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Abstract

Objective: To describe the natural course of procalcitonin (PCT) in patients with coronavirus disease 2019 (COVID-19) and the correlation
between PCT and antimicrobial prescribing to provide insight into best practices for PCT data utilization in antimicrobial stewardship in this
population.

Design: Single-center, retrospective, observational study.

Setting: Michigan Medicine.

Patients: Inpatients aged ≥18 years hospitalized March 1, 2020, through October 31, 2021, who were positive for severe acute respiratory
coronavirus virus 2 (SARS-CoV-2), with ≥1 PCT measurement. Exclusion criteria included antibiotics for nonpulmonary bacterial infection
on admission, treatment with azithromycin only for chronic obstructive pulmonary disease (COPD) exacerbation, and pre-existing diagnosis
of cystic fibrosis with positive respiratory cultures.

Methods: A structured query was used to extract data. For patients started on antibiotics, bacterial pneumonia (bPNA) was determined
through chart review. Multivariable models were used to assess associations of PCT level and bPNA with antimicrobial use.

Results: Of 793 patients, 224 (28.2%) were initiated on antibiotics: 33 (14.7%) had proven or probable bPNA, 125 (55.8%) had possible bPNA,
and 66 (29.5%) had no bPNA. Patients had amean of 4.1 (SD, ±5.2) PCTmeasurements if receiving antibiotics versus a mean of 2.0 (SD, ±2.6)
if not. Initial PCT level was highest for those with proven/probable bPNA and was associated with antibiotic initiation (odds ratio 95% confi-
dence interval [CI], 1.17–1.30). Initial PCT (rate ratio [RR] 95% CI, 1.01–1.08), change in PCT over time (RR 95% CI, 1.01–1.05), and bPNA
group (RR 95% CI, 1.23–1.84) were associated with antibiotic duration.

Conclusions: PCT trends are associated with the decision to initiate antibiotics and duration of treatment, independent of bPNA status and
comorbidities. Prospective studies are needed to determine whether PCT level can be used to safely make decisions regarding antibiotic treat-
ment for COVID-19.

(Received 20 July 2022; accepted 4 October 2022; electronically published 4 November 2022)

Serum procalcitonin (PCT) is frequently measured in patients with
signs or symptoms of bacterial infection and is often elevated in
patients with bacterial pneumonia (bPNA) and septic shock.1

PCT is a glycoprotein produced by thyroid parafollicular C cells2

as part of the proinflammatory response of the innate immune
system,3 and it is upregulated in response to inflammatory cyto-
kines released during bacterial infections.4 PCT level may be a
useful marker of bacterial infection, both diagnostically and prog-
nostically, particularly in patients with pneumonia and sepsis.5,6

Additionally, prospective studies have demonstrated the utility
of PCTmonitoring as part of clinical algorithms to guide decisions
around initiation and de-escalation of antibiotic therapy in

patients presenting with bacterial pneumonia and sepsis.7,8

PCT testing has generally been found to reduce overall antibiotic
exposure without increasing adverse events.9,10

Recent studies have found a correlation between elevated PCT
level and disease severity in patients admitted with severe corona-
virus disease (COVID-19).11–19 However, PCT elevation tends to
be higher in those who have a coexisting bacterial infection, and
low serum PCT may identify patients at lower risk for bacterial
coinfection and adverse outcomes.20,21 Bacterial coinfections in
patients with COVID-19 are rare, with an estimated incidence
of <10%.22–24 Nevertheless, many patients with COVID-19 receive
antibiotic therapy, and ∼25% receive broad-spectrum antibi-
otics,25–27 which increases the risks for antimicrobial resistance
and for antimicrobial-associated adverse events.

In this single-center, retrospective, observational study of
patients hospitalized with COVID-19, we sought to characterize
the natural course of serum PCT levels during hospitalization

Author for correspondence: Krishna Rao MD, E-mail: krirao@umich.edu
Cite this article: Conlon ASC, et al. (2023). Effects of procalcitonin on antimicrobial

treatment decisions in patients with coronavirus disease 2019 (COVID-19). Infection
Control & Hospital Epidemiology, 44: 1314–1320, https://doi.org/10.1017/ice.2022.262

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America. This is an Open Access article, distributed under the
terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited.

