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VEGAS2: Software for More Flexible
Gene-Based Testing

Aniket Mishra and Stuart Macgregor
Statistical Genetics Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia

Gene-based tests such as versatile gene-based association study (VEGAS) are commonly used following
per-single nucleotide polymorphism (SNP) GWAS (genome-wide association studies) analysis. Two limita-
tions of VEGAS were that the HapMap2 reference set was used to model the correlation between SNPs
and only autosomal genes were considered. HapMap2 has now been superseded by the 1,000 Genomes
reference set, and whereas early GWASs frequently ignored the X chromosome, it is now commonly in-
cluded. Here we have developed VEGAS2, an extension that uses 1,000 Genomes data to model SNP
correlations across the autosomes and chromosome X. VEGAS2 allows greater flexibility when defining
gene boundaries. VEGAS?2 offers both a user-friendly, web-based front end and a command line Linux ver-
sion. The online version of VEGAS2 can be accessed through https://vegas2.qimrberghofer.edu.au/. The
command line version can be downloaded from https://vegas2.qimrberghofer.edu.au/zVEGAS2offline.tgz.
The command line version is developed in Perl, R and shell scripting languages; source code is available

for further development.

m Keywords: GWAS, 1, 000 genomes, X chromosome, VEGAS2, VEGAS

Gene-based tests are now well established as complemen-
tary methods to traditional per-single nucleotide polymor-
phism (SNP) GWAS. These methods test for enrichment of
multiple SNPs associated with the disease/trait that individ-
ually have too modest an effect on the phenotype to reach
genome-wide significance using a per-SNP test. A key is-
sue is accounting for linkage disequilibrium (LD) and gene
size (number of SNPs). A permutation approach where
phenotype labels are shuffled while keeping the markers
fixed is considered the gold standard for correcting for
LD and SNP number. However, this approach is compu-
tationally intensive and can only be applied to GWASs on
unrelated individuals. We have previously shown a simula-
tion approach generates similar results to the permutation
(Liu et al., 2010). The VEGAS approach is computationally
tractable and can be applied to any GWAS experimental
design (unrelated individuals, family designs, DNA pooling
designs). Novel loci not identified using per SNP tests have
been found using VEGAS (Cheng et al., 2013). Imputation
to the HapMap reference panel has been superseded by the
availability of the 1,000 Genomes phase 1 data (around 38
million variants; Genomes Project et al., 2012). By updating
VEGAS to use 1,000 Genomes phase 1 data, we are able to
improve our LD estimates given the increase in the size of
the reference panel (e.g., N for European ancestry subset is

379 compared to 90 in HapMAP phase 2), as well as up-
dating genome build from hg18 to hgl9 (Genomes Project
et al., 2012; International HapMap et al., 2007).

We have enabled analysis of the X chromosome data, re-
flecting the increased analysis of this region in GWAS (Chu
et al., 2013; Conde et al., 2013; Kou et al., 2013; Tukiainen
et al., 2014). Finally, we have made significant improve-
ments in the analysis and data handling routines, increasing
program efficiency.

Here we describe the VEGAS2 package, which is an ex-
tension of VEGAS with the ability to leverage the informa-
tion provided by 1,000 Genomes phase 1 data, and allows
gene-based analysis of the X chromosome.

Materials and Methods
Gene Data

We downloaded the hg19 annotated list of all RefSeq genes
from UCSC table browser on May 22, 2014. After extracting
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genes located on the 22 autosomes and on the X chro-
mosome, there were total 25,196 unique gene symbols;
5,356 symbols have variable transcription start and end po-
sitions. Symbols with overlapping transcription locations
were merged to form a single full-length version of a gene.
Cases where transcription sites were not contiguous with
each other were given a new gene symbol with nomen-
clature ‘Originalgenesymbol'1/2/3’. In total, 26,056 unique
VEGAS?2 gene definitions (24,769 autosomal and 1,287 X-
chromosomal genes) are used.

