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Abstract
Machines and mechanisms realize processes, from the shaping process of a milling machine and the motion process
of an automotive system to the trajectory realization of a robot. The dynamics of a machine generated by a prop-
erly chosen set of constraints in combination with an appropriate drive system is designed to meet the prescribed
requirements of the process, which is done by projecting the machine equations of motion on the process dynamics.
We get a set of nonlinear relations, which represent the machine motion in terms of the required process motion. A
well-known example is the projection of arbitrary many robot degrees of freedom (DOFs) on a given path resulting
in a set of nonlinear equations with one DOF only, the path coordinate s. Application of this idea can be used to
construct a mobility space (s̈, ṡ, s) for any combination of coordinates and constraints. The paper presents a corre-
sponding approach for n-link robots by applying multibody system theory. Method might be interesting for layout
of machines and mechanisms. Practical aspects are discussed, and an example is given.

1. Introduction
A machine possesses a kinematic and a dynamic structure, so does the process. One art of engineering
consists in matching both as optimally as possible. Physics and mathematics of mechanics can help, and
this is the goal of the paper. To give an example: The problem of trajectory planning for robotic systems
is well known from the beginning of robotic research during the seventies and eighties. Especially, one
approach has been particularly successful at that time. It represents a prescribed path by one degree of
freedom (DOF) only, namely the curvilinear coordinate s along that path. All robot DOFs were then pro-
jected to this single path coordinate coming out with a linear system of ordinary differential equations of
motion in the square of the path velocity. Many large applications and comparisons with measurements
were carried through at that time [1–6]. The original idea for such an approach, by the way, comes from
military research, being obvious.

In traditional mechanism theory and related fields, we find also many applications using mathematical
concepts with very similar properties. It is possibly the first area trying from the very beginning to find
a synthesis for more and more complicated mechanisms of plane and spatial nature, and it has been
mainly represented by many scientists of a very high standing community [7–9], to name a few.

By analyzing various types of processes, we shall find an astonishingly large number of processes
being defined by a trajectory only, from manufacturing and transport technologies to trajectory realiza-
tion of robots. Therefore, the one-dimensional robot example includes a certain amount of generality.
In addition, this idea might be generalized by considering processes with more than one DOF, which
means multiple trajectories. We shall not pursue that here.

We may look to this step from the machine to the process or vice versa also in another way of arguing.
Forcing a machine to perform a certain process, and the machine can do that only by a correspond-
ingly good arrangement of its own constraints, means nothing else, that the contact element of that
machine with the external world must follow the prescribed process kinematics and possibly some forces
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necessary for the process. A gripper of a robot follows a given path for example, or it performs a peg-
in-hole process, as perfectly as possible. This is nothing else than running some additional constraints
characterizing the process, in our case some path tracking.

2. Equations of Motion
Usually, kinematics and possibly some forces of a robot process are known, and the dynamics is
unknown. This requires a multibody-dynamical model of the robot with the necessity, that all com-
ponents follow the prescribed path or process. We start with possible models for the robot. In a first step
and for later definitions, we consider Jourdain’s principle of lost power for a rigid multibody system [2,
10–12].

n∑
i=1

δ

(
vO

′

ω

)
︸ ︷︷ ︸

żT
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ż

]
+
(

mω̃ω̃rO
′
S

ω̃�O
′ω

)
︸ ︷︷ ︸

fg

−
(

Fe + Fa + Fp

Me

O
′ + Ma

O
′ + Mp

O
′

)
︸ ︷︷ ︸

fe+fa+fp

−
(

Fc

Mc

O
′

)
︸ ︷︷ ︸

fc

}
i

= 0.

(1)

where vO
′ , ω are the translational and rotational velocities; m, I, �O

′ are the masses and mass moments of
inertia; O′, S are the reference point and center of gravity; and fg, fe, fa, fp, fc are the gyroscopic, applied,
driving, process, and constraint forces and torques. We have included also the case of a time-dependent
mass matrix, which appears for rigid reference frames.

Equation (1) is defined in a �6-space for each component, for n components in a �6n-space. With
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we come to the corresponding vectors in the �6n-space (n = nc number of components), and with

M := diag (Mi) ∈ �6n,6n (3)

we define the mass matrix of the total system. From this, Eq. (1) takes on the form

δżT
(
Mz̈ + Ṁż + fg − fe − fa − fp − fc

)= 0 . (4)

The virtual velocities δż cannot be chosen arbitrarily, but they must satisfy side conditions in the form
of constraints, usually given by (�̇ = WT ż + w̄ = 0) [10]. The W-matrices are Jacobians defining the
tangential constraint surfaces. The constraint forces are perpendicular to these manifolds. All constraints
are assumed to be bilateral and independent from each other. For a classification of constraints, see, for
example, refs. [2, 10].

