
JFP 13 (2): 317–338, March 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004525 Printed in the United Kingdom

317

PAL+: a lambda-free logical framework

ZHAOHUI LUO

Department of Computer Science, University of Durham,

South Road, Durham DH1 3LE, UK

URL: http://www.dur.ac.uk/zhaohui.luo/

Abstract

A lambda-free logical framework takes parameterisation and definitions as the basic notions to

provide schematic mechanisms for specification of type theories and their use in practice. The

framework presented here, PAL+, is a logical framework for specification and implementation

of type theories, such as Martin-Löf’s type theory or UTT. As in Martin-Löf’s logical

framework (Nordström et al., 1990), computational rules can be introduced and are used to

give meanings to the declared constants. However, PAL+ only allows one to talk about the

concepts that are intuitively in the object type theories: types and their objects, and families

of types and families of objects of types. In particular, in PAL+, one cannot directly represent

families of families of entities, which could be done in other logical frameworks by means of

lambda abstraction. PAL+ is in the spirit of de Bruijn’s PAL for Automath (de Bruijn, 1980).

Compared with PAL, PAL+ allows one to represent parametric concepts such as families of

types and families of non-parametric objects, which can be used by themselves as totalities

as well as when they are fully instantiated. Such parametric objects are represented by local

definitions (let-expressions). We claim that PAL+ is a correct meta-language for specifying

type theories (e.g., dependent type theories), as it has the advantage of exactly capturing the

intuitive concepts in object type theories, and that its implementation reflects the actual use

of type theories in practice. We shall study the meta-theory of PAL+ by developing its typed

operational semantics and showing that it has nice meta-theoretic properties.

1 Motivations and introduction

A lambda-free logical framework takes parameterisation and definitions as the basic

notions to provide schematic mechanisms for specification of type theories and their

use in practice. The reasons to consider lambda-free logical frameworks include:

• Parametric constants and definitions and the associated operations of instan-

tiation (substitution or cut) are more basic and arguably simpler notions

and mechanisms than that of lambda-abstraction as found in other logical

frameworks such as Martin-Löf’s logical framework (Nordström et al., 1990).

A parametrically defined entity represents a family of entities, rather than a

functional operation.

• The user of a proof system based on a lambda-free framework does not have

to understand the meta-level lambda-abstraction that can be used to represent

concepts such as families of families of entities, which do not exist in object

type theories. Rather, one only has to grasp concepts of the object type theory

and the definitional mechanism.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

318 Z. Luo

• The introduction of a lambda-free logical framework makes clear that a

logical framework is a meta-language that provides the schematic mechanisms

for specifying type theories and the definitional mechanism for pragmatic use.

It is worth remarking that such mechanisms are necessary for any framework

to be used in practice, with or without λ-abstraction. When an object type

theory has types of functions, say Π-types, there is usually a confusion between

the object-level functions and the meta-level functional operations, if the latter

exist in the meta-framework. For example, in systems like ALF (Magnusson

& Nordström, 1994), one tends to use the meta-level functional operations as

functional programs while ignoring the object level functions.

The logical framework presented here, PAL+, is such a framework in the spirit of

de Bruijn’s PAL for Automath (de Bruijn, 1980).

PAL+ is a logical framework for specification and implementation of type theories

such as Martin-Löf’s type theory (Nordström et al., 1990) and UTT (Luo, 1994).

As in Martin-Löf’s logical framework (Nordström et al., 1990), computational

rules can be introduced and are used to give meanings to the declared constants.

However, PAL+ only allows one to talk about the concepts that are intuitively in

the object type theories: types and their objects, and families of types and families

of objects of types. In particular, in PAL+, one cannot directly represent families of

families of entities, which could be done in other logical frameworks by means of

lambda abstraction. Compared with PAL, PAL+ allows one to represent parametric

concepts such as families of types and families of non-parametric objects, which can

be used by themselves (as totalities) as well as when they are fully instantiated. An

implementation of a proof development system based on PAL+ can truly reflect the

intended use of a type theory. After a type theory is specified (and implemented),

the user is concerned only with the object type theory and uses the definitional

mechanism for abbreviation.

Parametric objects are represented as let-expressions. One of the distinctive fea-

tures of PAL+, compared with other logical frameworks, is that it takes definitions

rather than lambda abstractions as basic. Let-expressions do not only represent

local definitions, but parametric objects. The meta-theory for PAL+, therefore, is

new and the first for such a calculus as far as we know. We develop typed operational

semantics (Goguen, 1994) for PAL+ and show that PAL+ has nice meta-theoretic

properties.

