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SUMMARY

Water supply-associated cryptosporidiosis outbreaks have decreased in England since the
application of risk reduction measures to public water supplies. We hypothesized that smaller
outbreaks were occurring which could be better detected by enhanced surveillance. Rolling
analysis of detailed questionnaire data was applied prospectively in a population of 2·2 million in
the south of England in 2009 and 2010. Detection of spatiotemporal clusters using SaTScan was
later undertaken retrospectively. Together these approaches identified eight outbreaks, compared
to an expectation of less than one based on national surveillance data. These outbreaks were
small and associated with swimming pool use or, less commonly, direct (e.g. petting-farm)
contact with animals. These findings suggest that frequent small-scale transmission in swimming
pools is an important contributor to disease burden. Identification of swimming pool-level risk
factors may inform preventative measures. These findings and the approaches described may be
applicable to many other populations and to some other diseases.
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INTRODUCTION

Cryptosporidium is a protozoan parasite that causes
the diarrhoeal disease, cryptosporidiosis. Although
many species have been identified, 96% of human dis-
ease in England is caused by the two species C. par-
vum and C. hominis [1]. First recognized as a human
pathogen in 1976, Cryptosporidium has been screened
for routinely in faecal specimens from patients with
diarrhoea in the UK and some other countries since

the 1990s with UK guidance recommending routine
testing [2–4] and reporting of confirmed infections
to the local and national public health surveillance
systems. Between 1983, when surveillance of crypto-
sporidiosis in England and Wales began, and 2005
the Health Protection Agency’s Centre for Infection
received notification of 151 outbreaks involving
9893 cases, giving a mean outbreak size of 66 [1].
Identified outbreaks comprised about 10% of reported
cases [5]. Three quarters (113/151) of identified out-
breaks were related to water. Of these, 62 were related
to drinking water supplies, 44 to swimming pool use,
and seven to other recreational water exposures.
Risk assessment and targeted risk reduction measures,
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such as drinking water filtration, have been associated
with a reduction in public water supply-associated
outbreaks and in the mean size of identified outbreaks
[5]. Most incident cases of cryptosporidiosis are not
diagnosed as being due to Cryptosporidium [1, 6, 7].
The apparent size of outbreaks, estimated from
laboratory-confirmed cases, will therefore usually sub-
stantially underestimate the true number of cases
involved in the outbreak. Recreational water contact,
such as at swimming pools; animal contact, such as at
petting farms; and person-to-person spread, such as
among daycare nursery children and staff, form an in-
creasing proportion of identified outbreaks [5].

Early detection of outbreaks has the potential to
significantly reduce their scale [1]. Recognition of out-
breaks at any stage of their evolution may support
identification of preventable risk factors for future
outbreaks or for sporadic cases. The proportion of
cryptosporidiosis outbreaks that are detected is uncer-
tain [1]. Although temporal clustering alone has
detected large, typically waterborne, outbreaks [8],
it is unlikely to provide an efficient outbreak detec-
tion signal for small outbreaks against a background
of endemic disease. Furthermore, it is limited by the
marked temporal clustering of apparently sporadic
cases into spring and autumn peaks [1]. Although
very large and widespread outbreaks of cryptospori-
diosis can still occur detected outbreaks of cryptospor-
idiosis are often spatially restricted in line with the
geographical patterning of their sources in water sup-
ply zones and recreational water or childcare facilities
with localized catchment areas [5]. The combination
of spatial and temporal clustering may be able to iden-
tify small localized outbreaks when temporal analysis
alone cannot. Enhanced surveillance involving sys-
tematic recording and analysis of exposure infor-
mation from individual cases may also identify small
outbreaks with a shared exposure that do not create
a detectable signal over sporadic background cases [9].