Following the ideas of Jacobi [11] in the form given in ref. [10], we come out finally with the typical
structure of classical multibody equations with constraints

Mz̈ + Ṁż + f − fc = 0, f = fg − fe − fa − fp, fc = −W(z, t)λ,

�̇ = WT ż + w̄ = 0, �̈ = WT z̈ +
[(

dWT

dt

)
ż +
(

dw̄
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)]
= WT z̈ + ŵ = 0, (5)

The mass matrix is positive definite and symmetric. The vector w̄ might be time-dependent elements
of a constraint structure, see, for example, Eqs. (32)−(34). The constraints �̇ include robot and path
constraints �. The equations above may be solved using(

M W

WT 0

)(
z̈

λ

)
+
(
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. (6)
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or evaluated

z̈ = − M−1
[
(Ṁż + f) + W(WTM−1W)−1WTM−1[(Ṁż + f) − ŵ]

]
,

λ = − (WTM−1W)−1
[
WTM−1(Ṁż + f) − ŵ

]
. (7)

Due to the special requirements of dealing with multibody systems, many bodies forming a system
like a machine, it makes sense to work with body-fixed coordinates and inertial ones. They are connected
by a set of transformations, which have to be defined. For our robot case, it will be given in the following
sections [2, 12].

Furthermore, we shall use a convenient property of the above relations. If the coordinate z depends
on some other coordinates q, where z might be non-minimal and q might be minimal, then from
ref. [10]
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which is helpful for eliminating the constraint force fc = −W(z, t)λ from the equations of motion, by pre-
multiplying with ( ∂z

∂q
)T . This is nothing else than a projection into the tangential planes as spanned by the

constraints, characterized by free motion and no constraints anymore. Considering that case [z = z(q)]
in more detail and applying Eqs. (8) to (5) gives with (Mq = [( ∂z

∂q
)TM( ∂z

∂q
)])

Mqq̈ +
(

∂z
∂q

)T {
M
[

∂

∂q

(
∂z
∂q

)
q̇
]

q̇ + [(
∂M
∂q

)q̇](
∂z
∂q

)q̇
}

+
(

∂z
∂q

)T

(fg − fe − fa − fp) = 0, (9)

If q are robot coordinates, they depend on the path coordinates s, (q = q(s)). Considering in addition
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we get from (9) a set of ordinary differential equations linear in the square of the path velocity ṡ2, which
can be organized in the following way:

A(s)(ṡ2)′ + B(s)(ṡ2) + C(s) = T(s), (A, B, C, T) ∈ �nq ,
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These relations define straight lines in the plane (ṡ2)′, (ṡ2) for each s = constant in such a way that every
of the nq equations describes two parallel lines for a maximum and a minimum value of the driving
torques. Note that, due to using an inertial frame, fg

q corresponds to the coefficient B(s). Working with
body-fixed frames, it must additionally be determined.

If we want in addition to evaluate the constraint forces or torques, we must go back to Eqs. (5)
and (6), and we must define the constraints. With respect to these constraints, we might consider two
possibilities: first, including all constraints concerning joints and ground contact, or second, including
only the ground contact constraint. Last case is of interest, if the joint constraints are already known
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Figure 1. Polygons of possible motion for fixed s (see also ref. [1]).

by a special solution step or if the joint constraints are not of interest. The equations presented in the
following are for all constraints. They write

fc = −Wλ =⇒ fc + β(s)(ṡ2) + γ (s) = τ (s), (β, γ , τ) ∈ �6nc ,
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3. Mobility Space Bounded by Ruled Surfaces
3.1. Polygon approach
The general mobility problem for a robot (machine) following a prescribed path (process) is, for example,
the following: evaluate ṡ(t) with s(0) = 0, s(tF) = sF, ṡ(0) = 0, ṡ(tF) = 0 in such a way that some per-
formance criterion will be met. Such criteria might be minimum time, minimum energy, maximum
mobility, and the like. The solution of this problem is practically constrained, where the most important
ones are as follows.

First, the driving torques or forces are limited, which means from the relations above

Ti,min ≤ [Ai(s)(ṡ2)′ + Bi(s)(ṡ2) + Ci(s)] ≤ Ti,max,

(ṡ2)′ =
−Bi(s)(ṡ2) − Ci(s) +

(+Ti,max

−Ti,min

)
Ai(s)

, (ṡ2)A=0 =
−Ci(s) +

(+Ti,max

−Ti,min

)
Bi(s)

, (13)

where the last equation can be seen as a further additional constraint. Other possible constraints are the
following: The angular or translational velocities of constraining elements may be limited due to some
maximum speeds of the drive train components (q̇i,min ≤ [q′

iṡ] ≤ q̇i,max), and the path velocity itself might
become constrained by some manufacturing process (− vmax ≤ |r′|ṡ ≤ +vmax) with the vector r from the
constrained machine (robot) element under consideration to a process path point. These relations define
together a maximum velocity ṡL along the path which must not be exceeded (Fig. 1):

0 ≤ (ṡ2) ≤ (ṡ2)L, with (ṡ2)L = min

[(
q̇i,max

q′
i

)2

,

(
vmax

|r′|
)2

, (ṡ2)A=0

]
. (14)
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Figure 2. Polygon of possible motion for s = constant, additional force limit.