The following section gives a formal presentation of PAL+: its parameterisation

mechanism and definitional mechanism, together with some informal explanations.

We also explain how parametric abstractions, which represent families of types

or objects, can be represented as let-expressions. Section 3 shows how PAL+ can

be used in specification of type theories. In sections 4 and 5, we consider the

meta-theoretic properties of the logical framework PAL+ by developing its typed

operational semantics and proving its computational properties such as Church–

Rosser, Subject Reduction and Strong Normalisation. In the Conclusion, we briefly

discuss some issues about implementation of PAL+ and possible further extensions.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 319

2 PAL+

In PAL+, we have objects and kinds. Kinds include non-parametric kinds and para-

metric kinds. Non-parametric kinds are of the form Type or El(A). Parametric kinds

of the form (∆)T , where ∆ is a non-empty context of the form x1:K1, ..., xn:Kn and T

is a non-parametric kind. Non-parametric objects, objects of non-parametric kinds,

represent types and objects of types; parametric objects, objects of parametric kinds,

represent families of types and families of non-parametric objects. Let-expressions,

representing local definitions, can be used to form kinds and objects. In particular,

parametric objects are represented by let-expressions.

In the following, we give a formal description of PAL+, with some informal

explanations.

2.1 Terms

Terms are either object expressions or kind expressions. For presentational purposes

and meta-theoretic reasons, we introduce terms associated with arities, which are

natural numbers. The arity of an object expression indicates the number of argu-

ments it should take when forming a term of instantiation. The arity of a kind

expression indicates the number of arguments its objects should take. We write

Var(i) and DV (i) for the sets of ordinary variables and definitional variables with

arity i, respectively. We assume that Var(i) and DV (j) be all disjoint. Furthermore,

Var =
⋃
i∈ω

Var(i) and DV =
⋃
i∈ω

DV (i).

Definition 2.1 (expressions, contexts, pure contexts, and terms)

The following are defined simultaneously by structural induction:

1. The set of object expressions with arity i ∈ ω, Obj(i), is defined as follows:

• Var(i) ⊆ Obj(i).
• DV (i) ⊆ Obj(i).
• f[k1, ..., kn] ∈ Obj(0) if f ∈ Obj(n) and ki are object expressions.

• let v[∆] = t:T in k ∈ Obj(i) if k ∈ Obj(i), t ∈ Obj(0), T ∈ Kind(0), ∆ is a

pure context of length n, and v ∈ DV (n).

2. The set of kind expressions with arity i ∈ ω, Kind(i), is defined as follows:

• Type ∈ Kind(0).

• El(A) ∈ Kind(0) if A ∈ Obj(0).

• (∆)T ∈ Kind(i) if ∆ is a pure context of length i and T ∈ Kind(0).

• let v[∆] = t:T in K ∈ Kind(i) if K ∈ Kind(i), t ∈ Obj(0), T ∈ Kind(0), ∆ is

a pure context of length n, and v ∈ DV (n).

3. A pure context (∆) is a sequence of entries of the form x:K such that for

some i, x ∈ Var(i) and K ∈ Kind(i). A context (Γ) is a sequence of entries of

the form x:K (as above) or v[∆] = t:T , where t ∈ Obj(0), T ∈ Kind(0), ∆ is a

pure context of length n, and v ∈ DV (n). The length of a context, l(Γ), is the

number of its entries.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

320 Z. Luo

The set of terms with arity i, Term(i), is defined as Obj(i)∪Kind(i). We shall write

Arity(M) for the arity of term M.

Remark By definition, every term has a unique arity. Substitutions preserve the arity

of a term. More precisely, for terms M and k and variable z, if Arity(k) = Arity(z),

then [k/z]M is a term and Arity([k/z]M) = Arity(M).

Notation The following notations are used:

• When ∆ is the empty context (〈〉, which does not have any entry), we write

v = t:T for v[∆] = t:T in a context and let v = t:T in M for the let-expression

let v[∆] = t:T in M. By our convention, f[] is taken as the same as f, and ()T

(or (〈〉)T) is taken as the same as T .

• A pure context ∆ of the form x1:K1, ..., xn:Kn is often abbreviated as x̄:K̄ and

we also use ∆i to stand for x1:K1, ..., xi:Ki. We shall sometimes write ∆x̄ for ∆

to indicate that ∆ ≡ x̄:K̄ for some K̄ .

• We use Var(M) and DV (M), defined inductively on the term structure, to

denote the sets of free ordinary variables and free definitional variables in

term M, respectively. We use FV (M), defined to be Var(M) ∪ DV (M), to

denote the set of free variables in term M. These extend to contexts as well.