Infection Control & Hospital Epidemiology (2023), 44, 1314–1320

doi:10.1017/ice.2022.262

https://doi.org/10.1017/ice.2022.262 Published online by Cambridge University Press

https://orcid.org/0000-0002-5124-0296
https://orcid.org/0000-0002-6349-2431
mailto:krirao@umich.edu
https://doi.org/10.1017/ice.2022.262
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/ice.2022.262
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/ice.2022.262&domain=pdf
https://doi.org/10.1017/ice.2022.262


for COVID-19, to assess its relationship to coexisting bacterial
pneumonia, and to better understand how serum PCT is used
in clinical decision making around antimicrobial use for
COVID-19 patients.

Methods

We conducted a retrospective observational study of patients
hospitalized at Michigan Medicine between March 1, 2020, and
October 31, 2021. The study was approved by the Michigan
Medicine Institutional Review Board (no. HUM00205658).
We included patients aged ≥18 years with a positive test for
SARS-CoV-2 and a serum PCT level obtained within 48 hours
of hospital presentation. A structured query was used to retrospec-
tively extract patient demographic and comorbidity data, as well as
information on initiation of antibiotics. Patients were excluded if
they were being treated with antibiotics for a nonpulmonary, coex-
isting, bacterial infection on admission, it they were being treated
with only azithromycin for a COPD exacerbation, or if they had a
pre-existing diagnosis of cystic fibrosis with positive respiratory
cultures. Prophylactic antibiotics were not counted in the analysis
of antibiotic treatments. For patients started on an antibiotic, the
presence of bacterial pneumonia was determined through retro-
spective chart review using criteria proposed by Karaba et al.,28

with patients classified as having proven, probable, possible, or
no bPNA based on clinical, laboratory, radiographic, and micro-
biologic criteria obtained within the first 48 hours of hospital
presentation (Supplementary Table 1 online).28

Baseline patient characteristics were summarized as number
and percentage for categorical variables and as median (inter-
quartile range or IQR) for continuous variables. Categorial varia-
bles were compared using χ2 tests, and continuous variables were
compared using Wilcoxon rank-sum tests. Associations between
PCT level and covariates with antibiotic initiation and antibiotic
duration utilized logistic regression models and negative binomial
models, respectively, controlling for baseline confounders. Because
death or hospital discharge may have skewed results regarding
antibiotic duration, a sensitivity analysis was conducted for antibi-
otic duration, which utilized a Cox proportional hazards model
with patients censored at the time of death or hospital discharge
if this event occurred during their antibiotic course. The associa-
tion between PCT and covariates with the number of antibiotic
classes and their associated antibiotic risk class that patients were
exposed to were also assessed using logistic regression models.
Antibiotic risk classifications can be found in Supplementary
Table 2 (online).29–32

Secondary outcomes considered included length of stay and
survival time. A 2-sided P< .05 was considered statistically signifi-
cant for all tests. A detailed explanation of statistical analyses
can be found in Supplementary Material section 1 (online). The
statistical analysis was completed using SAS version 9.4 software
(SAS Institute, Cary, NC).

Results

Demographics and overall antimicrobial use

In total, 793 patients hospitalized between March 1, 2020, and
October 31, 2021, met inclusion criteria; 224 (28.2%) were initiated
on antibiotics and 569 (71.8%) were not started on antibiotics. Of
those started on antibiotics, 33 (14.7%) had proven or probable
bPNA, 125 (55.8%) had possible bPNA, and 66 (29.5%) had
no bPNA (Fig. 1). The median age of patients was 62 years

(IQR, 52–72), 322 (40.6%) were female, and median-weighted
Elixhauser comorbidity index was 17 (IQR, 6–30). Patients started
on antibiotics had higher weighted Elixhauser scores (22 vs 17;
P <.001) and were more likely to have comorbid hypertension
(80.4% vs 68.9%; P = .001) or diabetes (53.6% vs 38.1%; P < .001).
Additionally, patients were more likely to be started on antibiotics
earlier in the pandemic; those who received antibiotics were
admitted amedian of 239 days from the beginning of the pandemic
versus 381 days for those not started on antibiotics (P < .001)
(Table 1).