Additional limits may enter by process forces, usually in the form of process constraints. A typical
example is force vector direction, which occurs when a robot follows a polishing trajectory requiring a
certain amount of contact pressure with respect to a prescribed direction. Examples of that type are also
typical for many machine tools. Evaluating the polygons of mobility space, such conditions additionally
constrain the field of allowed motion, see Fig. 2.

A first step to the solution of the mobility problem may be done in the following way: We look at Eq.
(13) for the limiting cases (Ti,min, Ti,max) stating that maximum mobility can only be achieved by applying
in a maximum number of joints the limiting torques or forces. In addition, we may influence mobility
by the distribution of drives in the various DOF elements. Operating at the power limits, we get the two
equations

(ṡ2)′
Tmax

= −Bi(s)(ṡ2) − Ci(s) + Ti,max

Ai(s)
, (ṡ2)′

Tmin
= −Bi(s)(ṡ2) − Ci(s) − Ti,min

Ai(s)
, (15)

which define two straight lines in the [(ṡ2)′, (ṡ2)]-plane, Fig. 1.
The altogether (2fD) straight lines (fD ≤ f ) form a polygon confined at the left side by the axis (ṡ2) = 0

and at the right side by the (Ti,min, Ti,max)-straight-lines or by the constraint (ṡ2)L given by Eq. (14).
Additional limits may enter by the constraint forces and corresponding requirements, Fig. 2. Without
violating the constraints, which may be extended without much problems, motion can take place only
within the polygons or on their straight line boundaries, which contain the following information: the
maximum possible velocity ṡ2

max and for each point (ṡ2) a maximum and a minimum acceleration or decel-
eration [(ṡ2)′

max, (ṡ2)′
min]. For example, finding time-optimal solutions we have to go along the assemblage

of these polygons and generate what we call extremals. Combining all polygons for all path points s, we
obtain a constrained phase space bounded by ruled surfaces due to the straight line characteristics of the
polygons. We call this motion or mobility space. These polygons appear as plain cuts perpendicular to
the s-axis, see results of Fig. 10.

3.2. Polygon evaluation
Many ways of polygon evaluation are conceivable, where from a test of several methods the numerically
most effective one has been selected. In a first step, all double straight lines are assorted according to
their width di cos γi, tan γi = Bi

Ai
, see Fig. 3. For evaluating the smallest polygon as formed by the double

lines of Eq. (15) we consider an assemblage of vertical straight lines and determine for each individual
vertical line m the smallest possible distance of points with positive and negative torques. Start is the
strip with largest distance di cos γi, blue lines k and points Fig. 3. Looking at the second largest strip
(green lines l), there are two possibilities of intersections. The green strip lies completely within the
blue one or only one green point alone lies within the blue strip distance. Anyway, we proceed with
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Figure 3. Polygon evaluation – intersections at some given (ṡ2)m [s = constant, plus-sign for Ti,max,
minus-sign for Ti,min].

the combination of smallest distance. This algorithm is continued up to the last pair of points giving
the smallest distance for the vertical cut under consideration. Considering very many cuts within the
limitations brings us to a collection of solution points forming again straight lines for the final solution
area for s = constant.

The formal steps are (Fig. 3)

�Sm(i,j) = mini=1,2...n
j=1,2...n

{
Smax[(ṡ

2)m, (ṡ2)′
i] − Smin[(ṡ

2)m, (ṡ2)′
j]
}
,

Ptotal =
sn⋃

s=s0

Ps(s), Ps(s) =
(ṡ2)=(ṡ2)max⋃

(ṡ2)=0

�Sm(i,j), (16)

where the Smax,min are depicted by Fig. 3, Ps stands for the polygon structure composed by the �Sm, and
Ptotal is the complete structure composed by all �Sm.

In Fig. 3, all points along the cut m are within the blue strip points, being the largest one. One of
the dark blue points lies within the two black points, which together with one dark blue point define
the smallest range of allowed motion for the corresponding cut. The smallest distance of two points is
then the result for one cut m. These two points usually are not two points of the same robot link, but
from different ones. This makes a consistent algorithm difficult. But it is mandatory that the upper point
comes from a Tmax-line and the lower one from a Tmin-line.

3.3. Surface differential geometry
The surface differential geometry is not used directly in the following evaluation, but elements of it are
needed, when determining time-optimal solutions. For this case, an integration from one polygon line
to the next one will be necessary as depicted in Fig. 5. Differential geometry offers understanding and
insight.

The polygons of the preceding Figs. 1–3 are for one specific s. Arranging the polygons for all s along
a prescribed path results in a mountain-like structure of ruled surfaces as shown by Figs. 4 and 5, see
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Figure 4. Polygon arrangement and parameter representation.

Figure 5. Polygon arrangement and integration along the ruled surface.

also the robot example of Fig. 10. Applying to these structural elements classical surface theory [13]
gives the fundamental form of these ruled surfaces as generated by the relevant polygon lines. According
to the relations (15), we put B̄ = B(s)/A(s) not considering here the case A = 0.