We identify terms which are α-convertible and use ≡ for syntactic equality. In

particular, in let v[∆x̄] = t:T in M, v is bound in M and x̄ are bound in t and T .

Therefore, terms with changes of such bound variables are identified.

2.2 Judgement forms

The judgement forms are, where Γ is a context, K and K ′ are kind expressions, and

k and k′ are object expressions:

• Γ valid – Γ is a valid context.

• Γ ` K kind – K is a kind in Γ.

• Γ ` k : K – k is an object of kind K in Γ.

• Γ ` K = K ′ – K and K ′ are equal kinds.

• Γ ` k = k′ : K – k and k′ are equal objects of kind K .

Notation

• For ∆ ≡ x1:K1, ..., xn:Kn and ∆′ ≡ x1:K ′1, ..., xn:K ′n, we write Γ ` ∆ = ∆′ for the

sequence of judgements Γ,∆i−1 ` Ki = K ′i (i = 1, ..., n).

• We shall write Γ ` k̄ : K̄ for the sequence of judgements Γ ` k1 : K1, Γ `
k2 : [k1/x1]K2, ..., Γ ` kn : [kn−1/xn−1]...[k1/x1]Kn and similarly the notation

Γ ` k̄ = k̄′ : K̄ stands for the sequence of judgements Γ ` k1 = k′1 : K1,

Γ ` k2 = k′2 : [k1/x1]K2, ..., Γ ` kn = k′n : [kn−1/xn−1]...[k1/x1]Kn.

• The simultaneous substitution [k̄/x̄]M stands for [kn/xn]...[k1/x1]M; note that

when this notation is used, we can always assume that x̄ 6∈ FV (ki) and so the

order of substitutions does not matter.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 321

Contexts and assumptions

〈〉 valid

Γ ` K kind x 6∈ FV (Γ) and x ∈ Var(Arity(K))

Γ, x:K valid

Γ, x:K,Γ′ valid

Γ, x:K,Γ′ ` x : K

General equality rules

Γ ` K kind

Γ ` K = K

Γ ` K = K ′

Γ ` K ′ = K

Γ ` K = K ′ Γ ` K ′ = K ′′

Γ ` K = K ′′

Γ ` k : K

Γ ` k = k : K

Γ ` k = k′ : K

Γ ` k′ = k : K

Γ ` k = k′ : K Γ ` k′ = k′′ : K

Γ ` k = k′′ : K

Equality typing rules

Γ ` k : K Γ ` K = K ′

Γ ` k : K ′
Γ ` k = k′ : K Γ ` K = K ′

Γ ` k = k′ : K ′

The kind Type

Γ valid

Γ ` Type kind

Γ ` A : Type

Γ ` El(A) kind

Γ ` A = B : Type

Γ ` El(A) = El(B)

Fig. 1. The basic rules of PAL+.

Substitution rules
Γ, x:K,Γ′ valid Γ ` k : K

Γ, [k/x]Γ′ valid

Γ, x:K,Γ′ ` K ′ kind Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K ′ kind

Γ, x:K,Γ′ ` K ′ kind Γ ` k = k′ : K

Γ, [k/x]Γ′ ` [k/x]K ′ = [k′/x]K ′

Γ, x:K,Γ′ ` k′ : K ′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ : [k/x]K ′
Γ, x:K,Γ′ ` k′ : K ′ Γ ` k1 = k2 : K

Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K ′

Γ, x:K,Γ′ ` K ′ = K ′′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K ′ = [k/x]K ′′
Γ, x:K,Γ′ ` k′ = k′′ : K ′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ = [k/x]k′′ : [k/x]K ′

Fig. 2. The substitution rules of PAL+.

2.3 Basic rules

The basic rules are given in figures 1 and 2, the latter of which contains the

substitution rules. Formally, these rules are the general inference rules of the logical

framework LF (see figure 9.1 in Chapter 9 of Luo, 1994).1

The kind Type represents the conceptual universe of types to be introduced, and

for each type A of kind Type, the kind El(A) is the kind of objects of type A.

1 LF is a typed version of Martin-Löf’s logical framework (Nordström et al., 1990) in that the form of
abstraction [x:K]k has type label K , rather than just [x]k. We should point out that LF is different
from the Edinburgh Logical Framework (ELF) (Harper et al., 1987). Though quite similar formally,
the intended ways of use are very different.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

322 Z. Luo

Formation rules for parametric kinds

Γ,∆ ` T kind (∆)T is a term

Γ ` (∆)T kind

Γ ` ∆ = ∆′ Γ,∆ ` T = T ′ (∆)T and (∆′)T ′ are terms
Γ ` (∆)T = (∆′)T ′

Instantiation rules for parametric objects

Γ ` f : (x̄:K̄)T Γ ` k̄ : K̄

Γ ` f[k̄] : [k̄/x̄]T

Γ ` f = f′ : (x̄:K̄)T Γ ` k̄ = k̄′ : K̄

Γ ` f[k̄] = f′[k̄′] : [k̄/x̄]T

Fig. 3. Rules for parametric kinds in PAL+.

