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Abstract

Consider the nonlinear neutral equation

(x(t) - X>,(0*(>>/W))' + £ / , ( ' > x(gj(t))) = Q(t)
/=i j=\

where pt(t), ht(t), g}{t), Q(t) e C[t0, oo), l i m , ^ / ; , ( / ) = oo , l i m , ^ ^ * ) =
oo , i € Im = {1, 2, . . . , m} , j e In = {1, 2, . . . , «} . We obtain a necessary
and sufficient condition (2) for this equation to have a nonoscillatory solution x(t)
with l i m ^ ^ inf \x(t)\ > 0 (Theorems 5 and 6) or to have a bounded nonoscilla-
tory solution x{t) with l im,^^ inf \x(t)\ > 0 (Theorem 7).

1. Introduction

Consider the first order nonlinear neutral equation

(x(t) - f > ( 0 * W ) ) ) ' + E //'' *(*;( ' ) ) ) = G ( 0 , (t>tQ) (1)

where p.(t), ht(t), gj{t), Q{t) 6 C[tQ, oo), l i m ^ ^ /?,(/) = oo, l i m , ^ g/t)
= oo, ielm = {l,2, ... ,m}, jeln = {\,2, ... ,n}.

Recently, many authors have studied oscillations of neutral equations. But
since Grove et al [3] published the existence theorem of nonoscillatory solu-
tion of first order linear neutral equation with variable coefficients in 1987,
there have been few results about the existence of nonoscillatory solutions,
especially for nonlinear neutral equations.
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[2] Nonlinear neutral equations 181

In this paper we study nonoscillations of (1) under very general conditions
and obtain criterion theorems for the existence of nonoscillatory solutions of
nonlinear neutral equations for the first time.

Neutral equations have applications in electric networks containing loss-
less transmission lines. Such networks arise in high speed computers where
lossless transmission lines are used to interconnect switching circuits (see [1],
[2], [4]).

A solution of (1) is called oscillatory if it has arbitrary large zeros and
nonoscillatory if it is eventually positive or eventually negative.

2. Main results

We denote by CB all bounded continuous functions of C[t0, oo). Define
a distance in CB by

R(x, y) = sup \x(t) - y(t)\, for x, y e CB .
<>'o

Then CB becomes a complete metric space and every closed subset of CB

is also a complete subspace.
We suppose that fit, x), j e /„ , Q{t) satisfy the following conditions:

(a) \fj(t,x)\<\fj(t,y)\ when \x\<\y\;
(b) for each closed interval L = [c, d](0 < c < d), there are positive func-
tions Lj(t)U£ln) such that

\fj(t, x) - fj(t,y)\ < Lj{t)\x-y\ when x, y e L

where Lj(t) e C[t0, oo) are generally dependent on L and /°° Lit)dt <
oo, ) € / „ ;
(c) f°° \Q(t)\dt <oo.

THEOREM 1. Assume that either
m

A ( i ) : p , . ( 0 > 0 , i 6 / M , 5 > , ( 0 < ! - » • , 0 < r < l , t > t o ,
i'=i

or
m

A ( i i ) : p , ( 0 < 0 , ielm, -^2pt(t)<l-r, 0 < r < 1, t>to,
1=1

holds and that fj(t, x)(j e In) and Q(t) satisfy condition (a)-(c). / /

^2 r\fj(t,d)\dt< oo for some d^O (2)
j=\J
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182 LuWudu [3]

then (1) has a bounded nonoscillatory solution x(t) with l im^^ in f |jc(r)|

PROOF. Set S = {x(t) e C[t0, oo) : c < x(t) <\d\, t> t0} where 0 < c <
r\d\. It is easy to see that S is a complete metric space. Define a mapping
as follows

to<t<T.

where c, and T satisfy the following conditions:
When A(i) holds, c < c, < r\d\ and T is sufficiently large such that

h,(t) > t0 (i e IJ and ^.(0 > t0 (j e In) as t > T > t0 and further

(5, d)\ ds + f \Q(s)\ ds^mini^-c,^]-^}, (3)