1,000 Genomes Data

VEGAS2 repository files were constructed using 1,000
Genomes phase 1 release version 3 was downloaded
on May 22, 2014 from the NCBI website (ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/).
Using the vcftools package (Danecek et al., 2011), 1,000
Genomes phase 1 data were divided into the following
ancestry groups: European (379 individuals), Asian (286),
African (246), and Latin American (181). These four geno-
type datasets were filtered separately to extract SNPs with
minor allele frequency above 1% and a Hardy—Weinberg
p-value above 1 x 107, We also filtered out X chromosome
SNPs that showed significant difference (p-value < 1.8 x
1077) in allele frequency between males and females (there
were 146 such SNPs in the European reference set, with
similar numbers in other sets).

Gene-Based Association Testing Approach

In VEGAS2, the user has five options regarding gene bound-
aries for SNP selection:

1. SNPs within the gene, relative to the 5 and 3 UTR
(Okbloc).

SNPs within 10 kb of the 5> and 3> UTR (10kbloc).
SNPs within 20 kb of the 5’ and 3> UTR (20kbloc).
SNPs within 50 kb of the 5’ and 3> UTR (50kbloc).
SNPs within gene plus any SNPs outside of the gene
with r2>0.8 with SNPs within the gene (0kbldbin).

e

This allows the flexibility to include different sets of
SNPs when testing for a gene-based association. Different
gene boundary options have different advantages and lim-
itations. For example, gene boundary option 1, ‘Okbloc),
focuses solely on intronic and exonic SNPs and ignores
regulatory SNPs, reducing power if regulatory variation is
important (and not tagged by SNPs residing in the gene).
However, using a larger gene boundary may lessen the speci-
ficity of the result for a given gene because SNPs associated
with neighboring genes may influence test statistics of a
gene under consideration. SNPs a long distance from the
gene are typically ignored in gene-based tests (Christoforou
et al., 2012) and so we have implemented gene boundary
option 5, ‘Okbldbin’, to allow distant SNPs in high LD with
genic SNPs to be included.

VEGAS2: Software for More Flexible Gene-Based Testing

For each gene definition, the n SNPs’ p-values are first
converted to upper tail x? statistics with one degree of free-
dom (df) and then summed to calculate a gene-based test
statistic that would have a x? distribution with n df under
the null hypothesis, if SNPs are in linkage equilibrium. Since
linkage equilibrium for the n SNPs rarely occurs, their cor-
relation is modeled using 3, a n x n matrix of LD (r) values
estimated from a 1,000 Genomes reference population. The
user can choose a broad reference population group such
as European (1000G EURO), Asian (1000G ASN), African
(1000G AFR) and American (1000G AMR) using the option
‘-pop 1000GEURO/ASN/AFR/AMR, or the user can choose
a more specific population group with more similar LD to
their population of interest. For example, the ‘-subpop GBR’
parameter can be used if the user wishes to calculate LD con-
sidering only individuals from the 1,000 Genomes reference
population ‘British in England and Scotland (GBR)’. Signif-
icance is computed by comparing the summed x? statistics
for each gene to simulated replicates from a multivariate
normal distribution with mean = 0 and variance = 3.. Em-
pirical p-values are computed for each gene using formula,
p = r+1/m+1, where r is the number of instances where
the simulated statistics exceed the observed data and m is
the number of simulations.

We implemented a flexible gene-based approach where
the user can specify what percentage of top SNPs are in-
cluded in the gene-based test (the default is to consider
all SNPs). This allows the user to include SNPs with more
significant association with phenotype and remove SNPs
that may dilute the summarized test statistics. An option
is also provided to specify that only the single best SNP be
included, which would be more relevant in genetic architec-
tures where only few SNPs regulate the gene of interest and
the top SNP is in high LD with those SNPs. A range of op-
tions is offered, since the best approach will vary depending
on the true (unknown) genetic architectures.

We used the MD Anderson Cancer Centre melanoma
cutaneous malignant melanoma case-control (MDACC-
CMM-CC, 1,965 cases, 1,038 controls, typed on Illumina
Omni-1M arrays) data (Amos et al., 2011) to compare VE-
GAS2 gene-based results obtained using only genotyped
SNPs with results using 1,000 Genomes phase 1 imputed
SNPs. We imputed chromosome 21 of the MDACC-CMM-
CC data using IMPUTE2 software (Marchini et al., 2007)
and performed association testing using SNPTEST (Well-
come Trust Case Control, 2007). VEGAS2 was applied to
the summary results with and without imputation, using
the default settings.