Procalcitonin measurement frequency and initial values
versus antibiotic use

On average, patients had a mean of 2.6 (SD, ±3.7) serum PCT
measurements; this mean was 4.1 (SD, ±5.2) if they were receiving
antibiotics versus 2.0 ± 2.6 if they were not receiving antibiotics
(rate ratio [RR], 2.09; 95% confidence interval [CI], 1.82–2.39;
P < .001). Of those started on antibiotics, patients with possible
bPNA had the greatest number of PCT measurements, with an
average of 5.0 (SD, ±6.1) PCT results. The odds of receiving anti-
biotics increased by a factor of 1.27 (95% CI, 1.20–1.33;
P < .001) for every 50% increase in initial PCT level.
Furthermore, 68.5% of those not started on antibiotics had an
initial PCT ≤0.25 ng/mL versus 29.0% of those initiated on anti-
biotics (Table 2). After controlling for potential confounders,
initial PCT was still positively associated with antibiotic initiation
(odds ratio [OR], 1.23; 95% CI, 1.17–1.30; P< .001). Antibiotic use
declined further into the COVID-19 pandemic, with decreased
odds of antibiotic initiation (OR, 0.93; 95% CI, 0.92–0.95;
P < .0001) every additional 2 weeks of the pandemic. A weighted
Elixhauser score was also significantly positively associated with
antibiotic initiation (OR, 1.01; 95% CI, 1.00–1.03; P < .001)
(Table 3).

Procalcitonin, pneumonia, and antibiotic exposure: Duration
of therapy and number of antibiotic classes

Among patients receiving antibiotics, the initial median PCT level
was 0.20 (IQR, 0.12–0.71) for those with no bPNA, 0.65 (IQR,
0.25–1.45) for those with possible bPNA, and 0.88 (IQR, 0.42–5.17)
for those with probable or proven bPNA. These data correspond to
odds ratios of 1.12 (95% CI, 1.03–1.22) for possible bPNA versus no
bPNA and 1.22 (95% CI, 1.09–1.36) for probable or proven bPNA
versus no bPNA for every 50% increase in PCT (Table 2).
Although patients with no bPNA had lower initial PCT levels, 50%
had at least 1 PCT measurement that was >0.25 ng/mL.

Antibiotic duration demonstrated a similar trend with respect
to the bPNA group, with a median antibiotic duration of 3 days
(IQR, 2–8) for patients with no bPNA, 7 days (IQR, 4–14) for
patients with possible bPNA, and 9 days (IQR, 6–26) for patients
with probable or proven bPNA. Patients with no bPNA and initial
PCT level >0.25 ng/mL had significantly longer mean antibiotic
durations (ie, 9.8 ± 11.5 days) than those with no bPNA and initial
PCT ≤0.25 ng/mL (ie, 4.8 ± 7.1 days; P = .006). Similarly, patients
with possible bPNA and PCT>0.25 ng/mL had significantly longer
antibiotic durations (ie, 12.8 ± 15.4 days) than those with possible
bPNA and initial PCT ≤0.25 ng/mL (ie, 7.6 ± 8.6 days; P = .01).
We did not detect a significant difference in antibiotic duration
based on initial PCT for those with probable or proven bPNA:
17.9 ± 17.4 vs 18.5 ± 13.7 for PCT ≤0.25 ng/mL vs PCT> 0.25
ng/mL, respectively (P = .68) (Fig. 2). On multivariable analysis,
initial PCT, percentage change in daily PCT, and bPNA groupwere
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all independently associated with duration of antibiotic therapy,
with rate ratios for days of antibiotic therapy of 1.04 (95% CI,
1.01–1.08; P = .008) for initial PCT level, 1.03 (95% CI,
1.01–1.05; P = .007) for percentage change in daily PCT, and
1.51 (95% CI, 1.23–1.84; P < .0001) for bPNA (Table 3).