As a first step, we introduce the parameters (u, v), where u follows a selected polygon line from r0

to r1, and v = s is the path coordinate. The angle γ is the slope given in the specific coordinate system
of Fig. 4. According to Eq. (15) and Fig. 1 the angle γ results from (tan γ (s) = B̄(s)). Note that the
expression B̄ = B̄(s) and from that γ = γ (s) = γ (v). Keeping that in mind and using the relations

E(u, v) = ru · ru, F(u, v) = ru · rv, G(u, v) = rv · rv, ru = ∂r
∂u

, rv = ∂r
∂v

, (17)

together with vector r from Fig. 4 the first fundamental form of the surface writes (()′ = ∂

∂s
)

E(u, v) = 1, F(u, v) = 0, G(u, v) = 1 + (uγ ′)2, γ ′ = dγ

ds
= −

(
B̄′

1 + B̄2

)
. (18)

In a similar way, we determine the second fundamental form using the well-known relations

L(u, v) =nT · ruu, M(u, v) = nT · ruv, N(u, v) = nT · rvv,

ruu = ∂2r
∂u2

, ruv = ∂2r
∂u∂v

, rvv = ∂2r
∂v2

, n = ru × rv

|ru × rv| = 1√
1 + (uγ ′)2

⎛
⎝ uγ ′

+ sin γ

− cos γ

⎞
⎠ , (19)
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which finally gives

L(u, v) = 0, M(u, v) = 0, N(u, v) = − uγ ′′√
1 + (uγ ′)2

,

γ ′′ =d2γ

ds2
= − (1 + B̄2)B̄′′ − 2B̄(B̄′)2

(1 + B̄2)2
(20)

Knowing the first and second fundamental form, Gauss and mean curvatures can be determined by
the expressions

K = LN − M2

EG − F2
= 0, H = LG − 2FM + EN

2(EG − F2)
= N

2G
(21)

by considering the results above. The main curvatures ki follow from the equation (k2
i − 2Hki + K = 0).

With K = 0, we get

k1 = K = 0 (u-direction), k2 = 2H = − uγ ′′

(1 + (uγ ′)2)3/2
(v=s-direction). (22)

The Gauss curvature is zero, K = 0, a condition defining ruled surfaces. The mean curvature H exists
only in path direction s = v and depends on path geometry and certain mass effects.

Figure 5 can be used to organize an integration following the ruled surface of the mobility space.
This will be necessary for example evaluating the extremals, which go along the ruled surfaces stepping
from some polygon i to the neighboring polygon (i + 1) (see chapter 5.2). The problem is solved by
considering the following equations:

A(si)(ṡ
2)′

i + B(si)(ṡ
2)i + C(si) = T(si),

A(si+1)(ṡ
2)′

i+1 + B(si+1)(ṡ
2)i+1 + C(si+1) = T(si+1),

si+1 = si + �s, (ṡ2)i+1 = (ṡ2)i + �(ṡ2), (ṡ2)′
i+1 = (ṡ2)′

i + �(ṡ2)′,

Di+1 = Di + D′�s, D = A, B, C, T (23)

Knowing �s these relations is enough to determine the unknown quantities for the polynom (i + 1)
by an iteration process being necessary for two reasons: first to realize numerical stability and second
to meet the correct line of polynom (i + 1) also in the case of an integration step passing an intersection
of two polygon lines.

4. Example Multi-DOF-Robot with Revolute Joints
In the following, we shall consider the magnitudes used in Eqs. (11) and (12), which stand for the
equations of motion and those for the constraint forces. Inertial reference is applied.

4.1. Kinematics
A robot with nq revolute joints can be described by Cartesian z-coordinates and by angular q-coordinates.
The projections (z → q → s) have been discussed before. With respect to the q-coordinates, relative and
absolute versions are needed (Fig. 6)

q̄i = �

2
−

i∑
j=1

qj = q̄i−1 − qi, qi = q̄i−1 − q̄i, q̄0 = �

2
. (24)
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Figure 6. Geometry of a multi-DOF robot.

The z-coordinates are defined in the following way (2):

ż = (ż1ż2 . . . . . . . . . . . . żn)T , q̄ = (q0q̄1q̄2 . . . . . . . . . q̄T
nq

),

żi =
(

ṙi

ωi

)
, z̈i =

(
r̈i

ω̇i

)
, ṙi =

⎛
⎜⎝

ẋ

ẏ

ż

⎞
⎟⎠

i

, ω̇i =
⎛
⎜⎝

ω̇x

ω̇y

ω̇z

⎞
⎟⎠

i

,

z ∈ �n, q̄ ∈ �nq zi ∈ �6, ri ∈ �3, ωi ∈ �3. (25)

