximized only if one changes strategy (only the fact that at the endpoints Bn

and Bn+m+l of the block 2's may disappear urges some caution, particularly
if m = 2 mod4). From (3.5) and (2.4) it is clear that this always happens
in the OCF. This finishes the sketch of the proof, using the usual ergodic
properties for the existence of the limit in (6.8).

(6.9) EXAMPLE. Let us try to elucidate the argument above a little bit
by giving an example. Let us see how a block of six consecutive l's can
be singularized for fastest expansions; underlined l's are singularized below
(and e 's are omitted).

( i ) B n , \ , 1 , 1 , 1 , 1 , 1 , Bn+m+l~Bn + 1,3,3,2, B n + m + 1 ;
( i i ) Bn,l,l, 1 , 1 , 1 , 1 , Bn+m+l~Bn, 2 , 3 , 3 , B n + m + l + l;
(in) Bn,1,1,1,1,1,l,Bn+m+l~Bn + l,2,2,3,Bn+m+l + l;
(iv) B n , l , l , l , 1 , 1 , 1 , Bn+m+l~Bn + 1 , 3 , 2 , 2 , B n + m + l + l.
The cases (i) and (ii) correspond to the first and the second strategy in

the proof (which are in general the singularization schemes of the NICF and
Hurwitz's singular continued fraction). In the cases (iii) and (iv) strategies
change; one of these (depending on the values of Bn and Bn+m+l) corre-
sponds to the OCF.

One easily verifies that number of 2's is maximal and the number of 3 's
minimal in cases (iii) and (iv), irrespective of the values of Bn and Bn+m+l;
but also note that these numbers are equal for all cases when Bn = Bn+m+l =
2.

Finally we provide some statistics about partial quotients; it is not hard
(but very tedious) to find for almost all x the relative frequency of occurrence
of the values of partial quotients for the OCF. In the table below we compare
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these to the same frequencies for some other fastest expansions, viz. those
of the NICF and of the a-expansion with a = (-2 + VlO)/2; we also list the
values for the (nonfastest) RCF. The a-expansion with a = (-2 + vT0)/2 =
0.58113... has the property that at the same time the frequency of 2's is
maximal and the frequency of 3's is minimal for any fastest a-expansion.
For the NICF the values can be found from results in [9].

B
1
2
3
4
5

RCF
0.41504...
0.16993...
0.09311...
0.05889...
0.04064...

OCF
-

0.22111...
0.20478...
0.12166...
0.07979...

NICF
-

0.19637...
0.22555...
0.12630...
0.08088...

a
-

0.22110...
0.19479...
0.12866...
0.08209...
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