Y,j™ L}{s)ds<r-. (4)

When A(ii) holds, c + (1 - r)\d\ < c, < \{c + (2 - r)\d\) and T is
sufficiently large such that ht(t) > tQ for / e/OT, ^ ( 0 > f0 for j e /n as
^ > T > t0, (4) holds and

[JT
r\Q{s)\ds<Cl-c-{\-r)\d\. (5)

JT

We need to prove
(i) M{S) C S. If A(i) holds, for any x e S and by (3), we have when
t> T

Q(s)ds

- E

/ \fj(,)\ \Q()\ds
7=1 r ^

• f°°\Q(s)\>
J T
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[4] Nonlinear neutral equations 183

Since {Mx)(t) = (Mx)(T) as t0 < t < T, then c < {Mx)(t) < \d\ as
to<t<T.

If A(ii) holds, by (5), we have when t > T

Y2Pi(t)-T, \fj(s,d)\ds- \Q(s)\ds
,=1 7 = 1 J T JT

>cl-{l-r)\d\-(cl-c-(l-r)\d\) = c,

(Mx)(t) < c, + 2 ^ / \fj(s, d)\ds+ \Q(s)\ds
7=1 J T J T

<cx + (c,-c-{\-r)\d\)<\d\.

Since (Mx)(t) = {Mx){T) as tQ < t < T, then c < {Mx)(t) < \d\ as
t9<t<T.
(ii) M is a compression mapping on S . For x, y € S and when t >T, we
have

|(Mx)(0 - (My)(t)\ = E ,
1=1

;=i

\/=.

< ({l-r) + ^R(x,y) = ( l - ^ ]

When t0 < t < T, we have

\(Mx)(t) - (My)(t)\ = \{Mx){T) - {My){T)\ < (\ -'-) R{x, y)

R(Mx, My) = sup\(Mx)(t) - (My)(t)\ < (l - ~) R(x, y).
<>'o V l l

then

According to the Banach fixed point theorem, M has a fixed point x* in
S. Obviously, x*(t) is a bounded nonoscillatory solution of (1) and satisfies
lirn,^^ inf |x*(/)| > 0. The proof is complete.
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184 Lu Wudu [5]

THEOREM 2. Assume that either
B(i) : There is some integer k(l < k < m) such that hk(t) is strictly

increasing, hk{t) < t, h^H^t)) > t(i ± k), pk(t) > 1, pt(t) < 0 (i ? k),

i

and when t > t0 and

~p'{t)
< 1 - r , 0 < /• < 1, t>t0 (6)

) > ' o ( ' * * ) •

-p,(t) {0<r< (7)

where H(t) is the inverse function of hk{t); or
B(ii) : There is some integer k (1 < k < m) such that hk(t) is strictly

increasing, hk(t) < t, ht(H(t)) >t (i ? k), pk{t) < - 1 , /».(/) < 0 (i / k)
and (6) and (7) hold; is true. Further assume that f}(t, x) (j e /„) and Q{t)
satisfy condition (a)-(c). If {2) holds, then (1) has a bounded nonoscillatory
solution x{t), and when pk(t) is bounded, l im^^inf \x{t)\ > 0.

PROOF. If B(i) holds, set

C < x(t) < ldl

< x(t) <

Pk{H(t)) '
\d\

t> T

to<t<T

where 0 < c < r\d\. Choose a positive number c, such that c < cy < r\d\.
T is sufficiently large such that g^t) >t0, ( y e / J as t > T > t0 and

i:

Define a mapping as follows:

- c , r\d\-cx) (8)

(9)

(Mx)(t) =

pk{H{t))
- i

Pk

Pk
(Mx)(T),

t>T,

to<t<T.
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[6] Nonlinear neutral equations 185

We need to prove
(i) M{S) c S. For any x e S and from (7), (8), and (9), we have when
t>T,

l \A v-y A ~> I r \ / \ f (v Y( O IsWW Hi / \D(<;\\ d\
\mX)\l) ^ ,„,,,> C. > I \J AS, X(gA*)))\UA I |^Aj |Wi

y=i

1^5

, + Pk{H{H{t))) + L, Pk{H{ht{H{t))))