2.4 Parametric kinds and instantiations

Parametric objects represent families of types or families of non-parametric objects.

They can either be used as a totality or when they are fully instantiated.

The rules for parametric kinds of the form (∆)T are given in figure 3. Note that a

parametric entity of a parametric kind cannot be used by partial instantiation. Only

when given appropriate indexing objects k̄, can a parametric object f, i.e. an object

of a parametric kind, be instantiated into f[k̄].

Besides variables of a parametric kind, parametric objects also include para-

metric constants (introduced when specifying an object type theory) and some

let-expressions (see below).

2.5 Definitions in PAL+

We introduce in PAL+ both global definitions of the form v[∆] = t:T as entries in

contexts and local definitions or let-expressions of the form let v[∆] = t in M, where

variables x̄ in ∆x̄ are bound in t and T and the definitional variable v is bound

in M.

2.5.1 Global definitions

Global definitions can be introduced into contexts and used by means of the rules

in figure 4. We also have substitution rules in figure 5, where in the last rule, J is of

the form K kind, k : K , K = K ′, or k = k′ : K .

Remark Several remarks are in order:

• Note that, in the introduction rule for global definitions, we require T to be

a kind of arity 0, i.e. it is equal to either Type or El(A). Hence the body of a

global definition must be a type or an object of a type. Also, when ∆ is empty,

the rules specialise into those for non-parametric kinds.

• The definiendum of a global definition can either be used when it is fully

applied, or as a totality.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 323

Introduction rule for global definitions

Γ,∆ ` t : T v 6∈ FV (Γ) Γ, v[∆] = t:T is a context

Γ, v[∆] = t:T valid

Typing and equality rules for global definitions

Γ, v[∆] = t:T ,Γ′ valid

Γ, v[∆] = t:T ,Γ′ ` v : (∆)T

Γ, v[∆] = t:T ,Γ′ valid

Γ, v[∆] = t:T ,Γ′ ` v = let v[∆] = t:T in v : (∆)T

Fig. 4. Rules for global definitions.

Substitution rules for global definitions

Γ, v[∆] = t:T ,Γ′ valid

Γ, [let v[∆] = t:T in v/v]Γ′ valid

Γ, v[∆] = t:T ,Γ′ ` J
Γ, [let v[∆] = t:T in v/v]Γ′ ` [let v[∆] = t:T in v/v]J

Fig. 5. Substitution rules for global definitions.

• The “meaning” of a globally defined entity v is given directly by means of

let-expressions of the form let v[∆] = t:T in v.

2.5.2 Local definitions

Local definitions, or let-expressions, are introduced by the let-introduction rules in

figure 6. They abide by the congruence rules in figure 6 and the equality rules in

figure 7.

2.6 Parametric abstraction

The let-expressions in PAL+ play a role of “parametric abstraction” as well as local

definitions. In particular, when ∆ is not empty, the term let v[∆] = t:T in v can

be viewed as a form of abstraction – parametric abstraction. We may introduce a

new notation: a parametric abstraction is of the form [∆]t and represents either a

family of types or non-parametric objects, indexed by (sequences of) objects of ∆.

The variables in ∆ are bound variables.

One may introduce parametric abstractions independently by adding the following

rules (this was the case in Luo (2000)):

Γ,∆ ` t : T T ∈ Kind(0)

Γ ` [∆]t : (∆)T

Γ ` ∆ = ∆′ Γ,∆ ` t = t′ : T T ∈ Kind(0)

Γ ` [∆]t = [∆′]t′ : (∆)T

Γ, x̄:K̄ ` t : T Γ ` k̄ : K̄ T ∈ Kind(0)

Γ ` ([x̄:K̄]t)[k̄] = [k̄/x̄]t : [k̄/x̄]T

Γ ` f : (x̄:K̄)T x̄ 6∈ FV (f)