With these definitions, the joint vectors zJi and the center of mass vectors zCi possess the following
elements (J = joint point, C = center of mass):

rJi =
i−1∑
j=1

lj

⎛
⎜⎝

cos q̄j cos q̄0

cos q̄j sin q0

sin q̄j

⎞
⎟⎠ , rCi =

i−1∑
j=1

lj

⎛
⎜⎝

cos q̄j cos q0

cos q̄j sin q0

sin q̄j

⎞
⎟⎠+ di

⎛
⎜⎝

cos q̄i cos q0

cos q̄i sin q0

sin q̄i

⎞
⎟⎠ (26)

It should be noted that for the rotation around the vertical inertial z1-axis (Fig. 6) the above vectors
are zero, rJi = 0, rCi = 0. The angular velocities ωi are determined by the well-known relations Iω̃i =
ȦIBABI = ȦIBAT

IB with the result [2] (I = inertial, B = body)

Iωi =
⎛
⎜⎝

−˙̄qi sin q0

+˙̄qi cos q0

q̇0

⎞
⎟⎠ , Bωi =

⎛
⎜⎝

−q̇0 sin q̄i

˙̄qi

+q̇0 cos q̄i

⎞
⎟⎠ , AIB =

⎛
⎜⎝

cos q0cosq̄i − sin q0 cos q0 sin q̄i

sin q0cosq̄i + cos q0 sin q0 sin q̄i

− sin q̄i 0 cos q̄i

⎞
⎟⎠
(27)

The matrix AIB follows from two rotations, first around the inertial z-axis, and second around the
body-fixed y-axis. For i = 1 (first DOF with q0), the angular velocity is Iω1 = Bω1 = (00q̇0)T . Establishing
the equations of motion, the derivations (( ∂z

∂q̄
), q̄′, q̄′′) are needed. They can be evaluated from the

relations (26) and (27). In the following, only a few examples are given.
The gradient ( ∂z

∂q̄
) follows from (example I żJi)
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I żJi =
(

∂z
∂q̄

)
˙̄q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑i−1
j=1 lj[− cos q0 sin q̄j

˙̄qj − sin q0 cos q̄jq̇0]∑i−1
j=1 lj[− sin q0 sin q̄j

˙̄qj + cos q0 cos q̄jq̇0]∑i−1
j=1 lj[ + cos q̄j

˙̄qj]

−˙̄qi sin q0

+˙̄qi cos q0

q̇0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

Knowing ( ∂z
∂q̄

), we get by an additional derivation the matrix for ( ∂2z
∂q̄2 ). The projections of q̄ with

respect to s are evaluated numerically by

q̄′ = q̄(si+1) − q̄(si−1)

si+1 − si−1

, q̄′′ = q̄(si+1) − 2q̄(si) + q̄(si−1)

[ 1
2
(si+1 − si−1)]2

. (29)

To determine the same information for the angle q0, we start with the (x,y,z)-position of each trajectory
point and calculate q0 and its derivatives (Fig. 6)

tan q0 =
(y

x

)
trajectory

, q′
0 =y′x − yx′

x2 + y2
,

q′′
0 =
[

y′′x − yx′′

x2 + y2
+ 2

x′y′(y2 − x2) − xy((y′)2 − (x′)2)

(x2 + y2)2

]
(30)

For our specific case of a n-link robot following a trajectory, we determine q̄ = q̄(r(s)) by an
optimization algorithm.

For positioning the robot end effector at the target point, we apply formula (26) and require (Fig. 6)

rJn = r(q̄(s)) =
n∑

j=1

lj

⎛
⎜⎝ cos q̄j cos q0

cos q̄j sin q0

sin q̄j

⎞
⎟⎠=

⎛
⎜⎝ x

y

z

⎞
⎟⎠

trajectory

, (31)

where the path data (xyz)T
trajectory are given. The relation above represents then a nonlinear set of equations

for the determination of robot coordinates q̄, being solved by standard methods [13].

4.2. Constraint geometry
A two-link robot tracking a path moves with six constraints, three constraints for vertical and two hori-
zontal joints and three constraints for keeping the robot end effector on a given trajectory, Fig. 8. Starting
with the three robot constraints, regarding the structure of Fig. 8 indicating a circular motion of all links,
the joint constraints write

�0 = x2
1 + y2

1 − (l1 cos q̄1)2 = 0,

�1 = x2
1 + y2

1 + z2
1 − d2

1 = 0, �2 = (x2 − xl1)
2 + (y2 − yl2)2 + (z2 − zl1)

2 − d2
2 = 0, (32)

where (xl2, yl2, zl2) = l1
d1

(x1, y1, z1) are the coordinates of the end point of link 1. Following some trajectory
produces three additional constraints

�3,4,5 = [(x)(y)(z)]T − [(x0 + ξ )(η)(− h)]T
trajectory = 0. (33)

These equations must be differentiated twice for the corresponding form [�̇ = WT ż + w̄ = 0, �̈ =
WT z̈ + ŵ = 0] of Eq. (5), which results in
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WT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1 0 0 0 0

x1 y1 z1 0 0 0

− l1
d1

�x − l1
d1

�y − l1
d1

�z �x �y �x

W0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

W0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

w0

x2

y2

z2

w0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

w̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
(l2

1 sin 2q̄1) ˙̄q1

0

0

w0

−ξ̇

−η̇

0

w0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ŵ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ2
1 + ẏ2