X Chromosome Gene-Based Test Approach

Although many commonly used genotyping platforms pro-
vide data on all chromosomes, relatively little attention has
been paid towards analysis of the X chromosome in the
GWAS setting. X chromosomes have some special charac-
teristics compared to autosomes, namely:
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TABLE 1

Correlation Matrix of Different Sets of SNPs Genotyped, Imputed, Imputed SNPs Pruned at r? > 0.99, Imputed SNPs Pruned at
> 0.90 and Imputed SNPs Pruned at r> > 0.80

Total genotyped Total imputed Pruned r? > 0.99 Pruned r? > 0.90 Pruned r? > 0.80

SNPs SNPs imputed SNPs imputed SNPs imputed SNPs

Total genotyped SNPs 1 0.90 0.92 0.86 0.84
Total imputed SNPs 0.90 1 0.96 0.91 0.88
Pruned r? > 0.99 0.92 0.96 1 0.94 0.91

imputed SNPs
Pruned r? > 0.90 0.86 0.91 0.94 1 0.97

imputed SNPs
Pruned r? > 0.80 0.84 0.88 0.91 0.97 1

Imputed SNPs

1. males have a single copy; females have two copies.
2. one copy in females is fully or partly inactivated.

These special characteristics of the X chromosome re-
quire a separate statistical testing model for association
analysis compared with autosomes. Different association
testing models have been proposed (Clayton, 2008; Zheng
et al., 2007). Two popular models to analyze X chromo-
some GWAS data are: (1) sex-stratified (sexes analyzed sep-
arately) (Davidson et al., 2014; Zhang et al., 2014); and (2)
sex-combined, with X-inactivation modeled (males geno-
types are coded as female homozygote, that is, males as 0,
2 and females as 0,1, 2) (Tukiainen et al., 2014). In a sce-
nario where the proportion of males within cases is very
different to the proportion of males within controls, the
sex-stratified approach will have reduced power (Clayton,
2008). Hence, we suggest that users use the X-inactivation
option as the default — for example, input p-values from
the default X-inactivation output from SNPTEST (Well-
come Trust Case Control, 2007). In addition to making the
assumptions of X-inactivation and equal effect size in males
and females (the per-SNP assumptions), VEGAS2 (by de-
fault) assumes LD and allele frequencies are equal across
sexes. To minimize sampling error in this situation, LD and
frequencies are estimated from both sexes combined. Users
who do not wish to make these assumptions are catered for
through the VEGAS?2 “-sex’ option that treats each sex sepa-
rately — in this case, the user should input separate p-values
for the sexes separately. The sex-specific VEGAS2 outputs
can be meta-analyzed using Fisher’s method to combine the
p-values.

We used MDACC-CMM-CC data (Amos et al., 2011)
to test the X chromosome approaches in practice. First,
per-SNP association was tested using SNPTEST (Marchini
et al., 2007) using the X-inactivation model, with the p-
values used as input to VEGAS2 (assuming similar LD and
allele frequencies in males and females). Second, a logistic
regression model in each sex separately was run, with the
resultant p-values input into VEGAS2 with the ‘-sex’ flag
specified, with the VEGAS2 output then meta-analyzed us-
ing Fisher’s method.

Results and Discussion
Gene-Based Results on Different Sets of SNPs

We compared the gene-based results obtained using differ-
ent sets of SNPs from MDACC-CMM-CC association data
in chromosome 21 (Table 1). While using imputation fills in
potentially informative untyped SNPs, on average the gene-
based results do not differ dramatically when imputed and
directly genotyped VEGAS results are compared (correla-
tion 0.90 for total genotyped compared to total imputed).
One advantage with imputation is that the number of genes
with a gene-based result increased by ~25% for this data
set (270 chromosome 21 genes covered with imputation
compared with 215 genes with only genotyped SNPs).