Since spatiotemporal analysis and systematic risk
factor surveillance require resources, their application
for public health purposes must rest on an evidence
base for effectiveness. The conditions needed to justify
such enhanced surveillance could be summarized as:
first, that there are enough additional missed, but de-
tectable, outbreaks to constitute a significant public
health burden; second, that these methods can identify
additional outbreaks efficiently; and third, that inves-
tigation of these types of outbreaks provides infor-
mation to inform effective primary preventative and
outbreak control measures. We hypothesized that

apparently sporadic cases may include undetected
small local outbreaks, that many of these outbreaks
would produce detectable spatiotemporal clustering
signals or identifiable shared risk factors that would
allow their detection if this information were collected
and analysed. To test this hypothesis we applied risk
factor surveillance prospectively for a period of
2 years, and used spatiotemporal analysis to identify
clusters retrospectively on the same dataset.

MATERIALS AND METHODS

Study population

The English counties of Berkshire, Buckinghamshire
and Oxfordshire, with a combined population of
2226600 (2009 estimate) formed a single administrat-
ive unit for public health reporting purposes, with
reports made to the Thames Valley Health Protec-
tion Unit (TVHPU). Reported cases of laboratory-
confirmed cryptosporidiosis during the calendar
years 2009–2010 were included. One hospital labora-
tory routinely tested faecal samples from patients
with diarrhoea aged <12 years and others followed
national guidance in testing all samples. Positive
results are reported at least weekly by each laboratory.

Case and outbreak definitions

Cases were defined as laboratory-confirmed Crypto-
sporidium infection. Local laboratories used micro-
scopy for detection and reported positive results to
TVHPU through an automated electronic system in
line with routine national UK systems for reporting of
infectious diseases. An outbreak was defined as either
52 cases linked to a common source, or52 cases in a
statistically significant spatiotemporal cluster which
had reported an exposure to a shared risk factor but
where no outbreak investigation had been undertaken
at the time. Where the shared exposure was either
a shared household or shared international travel
this was not counted as an outbreak. Secondary
cases, defined as those occurring in a household suffi-
ciently later than the primary case (3 days) to have
possibly been caused by household transmission,
were excluded from outbreaks when assessing size.

Enhanced surveillance

A risk factor questionnaire (see Supplementary online
material) was developed and administered to cases
with laboratory-confirmed Cryptosporidium infection.
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The questionnaire included questions on travel, water
supply, water consumption, animal contacts, and rec-
reational water exposure. The standard method of ad-
ministration was by telephone interview by a health
protection practitioner or public health trainee at
TVHPU. When it was not possible to make contact
by telephone because no number was available, or
no reply obtained on available numbers after at least
three attempts, or when the respondent was not will-
ing to undertake the questionnaire by phone, either
postal questionnaire or face-to-face interview by a
local government environmental health officer was
attempted. Postal or face-to-face questionnaires used
the same instrument. The choice of alternative meth-
ods did not follow a standard protocol, varying be-
tween the different local government authorities in
the study area.

Questionnaire responses were entered onto an Excel
spreadsheet by administrative staff. Risk factors were
reviewed by clinicians by checking each new question-
naire against recent cases for shared exposures. Where
52 cases were identified with shared risk factors
these were assessed by the unit outbreak assessment
protocol.

Spatiotemporal modelling using SaTScan

All cases of cryptosporidiosis in the study population
between 1 January 2009 and 31 December 2010 were
analysed retrospectively using the scan statistic in the
software SaTScan v. 9.1.1 [10] to seek spatiotemporal
clusters. This retrospective analysis simulated monthly
prospective investigation of all data that would have
been available on the last working day of each
month (see Fig. 1). The SaTScan scan statistic evalu-
ates space–time clusters by gradually scanning a cylin-
drical window, where the base represents space and
the height represents time, across recently notified
cases of Cryptosporidium. For each window a likeli-
hood ratio statistic is computed based on the number
of observed and expected cases within and outside the
window. The window with the highest likelihood ratio
is the most likely cluster and is assigned a P value
through 999 Monte Carlo simulations [11]. The long-
est duration of a cluster was set to 90 days, apart from
in the first 6 months of the study when it was set to
50% of the study period. The maximum spatial cluster
size was set to 10% of the population at risk. These
choices were pragmatic, with a 90-day maximum
window being short enough to support the detection
of clustering in time during the 2 years of the study,
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while also allowing for outbreaks to be relatively pro-
longed such as may occur if a swimming pool and the
associated swimmers become contaminated and lead-
ing to a prolonged common source outbreak. Results
are presented for the cylindrical model assuming a
Poisson distribution of cases. Other models are con-
sidered in the Discussion section.