E ; \fj(s>d)\ds+ \Qis)\ds

Since (Mx)(t) = (Mx)(T) as t0 < t < T, then

(ii) M is a compression mapping on S. For x, y € 5 and from (6) and
(9), we have when t > T,

(continues)
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+
~Pi(H(t))

R(x,y)
pk{H{t)) fa pk(H(t))

L(s)\x(gj(s))-y(g(s))\ds

< (1 ~r)R(x,y)

) = (l-r/2)R(x,y)

When t0 < t < T, we have

\(Mx)(t) - (My)(t)\ = \{Mx){T) - (My)(T)\ < (1 - r/2)R(x,y)
Hence R(Mx, My) < (l-r/2)R(x, y). According to the Banach fixed point
theorem, M has a fixed x* in 5 . Obviously, when t is sufficiently large,
x*{t) satisfies

i f *"<

and then

x*(t) -

Hence x*(?) is a bounded nonoscillatory solution of (1) and when pk(t) is
bounded, l im^^inf \x*(t)\ > 0. If B(ii) holds, set

S=
t>T

where 0 < c < r\d\. Choose a positive number c, such that c + (1 -
C[ < r(c + (2 — r)\d\)/2 . T is sufficiently large such that when t > T > t0,
gj{t) > to{j € /„) and

(10)

(11)

>=i
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Define a mapping as follows:

*-# Pk(H(t)) —
_1

(Mx)(t) =

K(Mx)(T), to<t<T.

Using (6), (7), (10), and (11) and by a proof similar to that of B(i), we can
complete our proof.

REMARK 1. If pk(t) is a constant, it is easy to see that (6) is identical with
(7) and Theorem 2 is still true when we omit the conditions hk(t) < t and

The following discussion is about the nonoscillation of (1) when pt(t) are
oscillatory functions.

THEOREM 3. Assume that

(01 < l ~ r , t > t 0 , Q

holds and f.{t, x)(j e /„) , Q{t) satisfy conditions (a)-(c). //(2) holds, then
(1) has a bounded nonoscillatory solution x(t) with l im,^^ inf |x(0l > 0.

PROOF. Set 5 = {x{t) € C[t0, oo) : c < x{t) <\d\, t> tQ} where 0 < c <
(2r - l)|rf|. Define a mapping as follows:

{ Ci+E£iP,-(0*(*,(0)
+ E " = , ir fj(s > x{gj(s))) ds - / ( ° ° Q(s) d s , t>T,

{Mx)(T), to<t<T;

where c, satisfies c + (1 — r)\d\ < c, < r|rf| and T is sufficiently large such
that when t>T>t0, ht(t) > t0 (i ^ k), gj(t) > t0 {j e In) and

\Q(s)\ds

, - c - {\ - r)\d\, r\d\- c,} , (12)

Lj{s)ds<r
T (13)

The rest of the proof is similar to that of Theorem 1 and 2.
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THEOREM 4. Assume that
D: There is some integer k (1 < k < m) such that hk{t) is strictly in-

creasing, hk(t) < t, h^Hit)) >t (i^k), \pk(t)\ > 1,

1
+£

Pi(t) <\-r, t>t0, - <r<\

and when t > tQ and H(h((t)) > tQ{i ^ k),

Pk{H{t)) £ p,-(0
Pk(H(h,(t)))

< 1- r ,

(14)

(15)

where H(t) is the inverse function of hk(t);
holds and fj{t,x) (j e /„) and Q{t) satisfy (a)-(c). 7/(2) holds, then
(1) has a bounded nonoscillatory solution x(t), and when pk(t) is bounded,

PROOF. Set

< x(t) <

< x(t) <

\d\
\pk(ff(t))\'

\d\

t> T

to<t<T
\Pk(H{T))\

where 0 < c < (2r - l)\d\. Choose c, such that c + (1 - r)\d\ < c, < r\d\.
T is sufficiently large such that when t>T>t0, gj(t) > t0 (j € / J , (12)
and (13) hold. Define a mapping as follows:

c, x(H(t))

(Mx)(t) =

pk{H{t))
- 1

t> T

\(Mx)(T), to<t<T.