Table 1 also shows the results with different levels of LD
pruning of the imputed SNPs. Here, pruning means a SNP
is removed if it has r above the specified threshold with an-
other SNP within a window of 50 SNPs as implemented in
plink (Purcell et al., 2007). A comparison between the gene-
based result with 72 > 0.99 and with no pruning is shown to
investigate the phenomenon described by Moskvina et al.
(2012). They showed that although the information con-
tent of the input data for ‘% > 0.99’ and for ‘no pruning’ is
similar (since the only difference is that one representative
SNP is chosen each time two or more SNPs are in essentially
complete linkage disequilibrium), the resultant correlation
can be less than one. Table 1 shows that while we do see a
correlation less than one, the high correlation (0.96) means
that in practice the results will not differ substantially be-
fore and after pruning at this level. Examining pruning at
lower * thresholds, the unpruned and pruned results begin
to diverge, as would be expected because the information
content in the pruned set begins to decrease.

Since the information content of the input data for ‘7
> 0.99’ and for ‘no pruning’ is similar, there is unlikely
to be an inherent advantage in considering the full set of
imputed SNPs in practical applications of VEGAS2. Hence,
in web-based version we implement ‘7> > 0.99’ pruning as
the default in VEGAS?2 (there is an option for the user to
use no pruning if desired, although the runtime increases by
four-fold). Specifically, when a user uploads their summary
data, VEGAS? first uses the user-specified 1000G reference
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Xinactivation vs logistic regression model
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FIGURE 1

(Colour online) P-P plot of gene based p-value using X-inactivation model versus sex-stratified model.

set to remove all uploaded SNPs in 7 > 0.99 with another
uploaded SNP. The software then computes the gene-based
p-values on the pruned set of SNPs. Similarly, in offline
version user can provide pruned summary file as input to
implement this method.

X Chromosome Gene-Based Test Using Sex-Stratified
Versus X Inactivation GWAS Model

To test how the sex-stratified and X-inactivation models for
GWAS on X chromosome behave in gene-based association
test setting, we performed separate GWAS on MDACC-
CMM-CC data using X-inactivation model on X chromo-
some using SNPTEST and run VEGAS2 using option ‘-sex
BothMnF’ (default option). We performed association tests
separately for each gender, and then ran VEGAS2 with op-
tion ‘-sex Males’ and ‘-sex Females’ respectively. We com-
bined the gene-based p-values obtained from single gender
analyses and compared it with the gene-based p-values ob-
tained using X-inactivation analysis. As expected, the results
from these two approaches are broadly similar, but given the
different assumptions, not identical (Figure 1).

The gene PGRMC1 was more significant using the strati-
fied sex model compared to the X-inactivation model (gene-
based p-values, sex-stratified = 6.2 x 10~%, X-inactivation
= 0.41). We further explored the results for the SNPs
within this gene. This gene contains two genotyped SNPs,
rs2499043 and rs11546862. Both these SNPs are signifi-
cantly associated in the females-only tests, but not in males-
only or X-inactivation tests (Table 1). Although the results
in Figure 1 show reasonable concordance, the result for
PGRMCI illustrates that the assumptions made in the X
chromosome analysis can in some cases greatly affect the
results obtained using VEGAS2 (Table 2). In general, we
recommend the sex-combined X-inactivation model, al-
though users should be aware that in some cases the results
may differ compared with the sex-specific model.

Web-Server Implementation

The online version of VEGAS2 is available through
https://vegas2.qimrberghofer.edu.au/.
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Offline Version for Linux System and Availability of
Data Repository

VEGAS2 was developed in Perl programming language to
work in Linux command line environment. The VEGAS2
data repository and scripts can be downloaded from
https://vegas2.qimrberghofer.edu.au/zVEGAS2offline.tgz.
The manual for installation and usage can be down-
loaded from https://vegas2.qimrberghofer.edu.au/
VEGAS2usermanual.pdf.

Conclusion

In conclusion, we report on the VEGAS2 approach that
uses 1,000 Genomes data to perform gene-based tests on
GWAS summary results. VEGAS?2 also extends the original
VEGAS approach to perform gene-based testing on the X
chromosome. Its offline implementation can be used in a
Linux environment. The online implementation is publi-
cally accessible through the QIMR Berghofer webpage.
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