Patients with probable or proven bPNA were exposed to a
larger number of antibiotic classes, with an average of 4.2
(SD, ±1.8) classes received, compared to 3.5 (SD, ±1.7) for those
with possible bPNA and 3.0 (SD, ±1.7) for those with no bPNA.
The most prescribed antibiotic class was vancomycin (n= 168,
75.0%), followed by a β-lactam or lactamase inhibitor (n= 166,
74.1%). Nearly all patients received an antibiotic classified as high
risk (n= 217, 96.9%) (Table 4). The association of antibiotic classes
with bPNA group remained significant after controlling for poten-
tial baseline confounders, with a rate ratio for number of antibiotic
classes of 1.17 (95% CI, 1.04–1.31; P = .009) when going from no
bPNA to possible bPNA to probable or proven bPNA. Initial PCT
level and percentage changes in daily PCT were not significantly
associated with the number of classes of antibiotics that patients
received (Table 5).

The results of secondary outcome analyses are shown in
Supplementary Tables 3 and 4 (online). In the sensitivity analysis
for antibiotic duration, the associations identified in the initial

multivariable analysis remained significant (Supplementary
Table 5 online).

Discussion

In this retrospective study of 793 patients hospitalized at Michigan
Medicine with COVID-19, serum PCT levels were notably
elevated, but elevations were more pronounced in patients with
bacterial coinfection. Antibiotics were started in >25% of patients,
even if bacterial coinfection was not present. Initial serum PCT
level correlated with the decision to initiate antibiotics; lower initial
PCT levels were associated with lower likelihood of antibiotic
initiation. Of those not started on antibiotics, 68.5% had an initial
PCT level ≤0.25 ng/mL, whereas only 29.0% of patients started on
antibiotics had initial PCT level ≤0.25 ng/mL. Patients with no
bPNA but with an elevated initial PCT level were often initiated
on antibiotics due to concern for a suspected infection, which
was later not confirmed, at which point antibiotics were often
discontinued. These occurrences are demonstrated in our data
by the longer antibiotic durations in patients with probable or
proven bPNA compared to those with no bPNA. Both initial
PCT level and the trend in PCT level over time were associated
with the duration of treatment. PCT-level associations with both

Fig. 1. Flow diagram of study population.
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treatment initiation and duration were independent of bPNA
status and comorbidities.

The prognostic and diagnostic use of PCT in patients
presenting with COVID-19 pneumonia has garnered much
interest as has its utility in antibiotic decision making in this popu-
lation. Normally, PCT levels increase within hours of bacterial
infection,33 with a rapid decrease following response of the bacte-
rial infection to antimicrobial therapy,34 and levels usually remain
low in viral infections.5 The elevations of PCT in patients with
COVID-19 have been hypothesized to be due to either bacterial
coinfections in patients with severe disease or neutrophilia in
the absence of bacterial infection.35 Because COVID-19 has
resulted in significant morbidity and mortality during the course
of the pandemic, with >514 million cases and >6 million deaths
reported globally as of May 2022,36 and the considerable overlap
between the symptoms of COVID-19 and bacterial pneumonia,

PCTmeasuresmay add additional information to aid in antimicro-
bial stewardship.

Observational studies exploring PCT-guided antibiotic
prescribing aimed at curbing the use of unnecessary antibiotics
in patients with COVID-19 have shown that patients with low
serum PCT values received fewer days of antibiotic therapy and
suggest that antibiotics can be safely withheld in patients with
low serum PCT levels.37–41 Conversely, PCT testing in patients
with COVID-19 may result in the unnecessary use of antibiotics
because PCT levels may be elevated despite the absence of bacterial
coinfection.20

Our results are consistent with recent research and demonstrate
that, despite the low prevalence of bacterial coinfection at presen-
tation, patients with COVID-19 may have elevated PCT levels
leading to longer courses of antibiotics, particularly “high-risk”
antibiotics. This finding contrasts with Michigan Medicine clinical