1 + l2
1[ 1

2
( sin 2q̄1) ¨̄q1 + (cos 2q̄1) ˙̄q2

1]

ẋ2
1 + ẏ2

1 + ż2
1

�ẋ2
1 + �ẏ2

1 + �ż2
1

w0

−ξ̈

−η̈

0

w0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

with �x = x2 − l1
d1

x1, etc. To meet the formal requirements of Eqs. (5) and (25) null-matrix, W0 has
the dimension �3,6 and null-vector w0 the dimension �3. The constraints do not include rotations. For
constraint kinematics, we have to determine the robot coordinates for some given path point. This is
done by going from robot workspace to joint space. The resulting magnitudes are used to evaluate the
derivatives with respect to the path coordinate s by numerical methods. The constraint matrix W is
needed mainly for determining the constraint forces. At the end of the section, we consider an example.

The motion of the robot may start at a point (ξ0, η0) and end at (ξE, ηE). For generating a spiral path,
the number is nx, so the repeating circle step is �ξ = (ξE − ξ0)/nx. A point on the “moving” circle is
(ξC = r cos ϕ, ηC = r sin ϕ) with r the circle radius. With these data, the end effector position and the
rate of change with the path coordinate s are determined as

ξ =ξ0 + n�ξ +
(

�ξ

2�

)
ϕ + r cos ϕ, η = η0 + r cos ϕ,

∂s

∂ϕ
=
√(

∂ξ

∂ϕ

)2

+
(

∂η

∂ϕ

)2

=
√(

�ξ

2�

)2

− 2

(
�ξ

2�

)
r sin ϕ + r2, ()′ =

(
∂

∂s

)
. (35)

The number n is the number of circles already performed, n ≤ nx. Necessary derivatives write

ξ ′ =
[(

�ξ

2�

)
− r sin ϕ

]
ϕ ′, ξ ′′ =

[(
�ξ

2�

)
− r sin ϕ

] (
∂ϕ ′

∂ϕ

)
ϕ ′ − (r cos ϕ)(ϕ ′)2

η′ =(r cos ϕ)ϕ ′, η′′ = (r cos ϕ)

(
∂ϕ ′

∂ϕ

)
ϕ ′ − (r sin ϕ)(ϕ ′)2

(
∂ϕ ′

∂ϕ

)
ϕ ′ =

(
�ξ

2�

)
(r cos ϕ)(

�ξ

2�

)2 − 2
(

�ξ

2�

)
r sin ϕ + r2

(36)

Finally, we present an example with the equations of motion fulfilling all constraints with exception
of the ground contact. The requirement for the end effector to be on a height zT = constant gives
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Figure 7. Trajectory, torques and forces at link i.

� = z[q̄(s)] − zT = 0,

�̇ =
(

∂z

∂q̄

)
˙̄q = WT

ps
˙̄q = 0,

�̈ = WT
ps

¨̄q +
(

dWps
T

dt

)
˙̄q = WT

ps
¨̄q + ŵps = 0,

WT
ps =

(
∂z

∂q̄

)
= (0l1cosq̄1l2cosq̄2), ŵps =

(
dWps

T

dt

)
˙̄q

z =
nq∑

j=1

ljsin(q̄j), ŵps = −
nq∑

j=1

(ljsinq̄j)(q̄
′
j)

2(ṡ2). (37)

The expression for z follows from Eq. (31), the resulting constraint forces (torques) from the relations
(12).

4.3. Masses and forces
According to Eq. (1) the mass matrix and its derivatives write

Mi =
(

mE mr̃T

O
′
S

mr̃O
′
S �O

′

)
i

∈ �nm ,nm , with �O
′
i = −

∑
�m

[r̃O
′
Sr̃O

′
S�m]i

dMi

dt
=
(

0 m˙̃rT

O
′
S

m˙̃rO
′
S �̇O

′

)
i

,
d�O

′
i

dt
= −

∑
�m

[˙̃rO
′
Sr̃O

′
S + r̃O

′
S
˙̃rO

′
S]i�mi (38)

For some link i, we choose as a reference point the center of mass S, which makes rO
′
S = 0 and

ṙO
′
S = 0. A special case is the first coordinate q0, where the reference point O′ is the coordinate origin

and the distance to the link centers of mass (rO
′
S)i 	= 0. For this case and according to Eq. (26), we have

(rO
′
S)i = rCi. The moment of inertia for the bar-like links alone is �Si = 1

3
mil2

i [1 − 3( d
l
) + 3( d

l
)2].