Validating identified clusters and comparing the results
of each approach

Risk factor data for cases belonging to the clusters
identified by SaTScan were examined to verify whether
the cases had a common exposure. The earliest time
at which the clusters could be identified by SaTScan
(given the simulated ’last day of the month’ run of the
model) was compared with the time at which known
clusters had been identified prospectively by TVHPU
using the enhanced surveillance questionnaire.

RESULTS

Prospective enhanced surveillance

Four hundred and six cases of laboratory-confirmed
cryptosporidiosis were reported, 216 in 2009 (53·2%)
and 190 in 2010 (46·8%). The weekly numerical

peaks of cases were seen in week 48 in 2009
(10 cases) and week 46 in 2010 (13 cases). Enhanced
surveillance questionnaires were available for 366
(90%) of these cases. Five outbreaks were identified
through the combination of enhanced surveillance
questionnaires and routine public health activities
[outbreak (OB)1–OB5, Table 1]. The outbreaks ran-
ged in size from 3 to 14 (median 3.5) laboratory-
confirmed cases within the study population. Overall
they comprised 36 cases (Fig. 1).

Spatiotemporal cluster detection

SaTScan (SS) analysis identified 29 clusters compris-
ing 146 cases. All five of the outbreaks recognized by
prospective enhanced surveillance were detected with-
in these clusters. Following review of enhanced sur-
veillance questionnaire data for the cases in each of
the 29 clusters detected, three additional outbreaks
were identified where clustered isolates shared ex-
posure to a risk factor (SS1–SS3, n=2–3, Table 1).
In line with expectations that an outbreak would gen-
erate more than one cluster given that clusters were
sought monthly looking back over the preceding
90 days, cases from these eight outbreaks contributed
to 19 of the 29 clusters identified by SaTScan, while no

Table 1. Characteristics of epidemiologically related groups of cases, and their detection within SaTScan clusters
and by enhanced surveillance questionnaires (ESQ)

Outbreak Cases Risk factor Start date*

Date identified by

Identified first by Cluster†ESQ SaTScan

SS1 2 Pet farm 17 Mar. 2009 31 Mar. 2009 SatScan 1
SS2 3 Pool 1 June 2009 30 June 2009 SatScan 2
SS3 2 Pool 19 Aug. 2009 31 Aug. 2009 SatScan 3
OB1 4‡ Pool 2 Sept. 2009 29 July 2009 30 Sept. 2009 ESQ 2
OB2 11 Pool 5 Oct. 2009 6 Nov. 2009 31 Oct. 2009 SaTScan 4
OB3 4 Pool 12 Nov. 2009 1 Dec. 2009 30 Nov. 2009 SaTScan 2
OB4 3 Pet farm 2 Dec. 2009 27 Nov. 2009 31 Dec. 2009 ESQ 2
OB5 14‡ Pool 14 Oct. 2010 22 Oct. 2010 31 Oct. 2010 ESQ 5
Family/travel§ 10 11
No link 93 7

Total 146

SS, SaTScan; OB, outbreak.
* Date of notification of the second linked case.
†The number of SaTScan clusters included 52 cases from this outbreak, these numbers add up to greater than the number of
clusters by SaTScan because some clusters contained cases from more than one outbreak.
‡Nineteen primary laboratory-confirmed cases were identified in OB5 and six in OB1 but five and two, respectively, were
outside the study area.
§ There were five pairs of linked cases that either lived in the same house or had travelled to the same destination
simultaneously.
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outbreak could be detected within the other ten clus-
ters. Two of the 19 clusters associated with outbreaks
contained cases from two outbreaks. Eight clusters
contained cases from an outbreak as well as others
linked by sharing household or travel-related expo-
sures (i.e. non-outbreak). Of the ten clusters not asso-
ciated with an outbreak, seven did not include any
cases with identifiable shared risk factor exposures,
shared household or shared travel links. The remain-
ing three clusters contained cases with shared house-
hold or travel-related exposures but not cases with
links that met our outbreak definition. Overall,
53 (36%) of the 146 individual cases identified in one
or more clusters were epidemiologically linked, reduc-
ing to 43 (29%) when excluding household and travel-
related clusters.