Table 1. Baseline Patient Characteristics

Variable Entire Cohort (n= 793), No. (%)a No Antibiotics (n= 569), No. (%) Antibiotics (n= 224), No. (%) P Valueb

Age, median y (IQR) 62 (50–72) 62 (49–72) 62 (52–72) .84

Sex, female 322 (40.6) 224 (39.4) 98 (43.8) .26

Race <.001

White 538 (67.8) 404 (71.0) 134 (59.8)

Non-white 235 (29.6) 158 (27.8) 77 (34.4)

Unknown 20 (2.5) 7 (1.2) 13 (5.8)

Hypertension 572 (72.1) 392 (68.9) 180 (80.4) .001

Diabetes 337 (42.5) 217 (38.1) 120 (53.6) <.001

Hypothyroidism 151 (19.0) 107 (18.8) 44 (19.6) .79

Peptic ulcer disease 47 (5.9) 33 (5.8) 14 (6.3) .81

HIV/AIDS 7 (0.9) 3 (0.5) 4 (1.8) .09

Rheumatoid arthritis 104 (13.1) 76 (13.4) 28 (12.5) .75

Alcohol abuse 54 (6.8) 42 (7.4) 12 (5.4) .31

Psychoses 52 (6.6) 36 (6.3) 16 (7.1) .68

Hispanic or Latino 40 (5.0) 29 (5.1) 11 (4.9) .50

Weighted Elixhauser score, median (IQR) 17 (6–30) 15 (5–29) 22 (10–32) <.001

Time from pandemic start, median d (IQR) 354 (232–405) 381 (264–433) 239 (24.5–314.5) <.001

Note. HIV/AIDS, human immunodeficiency virus/acquired immunodeficiency syndrome.
aMedian (IQR) displayed for continuous variables; no. (%) displayed for categorical variables
bP values for difference between antibiotic vs no-antibiotic groups.

Table 2. Frequency of PCT measures and initial PCT values

Group
PCT Measures
Mean (SD)

PCT Measures
Median (IQR)

Rate Ratio
(95% CI) for PCT

Measures
Initial PCT
Mean (SD)

Initial PCT
Median (IQR)

Odds Ratio (95% CI) for Group, Per 50%
Increase in Initial PCT

No antibiotics 2.0 (2.6) 1 (1–2) Reference 1.06 (7.57) 0.14 (0.08–0.28) Reference

Antibiotics 4.1 (5.2) 2 (1–5) 2.09 (1.82, 2.39) 4.10 (15.22) 0.53 (0.17–1.48) 1.27 (1.20–1.33)

No bPNA 3.1 (3.8) 2 (1–4) Reference 4.01 (17.27) 0.20 (0.12–0.71) Reference

Possible bPNA 5.0 (6.1) 3 (2–6) 1.58 (1.20, 2.09) 3.27 (12.86) 0.65 (0.25–1.45) 1.12 (1.03–1.22)

Proven/
Probable bPNA

3.3 (2.8) 2.5 (1–3) 1.05 (0.71, 1.56) 7.41 (18.78) 0.88 (0.42–5.17) 1.22 (1.09–1.36)

Note. PCT, procalcitonin; SD, standard deviation; IQR, interquartile range; CI, confidence interval; bPNA, bacterial pneumonia.
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guidelines for the use of PCT in clinical decision making, which
state that PCT level should not be used to extend treatment dura-
tion in the setting of clinical stability and should not be used in
isolation to decide whether antibiotics should be started.

Michigan Medicine guidelines recommend a threshold of PCT
level of >0.25 ng/mL to indicate that bacterial infection is likely.
Because COVID-19 can raise the PCT level in the absence of bacte-
rial coinfection, this threshold may need to be increased when
assessing the probability of bacterial coinfection with COVID-19.
In a retrospective analysis, Fabre et al20 compared receiver operator

characteristic (ROC) curves for the prediction of bacterial commu-
nity acquired pneumonia using clinical criteria and PCT cutoff
points of ≥0.25 ng/mL versus ≥0.5 ng/mL, and they did not detect
a significant difference between these 2 cutoff values.20 In a cohort
of COVID-19 patients who had admission blood or respiratory
cultures, Relph et al42 reported that patients with any positive
culture had higher median admission PCT levels, but PCT data
performed poorly as a diagnostic test based on ROC analysis.42