As a further step, we have to evaluate the forces and torques considered in an inertial system. The
external and applied forces and torques (Fig. 7) are

Ife
i =[00(− mig)000]T , Ife

0 = 0, Ifa
0 = [00000(T0)]T ,

Ifa
i>0 =[000(− (Ta(i+1) − Tai) sin q0)( + (Ta(i+1) − Tai) cos q0)0]T , (39)

5. Results for a Robot with Three Revolute Joints
An illustrative example is a two-link robot performing a circular vertical path, for which we present
some comparisons with old measurements of the time-optimal path torques, Fig. 9 (top, left). Theory
and measurements compare well, the high frequency oscillations of the measured data are due to the
robot measurement system [2, 3, 14]. The results confirm the basic idea of the paper.
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Figure 8. Constraints – geometry and torques.

1

2

3

Figure 9. Comparison theory/measurements for a two-link robot [2, 3].

5.1. Tracking a given trajectory
To illustrate more in detail the theory above, we consider the motion along a horizontal circle. Evaluating
Eq. (15) for each trajectory point with the coordinate s results in Fig. 10, which depicts on the left side
(top) the horizontal circle with a robot indication and in addition polygons for six trajectory points.
These polygons are scaled equally, giving some feeling for the motion capabilities of the robot around
the circle. The points farthest away from the robot base show relatively small motion areas due to the
fact that the robot, being there in a stretched position, has to counterbalance his own weight, and very
large moments of inertia for the vertical drive leave less power for velocity and acceleration.

At the position of start level and of the position 180◦, opposite velocities are largest but accelerations
diminished. Motion at these points is dominantly performed by the arm drives and not so much by the
vertical drive with angular velocity q̇0. Another situation is illustrated by the two points nearest to the
robot base, exhibiting large acceleration capabilities and medium-sized velocities. They are dominated
by the drive around z with q̇0.

Beginning at the start position and then going along the trajectory and arranging the six polygons
in the [(ṡ2)′, (ṡ2)] - plane comes out with the right picture (top) of Fig. 10, where each element rep-
resents a polygon for s = constant. Taking into consideration, some more polygons result in the left
picture (bottom) of Fig. 10. As could be expected, we get for the complete trajectory a “line-free” area
of motion allowing any solution within the given drive limits (Ti,max, Ti,min) without touching some con-
straint. Printing these polygons not onto one plane but extending them along the path coordinate s gives
the right graph of Fig. 10 bottom. The “entrance” to this structure corresponds to the polygon at the start
point of Fig. 10 (top).

Altogether it is a mountain-like construct generated by straight lines forming ruled surfaces as an
exterior boundary. Motion can only take place on these ruled surfaces originating from the extremum
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Figure 10. Motion areas (polygons) along a horizontal circular trajectory (top) and generation of
motion space (bottom).

drive torques or forces, or it can take place in the space bounded by these ruled surfaces. For ruled
surfaces, see ref. [15] or elsewhere.

The motion space of Fig. 10 represents a convenient tool for studying various solution and motion
concepts. For example, to go with constant velocity within the free space we put (ṡ2)′ = 0 and get imme-
diately the necessary torques from Eq. (15), namely T(s) = B(s)(ṡ2) + C(s). A more interesting case is
that of time-minimum motion requiring to find trajectories on the ruled surfaces.

5.2. Extremals
From Eq. (15), the extremals are constructed from the upper part and from the lower part of the polygons,
from the side with maximum accelerations (ṡ2)′

max containing the max-extremals, and the side with min-
imum accelerations (ṡ2)′

min containing the min-extremals (Fig. 1 and section 3.1). Figure 11 illustrates
the projections of these extremals together with the maximum velocities from motion space onto the
[ṡ2 − s] - plane.

A time-optimal solution, for example, must be composed by several of these extremals for the follow-
ing reasons. Requiring ṡ2 = 0 at s = 0 and s = sF requires to follow a certain combination of extremals
for arriving at the final point. Such a procedure needs an integration of the equations of motion along the
ruled surfaces and thus from polygon at s to the next one at (s + �s). Integration on polygons excludes
normally a progress along the rim of the motion space, exceptions are possible [3].

Figure 11 illustrates that procedure. The blue extremal at the beginning connects s = 0 with the max-
imum velocity curve at s ≈ 1.7, and the green extremal at the end connects s = sF ≈ 8.8 with s ≈ 6.9.
Note that the blue extremals are on the motion space side with maximum accelerations and the green on
the side with minimum accelerations. At a possible intersection point of the blue and green extremals,
the torques and forces make a corresponding jump, because such intersection points are usually not min-
imum points with Ai = 0. As a further step, we construct all extremals originating from the saddle points
(minimum points) at s ≈ 2.2 and at s ≈ 6.7. These are points, where at least one coefficient Ai ∈ A of
Eq. (11) vanishes, thus allowing a smooth step from one side of the motion space to the other one. The
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Figure 11. Field of extremals (blue lines max-extremal, green lines min-extremals) and an extremal
selection forming the time-optimal solution.