Characteristics of outbreaks detected and detection
method performance

The eight identified outbreaks involved between two
and 14 laboratory-confirmed cases within the study
area (Table 1). Six outbreaks were linked to swimming
pools or leisure centres with swimming pools, and two
to petting farm or open farm exposures. OB2 and OB5
were each identified as outbreaks after three cases had
reported exposure to a common setting. OB1 was
notified as an outbreak prior to the onset date of the
second laboratory-confirmed case due to an additional
confirmed case notified outside of the study area. The
notification of local clinicians and, where appropriate,
provision of information to groups sharing the same
exposure in response to outbreaks detected during
2009–2010 may have led to additional case detection
for some of these promptly identified outbreaks.

Five outbreaks (OB1–OB5) were detected by both
enhanced surveillance questionnaires at the time of
receipt and by SaTScan models. Two of these were
detected earlier by SaTScan when it was run monthly
on the last working day of the month (1 day and
7 days earlier) and three by prospective enhanced sur-
veillance questionnaires (9, 34, and 63 days earlier).
In the outbreak detected 63 days earlier by enhanced
surveillance questionnaires, early cases reported a
shared swimming pool exposure but did not live
close to each other and so were not identified by
SaTScan as a spatiotemporal cluster. The three ad-
ditional outbreaks identified retrospectively following
review of SaTScan clusters (SS1–SS3) were small out-
breaks of two, three, and two cases for which shared
exposures were identified on review of the enhanced

surveillance questionnaires by SaTScan cluster that
had been missed before this review.

DISCUSSION

The systematic application of surveillance question-
naires identified five outbreaks of cryptosporidiosis.
The addition of retrospective spatiotemporal cluster
detection using SaTScan identified these and a further
three outbreaks. This detection of eight outbreaks
identified over 2 years contrasts with preceding
national data of 151 outbreaks reported to national
surveillance over a 23-year period [1], on which basis
our study population, assuming a similar risk to else-
where in the country, would be expected to have one
detected outbreak every 4 years. The outbreaks ob-
served were mostly too small to have been detected
in the absence of either systematic collation of risk fac-
tor data or formal assessment for spatial as well as
temporal clustering. The study area does not have par-
ticular or unique features and the identified outbreaks
were geographically widespread within the study area.
This suggests that similar undetected outbreaks may
exist in apparently sporadic cases of cryptosporidiosis
in other areas and at other times, which is supported
by the relatively common reporting of swimming
pool exposure among sporadic cases in other work
[9]. Although individually small in terms of confirmed
cases, the frequency of these outbreaks means that any
processes contributing to them may contribute sub-
stantially to overall disease burden.

This work also shows that SaTScan is a sensitive
and specific approach for detecting even very small
spatiotemporal clusters created by common-source
cryptosporidiosis outbreaks. Our application of
SaTScan identified 29 clusters, 22 of which mapped
to these eight small outbreaks, or onto cases which
shared a household or had travelled together.
Repeated identification of outbreaks in subsequent
clusters is not a limitation of the approach but an
advantage since it is a desirable feature of an outbreak
detection system that it consistently identifies epide-
miological signals present in the data [12]. The re-
maining seven clusters may have been false-positive
signals; however, it is also possible that some of
these seven clusters shared a common source not iden-
tified in our questionnaire data. Overall, we consider
the performance of the approach excellent in detecting
small cryptosporidiosis outbreaks. Tight spatiotem-
poral clustering may occur due to limited catchment
areas of facilities such as swimming pools, and
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transient contamination and transmission in these set-
tings. This may mean that the SaTScan methods are
particularly well matched to our application and to
this disease. Nonetheless, the findings of this study
identifying a set of missed ’mini-outbreaks’ should en-
courage consideration of evaluated implementation
of these enhanced surveillance approaches to other
pathogens which might share similar epidemiological
factors.