Although our study was meant to be descriptive as opposed to
predictive, we constructed an ROC curve using our data for

Fig. 2. Initial procalcitonin values by bacterial pneumonia (bPNA) group and median antibiotic duration. The line graph shows the percentage of patients in each bacterial
pneumonia group with low initial procalcitonin values. This percentage decreases as the likelihood of a bacterial infection increases. The side-by-side bar chart shows antibiotic
durations by initial procalcitonin value for each bacterial pneumonia group. Antibiotic durations were generally higher for those with initially elevated procalcitonin and for those
with a bacterial infection. Note the small N (N = 4) for probable or proven bPNA with low initial procalcitonin values, likely skewing the duration for this group. The difference in
antibiotic durations for probable or proven bPNA with low initial procalcitonin values versus high initial procalcitonin values is nonsignificant.

Table 3. Multivariable Logistic Regression andNegative Binomial Models of Covariate AssociationsWith Antibiotic Initiation (n= 793) and Antibiotic Duration (n= 224)

Variable OR (95% CI) P Value

Logistic regression covariate

Initial PCT, per 50% increase 1.23 (1.17–1.30) <.001

Time from start of pandemic, per 2-week increase 0.93 (0.92–0.95) <.001

Weighted Elixhauser, per unit increase 1.01 (1.00–1.03) .03

Hypertension, yes vs no 1.07 (0.68–1.69) .76

Race, other vs white 0.77 (0.52–1.16) .10

Unknown vs white 2.39 (0.79–7.21)

RR (95% CI) P Value

Negative binomial regression covariate

bPNA, none → possible → probable or proven 1.51 (1.23–1.84) <.001

Initial PCT, per 50% increase 1.04 (1.01–1.08) .008

% change in daily PCT, per unit increase 1.03 (1.01–1.05) .007

Time from start of pandemic, per 2-week increase 0.99 (0.98–1.00) .06

Age, per year increase 0.99 (0.98–1.00) .009

Sex, female vs male 0.72 (0.56–0.94) .01

Note. PCT, procalcitonin; OR, odds ratio; CI, confidence interval; RR, rate ratio; bPNA, bacterial pneumonia.
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illustrative purposes. It suggested possible discriminatory utility
using a PCT cutoff of ≥0.25 ng/mL for proven or probable
bPNA, with an area under the ROC curve of 0.72 (95% CI,
0.65–0.78), but we did not detect a significant increase in diag-
nostic accuracy using higher PCT cutoff values. Future prospective
studies are needed to determine whether higher PCT cutoff values
would be more likely to predict bacterial coinfection in COVID-19
patients.

As a retrospective observational study, our results are poten-
tially biased by unobserved confounding variables not controlled
for in our analyses. Other baseline patient characteristics that
differed by antibiotic initiation, including race, hypertension,
diabetes, and weighted Elixhauser score, were controlled for by
inclusion in the multivariable model selection algorithm.
Additionally, our data set spans∼18months of the pandemic when
vast changes in the understanding of COVID-19 and its corre-
sponding treatments emerged. Although we attempted to account
for this by including time as a covariate in our models, residual
confounding from the effects of this varying knowledge is possible,
and we did not have the granular data on specific changes in prac-
tice across the different periods of the pandemic to explore this
further. Furthermore, our analysis is correlational not causal.
Although we identified an association between serum PCT trends
and antibiotic initiation and duration, we were unable to determine
whether PCT causally drove treatment decisions. Future prospec-
tive studies are needed to determine whether PCT data can be used
to safely make decisions around antibiotic treatment for bacterial
infection in COVID-19 patients, including when to start or stop
antimicrobial therapy in patients with an elevated PCT level but
no other signs or symptoms of bacterial coinfection.

Supplementary material. For supplementary material accompanying this
paper visit https://doi.org/10.1017/ice.2022.262
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