Figure 12. Left: trajectory for polishing (robot position as in Fig. 10), middle: collection of polygons,
right: joint torques for a two-link robot, black solid T1, black dashed T2, black dash-dotted T3, red line
(ṡ2)max, blue-green lines time-optimal solution (right graph: velocities only qualitative).

extremals emanating from these points intersect the extremals coming from the beginning and from the
end, and in addition for our example, they themselves intersect at a point s ≈ 4.3. The resulting ensemble
of six curve elements forms the time-optimal solution for the motion under consideration, avoiding any
limits and problems with rim contacts.

5.3. Driving torques
For considering driving torques along a time-optimal solution, we select a trajectory example as it might
be used for polishing work. Figure 12 depicts the situation for a spiral trajectory as shown by the left
graph. The ruled surface mountain structure is not shown, but only the projection of this construct onto
the (ṡ2)′ − ṡ2-plane, comparable to Fig. 10. This collection of quite a number of constraining polygons
reveals again the useful property of such problems, namely a free area not cut by polygon lines. Within
the mountain structure of the mobility space, this area indicates a kind of tunnel, in which any motion
might take place without touching limiting constraints.

Knowing all kinematic data for time-optimal tracking a given path (Fig. 11), it is easy to calculate
the necessary torques for following that path just by applying the equations of motion (11) in a reverse
way: prescribed kinematics, solve for the torques. The result is given by the right graph of Fig. 12. It
demonstrates the necessity that for time-optimal motion at least one of the three drives must work at its
limits. For some rough orientation, the time-optimal extremals are indicated. The following conclusions
may be drawn: at the beginning and at the end of the path motion is controlled by the maximum torque
of the third joint, the two other joints look for balancing. About the path middle, the basic joint around
the vertical axis contributes with maximum torque. These activities bring the robot from the start with
path velocity zero to the end again with zero velocity.
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Figure 13. Left: trajectory for polishing (robot position as in Fig. 10), middle: collection of polygons,
right: joint torques for a two-link robot, black solid T1, black dashed T2, black dash-dotted T3, red line
(ṡ2)max, blue-green lines time-optimal solution (right graph: velocities only qualitative).

Figure 14. Trajectory form and results for forces and velocities (right graph: velocities only qualitative).

Figure 13 illustrates the same situation for a trajectory composed of six spiral elements. It is also a
numerical test demonstrating numerical stability, which cannot be taken for granted. The structure as
shown in Fig. 12 is repeated six times, the properties for each revolution remain approximately the same.

5.4. Constraint torques
The constraint forces and torques are evaluated according to Section 2. For our specific example, it is
assumed that all constraints are already satisfied with the exception of the ground contact, see end of sec-
tion 4.2. We remember also that constraint forces depend only on path velocity and path coordinate and
not on the path acceleration, fc = fc(s, ṡ2), Eq. (12). We shall consider a spiral form path with the prop-
erties and results as depicted in Fig. 14, which shows velocities and torques for the time-optimal case.

As an example, this time-optimal velocity distribution and its optimal velocities are taken for evalu-
ating the constraint torques. Figure 14 depicts on the left side the maximum and the optimal velocities
and on the right side the corresponding torques necessary to generate these velocities. They are the
constraint torques for keeping the robot end effector in a plane with constant z. Roughly spoken, these
constraint torques are about 40% of the driving torques for the same case, Figs. 12 and 14. Note that
these torques are a maximum only for one joint, which is typical for such problems. From the practical
standpoint of view, no machine can be operated with all drives working on a maximum power level.

6. Conclusion
The method presented in this paper is formulated generally by considering multibody systems in a first
step, and it is then specialized to a robot with revolute joints as an example. Starting with a formulation
according to Lagrange I (Jacobi), the DOFs of any multibody system are projected to one prescribed
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trajectory of arbitrary shape resulting in relations following one DOF only. The projecting tools are
constraint derivatives, which are evaluated from the geometry of the multibody structure together with
the given trajectory.

The emerging relations represent a system of ordinary linear differential equations in (ṡ)2, the square
of path velocity, with highly nonlinear coefficients including the complete MBS (robot) – configuration.
They possess a quadratic form related to geodesic type equations. All structural data are compressed in
two coefficient systems, an amazing fact. For example, the coefficients A, B, C include the total geometric
and topological information of the robot under consideration. And they can be used to build a mobility
space, where the motion takes place. This space represents a useful tool for improving and for facilitating
design of mechanical systems in general and of robotic systems in particular.

Constructing a mobility space requires some new algorithm. The property “system of ordinary linear
differential equations in (ṡ)2” together with the definition of two driving torques Ti,min, Ti,max allows to
generate two parallel straight lines for every drive component and for constant s, namely in the plane
[(ṡ2)′(s), ṡ2(s)] of modified acceleration and velocity. The intersections of all these lines form a polygon,
where motion can take place without constraints. Arranging all polygons along the path coordinate s
produces a space bounded by ruled surfaces, called mobility space.

The relations are specified for a robot with any number of revolute joints and numerically evaluated
for one with three joints and two links. The results demonstrate a bounded motion space being used for
determining time-optimal solutions or for checking over any other motion possibility without violating
constraints. They form the bounds of the motion space composed by ruled surfaces. Method is useful
for layout purposes.
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