SaTScan [10] applies a scan statistic, the most usual
approach in this area [13–21] although Bayesian
approaches have also been developed [12]. Recent
software development in this area has focused on
improving performance to detect large scale disease
outbreaks and on work with syndromic data. The bet-
ter performance of newer models in these scenarios
contrasts with a recurrent finding of equivalent or su-
perior performance of a simple scan statistic as imple-
mented in SaTScan, and in particular the Poisson
fixed circular model to detect small geographically re-
stricted outbreaks [14, 17, 20, 21]. This, and its relative
ease of use, support the application of SaTScan in
detecting small local outbreaks [22]. SaTScan allows
some of the flexibility found in newer approaches
[22], such as allowing clusters to be identified in
non-circular geographical areas and using population
denominators or area as a denominator. The results
presented here were for the circular fixed Poisson
model which was the most sensitive of the six options
tested. In coming to this choice circular and ellipti-
cal model options were also applied when assessing
clustering of cases and this was done using individ-
ual case postcode for location, Office for National
Statistics Lower Super Output Area centroid for
location, and finally Lower Super Output Area both
for location and to define the underlying population
size to support a Poisson model of cases per member
of the underlying population. An elliptical Poisson
model had slightly higher specificity in this dataset
but detected some clusters later than the circular
model. The agreement of our experience with previous
literature on the Poisson fixed circular model would
direct future work to consider different variations in
the spatial and temporal characteristics of the scan-
ning window rather than further exploration of differ-
ent models. We used a maximum duration of 90 days
and a maximum spatial cluster size of 10% of the
study population. Varying these values using the
Poisson circular model may allow improved perform-
ance. The optimal values will depend on the nature
of outbreaks that are occurring in terms of outbreak

duration and extent of geographical clustering. In out-
breaks of Cryptosporidium, this may vary between
urban and rural areas where the catchment popula-
tions for particular leisure facilities may differ. We
also adopted a pragmatic approach of seeking clusters
monthly. This may also be further optimized in future
research. In the absence of such further evidence to
guide changes to temporal and spatial cluster windows
we consider that settings allowing clusters to last for
up to 90 days and across a population of ∼220000 is
likely to be efficient for the detection of small and
local outbreaks such as would be expected when trans-
mission is among children at a swimming pool setting
and other local catchment area facilities.

The systematically recorded and analysed question-
naire was also effective in identifying outbreaks. Five
outbreaks had been detected before SaTScan was
applied, far in excess of what would be expected
based on national data [1]. Had the questionnaire
data been reviewed correctly prospectively, all eight
confirmed and suspected outbreaks could have been
identified as evidenced by the shared exposures iden-
tified on review of the questionnaire data for cases in
SaTScan clusters. Human error and differing names
for the same facility can contribute to shared expo-
sures being missed. Systematic coding and searching
of exposures for all cases with exposure questionnaires
could improve performance. Without this, variations
in how exposures are named or clerical error in data
entry may result in missed outbreaks. We are now de-
veloping more structured approaches to recording and
identifying shared exposures, including the recording
and automated searching of postcodes for venues.