The rest of the proof is similar to that of Theorem 1 and 2.

REMARK 2. If pk(t) is constant, (14) is identical with (15) and Theorem 4 is
still true when we omit the conditions hk{t) < t and h^Hit)) > t (i ^ k).
Consider the linear equation

= oo (i e

1=1 7 = 1

where pt{t), qj{t),ht(t), gj(t), Q(t) e C[t0, oo)
Im), l i m ^ ^ gj(t) = c» (>e In). From Theorem 1-4, we have
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COROLLARY 1. Assume that one of A(i), A(ii), B(i), B(ii), C and D holds
and that pk(t) of B(i), B(ii) and D is bounded. Further assume that Q(t)
satisfies (c). If

£f°|0,(5)|<fr<oo (2)'
j = \ J

then (1)' has a bounded nonoscillatory solution x(t) with lim,_),oo inf \x(t)\
> 0 .

LEMMA 1. Assume that A(ii) or B(ii) holds and Q(t) satisfies (c). Further
assume that fj(t, x) (j € /„) satisfy (a) and

xfj(t,x)>0 (x*0), JGln. (d)

If {1) has a nonoscillatory solution x(t) with l im^^inf \x(t)\ > 0, then (2)
holds.

PROOF. Without loss of generality, assume that x(t) > d > 0 (t > t0). Set

y(t) = x(t) -

I f ( 2 ) d o e s n o t h o l d , w e h a v e f o r t > T ,

y(t)-y(T)< I' Q(s)ds-J2J^fJ(s,d)ds^-oo (* - oo).

Then liml^oo y(t) = -oo. This is a contradiction. The proof is complete.

LEMMA 2. Assume that A(i) or C holds, ht(t) < t (i e /m) a«d tfzatf
satisfies (c) a/irf /".(f, AT) (j € /n) satisfy (a) a«rf (d). //"(I) Aas a nonoscilla-
tory solution x(t) with lim^^^inf |JC(/)| > 0, then (2) holds.

PROOF. Without loss of generality, assume that x(t) >d>0 (t>t0). If (2)
doesn't hold, we have Hm(_>oo>>(/) = - o o . Then x(t) is unbounded. There
is a sequence ^ - K » (k —> oo) such that x{tk) = m a x K / x(t). Then

which is a contradiction. The proof is complete.
The following lemma is obvious. We omit the proof.
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LEMMA 3. Assume that one of A(i), A(ii), B(i), B(ii), C and D holds and
that Pk{t) of B(i), B(ii) and D is bounded. Further assume that Q(t) sat-
isfies (c) and fj(t, x) (j e In) satisfy (a) and (d). If (I) has a bounded
nonoscillatory solution x(t) with l i m ^ ^ i n f |x(/)| > 0, then (2) holds.

From Lemma 1-3 and Theorem 1-4, we have immediately

THEOREM 5. Assume that A(ii) or B(ii) holds and that pk(t) of B(ii) is
bounded. Further assume that Q(t) satisfies (c) and f (t, x) (j € In) satisfy
(a), (b) and (d). Then (2) is a necessary and sufficient condition for (I) to
have a nonoscillatory solution x(t) with l i m ^ ^ i n f \x(t)\ > 0.

THEOREM 6. Assume that A(i) or C holds and ht{t) < t (/' e Im). Further
assume that Q{t) satisfies (c) and fj(t, x) (j e /„) satisfy (a), (b) and (d).
Then (2) is a necessary and sufficient condition for (I) to have a nonoscillatory
solution x(t) with l i m ^ ^ inf|jc(?)| > 0.

THEOREM 7. Assume that one of A(i), A(ii), B(i), B(ii), C and D holds and
that pk{t) o/B(i) , B(ii) andD is bounded. Further assume that Q{t) satisfies
(c) and fj(t, x) (j e /„) satisfy (a), (b) and (d). Then (2) is a necessary
and sufficient condition for (I) to have a bounded nonoscillatory solution x(t)
with lim,^ooinf|x(0| > 0.