In this dataset, 146 cases (36%) belonged to the
29 clusters identified by SaTScan. An approach of
restricting enhanced surveillance questionnaires to
cases identified as belonging to a SaTScan-detected
cluster would have thus reduced the number of cases
followed up with questionnaires by 64%. It would
also allow the use of bespoke questionnaires for later
cases in some clusters where initial cases appear to
suggest a possible source of infection for the cluster.
However, this would need to be balanced against the
questionnaires being delayed until after a cluster was
identified (Fig. 1) with the consequent possible re-
duction from the 90% response rate achieved by
prompt telephone questionnaire and follow up, and
a possible increase in recall bias due to the greater
delay in between exposure and response. Applying
questionnaires to cases identified as part of a cluster
by SaTScan, but not to other cases, also restricts
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outbreak detection to cases that are clustered in space
and time. The substantially earlier identification of
two outbreaks (34 and 63 days earlier) by enhanced
surveillance questionnaires was either due to linked
exposures of cases in the study population which
were not geographically clustered, or one laboratory-
confirmed case in the area with a completed question-
naire being considered part of an outbreak in the light
of information on other cases outside the study area.
We are currently evaluating an approach of using
enhanced surveillance questionnaires after cluster de-
tection in other populations where surveillance ques-
tionnaires are not used routinely to assess the utility
and feasibility of this approach in practice. A further
widely applied approach to detecting hidden out-
breaks, where there is no epidemiological evidence
to suggest that cases are linked, particularly, is mi-
crobial subtyping. This has been particularly effective
for bacterial infections and the advent of genome se-
quence data is supporting increased application of
subtyping including organisms where phenotyping
has not proved useful for outbreak detection [23].
Most Cryptosporidium-positive samples in England
are discarded and few referred to the national ref-
erence laboratory. The lack or routine referral of
samples for typing limits the application of this
approach to outbreak detection as well as technical
limitations to typing of parasites compared to bacteria
and viruses. In England and Wales, the usual level of
typing done for apparently sporadic cases is to the
confirm species [9]. Nonetheless, with the advent of
genome sequencing, and upstream Cryptosporidium
DNA preparation techniques to enable application
to routinely submitted clinical samples, this may be
a further tool to identify outbreaks when validated.

Our application of two approaches to Crypto-
sporidium surveillance was associated with a sub-
stantially greater than expected level of outbreak
detection in the study population and showed that
recreational water facilities may be particularly im-
portant sources of small outbreaks. The additional
resource needed to apply these systematic approaches
to identifying outbreak signals within the surveillance
data was small in the context of a pre-existing UK pol-
icy of testing for, and reporting of, this pathogen in
cases of gastroenteritis. Our findings fit with the litera-
ture on outbreak size decreasing and these types of
exposures becoming relatively more important follow-
ing the application of control measures to public
drinking water systems [5]. However, the finding is
novel in that the number of outbreaks is an order of

magnitude higher than expected and their size an
order of magnitude lower [1]. Given the small num-
bers of cases per outbreak with a median of just 3·5
one could question whether their detection has any
public health utility. Given that most remain small
their detection will not allow outbreak control inter-
ventions to decrease future cases, except in the
unusual cases where either the small outbreak repre-
sented the start of what would have been a larger out-
break, or where it leads to investigation of underlying
remediable risk factors at a facility which pose a high
risk for further transmission if not remedied.
However, identification and quantification of shared
risk factors across these outbreaks, which together
comprise 5–10% of the overall disease burden in our
population, may offer a basis for proactive inter-
vention across the settings producing these cases. In
addition, many apparently sporadic cases may be
caused by the same risk factors that are driving
these small detected outbreaks. Since most incident
cryptosporidiosis cases are not diagnosed or reported
[1] many apparently sporadic cases may be part of
small outbreaks where the other cases went undiag-
nosed. This would make risk factors identified rel-
evant to some apparently sporadic disease as well as
the 5–10% of cases that we have been able to link
within outbreaks. If our findings are replicated in a
larger population, the identification of these outbreaks
could identify swimming pools and other recreational
facilities (such as animal petting attractions) asso-
ciated with outbreaks in sufficient numbers to allow
formal comparison with similar facilities lacking
such outbreaks through analytical epidemiological
studies with, for example, swimming pools as the
unit of analysis. The study of fixed and transient risk
factors associated with such facilities being involved
in an outbreak may identify remediable factors con-
tributing to both outbreaks and apparently sporadic
disease. Evidence of factors associated with trans-
mission could inform guidance to swimming pools
to prevent such small outbreaks. Such evidence
could also support the control of larger incidents,
such as the substantial outbreaks in the Western Uni-
ted States in 2007. A review of this incident recom-
mended that when case numbers go up enhanced
control measures should be applied to swimming
pools [24]. This recommendation is based on evidence
and assumptions that swimming pool exposure makes
a major contribution to sustaining Cryptosporidium
transmission in these events. Identification of leisure
facility features associated with transmission of this
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infection should contribute to better targeted prevent-
ative and outbreak control interventions.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0950268814000673.
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