COROLLARY 2. Let qAt) > 0 ( ; e In). Assume that A(ii) or B(ii) holds and
that pk(t) of B(ii) is bounded. Further assume that Q(t) satisfies (c). Then
(2)' is a necessary and sufficient condition for (1)' to have a nonoscillatory
solution x(t) with l i m ^ ^ inf|x(r)| > 0.

COROLLARY 3. Let q{t) > 0 (j e In). Assume that A(i) or C holds and
hj(t) < t (i e Im). Further assume that Q(t) satisfies (c). Then (2)' is a
necessary and sufficient condition for (1)' to have a nonoscillatory solution
x(t) with lim/_>ooinf|x(0| > 0 .

COROLLARY 4. Let q^t) > 0 (j e /„) . Assume that one of A(i), A(ii), B(i),
B(ii), C and D holds and that pk(t) of B(i), B(ii) and D is bounded. Fur-
ther assume that Q(t) satisfies (c). Then (2)' is a necessary and suffi-
cient condition for (1)' to have a bounded nonoscillatory solution x(t) with
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3. Examples

EXAMPLE 1. Consider the equation

(x(t) ± | * ( A , ( 0 ) ± -r^x(h2(t))) + \x\git)) = e~' it>to> 0)
V -> 6 + 1 It

(16)
where /i,(f) (/ = 1 ,2 ) , g(t) G C[tQ, oo), Mm^^h^t) = oo (/ = 1, 2 ) ,

•oo S(t) = oo. Let px it) - T | , P2(t) — T ^ r , Qit) = e~', / ( / , x) =

. Then

J° \Q(t)\dt <oo

\f(t, x)\ = t~2\x\3 < t~2\y\3 = \f(t, y)\ when |x| < \y\.

When x,yeL = [c,d] (0 < c < d),

\f(t, x) - f{t, y)\ = T V +xy+y2\\x-y\< 3d2T2\x - y\.

Let L{t) = 3d2t~2 , then /°° L{t) dt < oo, and

\f(t,d)\dt = J°° \d\3t~2dt < oo, (d ± 0).

According to Theorem 1, (16) has a bounded nonoscillatory solution x(f)
with lim,_>ooinf|^(0| > 0 .

EXAMPLE 2. Consider the equation

(x(t)-l(\+t2)x{t-rx)+t2x(t-r2))'+C2x2{g{t)) = 0, / > t0 > 0, (17)

where #(f) 6 C[t0, oo), lim/_>oo^(r) = oo, r, > 0 , r, > r2 . Let ^ , ( 0 =

is the inverse function of /i ,(0 , then A2(//(<)) = f + ^ - r2> t.

1
3

.2

PxiHih2it)))
r

3(1+f2) 3(1 + t2) 3'

L e t / ( / , J C ) = f V , L = [ c , d ] i 0 < c < d ) , t h e n f o r x , y € L ,

\fit,x)-fit,y)\ = r2\x + y\\x-y\<2dr2\x-y\.

Set L(/) = 2dC2 , then /°° L(/)^^ < oo. It is easy to see that fit, x) also
satisfies (a) and (2). According to Theorem 2, (17) has a bounded nonoscil-
latory solution.
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EXAMPLE 3. Consider the equation

^ t>0, (18)

where h{t), g{t), Q{t) e C[0, oo), l i m , ^ / ? ^ ) = oo, l i m , ^ , #(0 = oo,
and Q(t) satisfies (c). According to Theorem 3, (18) has a bounded nonoscil-
latory solution x{t) with lim/_>oo inf |JC(/)| > 0 .

EXAMPLE 4. Consider the equation

^ = 0, t>0, (19)

where hx(t), h2(t), g(t) e C[t0, oo), hx(t) is strictly increasing, lim,^^/?.(/)
= oo (/ = 1, 2), \itnt_^oog(t) = oo, 0 < a < 1 . According to Theo-
rem 4 and Remark 2, (19) has a bounded nonoscillatory solution x(t) with
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