Γ ` [x̄:K̄]f[x̄] = f : (x̄:K̄)T

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

324 Z. Luo

let-introduction rules

Γ, v[∆] = t:T ` K kind

Γ ` let v[∆] = t:T in K kind

Γ, v[∆] = t:T ` k : K

Γ ` let v[∆] = t:T in k : let v[∆] = t:T in K

Congruence rules for let-expressions

Γ ` ∆ = ∆′ Γ,∆ ` T = T ′ Γ,∆ ` t = t′ : T Γ, v[∆] = t:T ` K = K ′

Γ ` (let v[∆] = t:T in K) = (let v[∆′] = t′:T ′ in K ′)

Γ ` ∆ = ∆′ Γ,∆ ` T = T ′ Γ,∆ ` t = t′ : T Γ, v[∆] = t:T ` k = k′ : K

Γ ` (let v[∆] = t:T in k) = (let v[∆′] = t′:T ′ in k′) : let v[∆] = t:T in K

Fig. 6. Introduction and congruence rules for let-expressions.

Equality rules for let-expressions

(letβ)
Γ, v[x̄:K̄] = t:T valid Γ ` k̄ : K̄

Γ ` (let v[x̄:K̄] = t:T in v)[k̄] = [k̄/x̄]t : [k̄/x̄]T

(letη)
Γ, v[∆x̄] = g[x̄]:T ` k : K Γ ` g : (∆)T

Γ ` let v[∆] = g[x̄]:T in k = [g/v]k : [g/v]K

(letKη)
Γ, v[∆x̄] = g[x̄]:T ` K kind Γ ` g : (∆)T

Γ ` let v[∆] = g[x̄]:T in K = [g/v]K

(letd)
Γ, v[∆] = t:T ` k : K

Γ ` let v[∆] = t:T in k = [let v[∆] = t:T in v/v]k : let v[∆] = t:T in K

(letKd)
Γ, v[∆] = t:T ` K kind

Γ ` let v[∆] = t:T in K = [let v[∆] = t:T in v/v]K

Fig. 7. Equality rules for let-expressions.

However, parametric abstractions are a special form of let-expressions. The fol-

lowing definitional rule defines parametric abstraction in terms of let-expressions in

PAL+:

Γ, v[∆] = t:T valid

Γ ` [∆]t = let v[∆] = t:T in v : (∆)T

Remark One might want to take parametric abstraction and its application as

basic and define let-expressions by means of parametric abstraction. There is some

technical difficulty in doing so (note that let-expressions have kind information

T which is not present in parametric abstraction). However, more importantly,

we remark that let-expressions are more general than parametric abstractions as

they can be used for all expressions including parametric kinds. Furthermore, local

definitions are useful in any proof development or programming environment. It is

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 325

therefore natural to take let-expressions as basic while taking parametric abstraction

as a defined notion.

2.7 Simple properties and distribution laws for let-expressions

The rules of PAL+, as given in figure 1 to figure 7, respect the definition of syntactic

notions of term, context, etc. in Definition 2.1.

Lemma 2.2

The following properties hold:

• If Γ valid, then Γ is a context.

• If Γ ` K kind, then Γ is a context and K is a kind expression.

• If Γ ` K = K ′, then Γ is a context and K and K ′ are kind expressions of the

same arity.

• If Γ ` k : K , then Γ is a context, k is an object expression, K is a kind

expression, and k and K have the same arity.

• If Γ ` k = k′ : K , then Γ is a context, k and k′ are object expressions, K is a

kind expression, and k, k′, and K have the same arity.

Let-expressions satisfy a number of distribution laws, which say that local defini-

tions can be distributed for all structured expressions. For instance, when v 6∈ FV (M),

let v[∆] = t:T in M is computationally equal to M. (See Luo (2000) for details, where

distribution rules are taken to replace the equality rules in figure 7.) An example of

such distribution rules is:

Γ, v[∆] = t:T ` (∆′)T ′ kind

Γ ` (let v[∆] = t:T in (∆′)T ′) = (let v[∆] = t:T in ∆′)let v[∆] = t:T in T ′

In PAL+ as presented in this paper, the distribution rules are all admissible.

3 Specification of type theories in PAL+

As in Martin-Löf’s type theory (Nordström et al., 1990), we specify type theories in

the logical framework PAL+. One of the key observations is that we can specify type

theories with the simpler logical framework without arbitrary lambda-abstraction.

For example, all of the types in UTT (Luo, 1994) can be specified, including the

impredicative universe of logical propositions, the inductive types and inductive

families covered by the inductive schemata, and predicative universes. Similarly,

Martin-Löf’s type theory can be specified in PAL+ as well.

In general, a specification of a type theory in PAL+ will consist of a collection

of declarations of new constants (either non-parametric or parametric) and a col-

lection of associated computational equality rules. Like other parametric objects, a

parametric constant cannot be used by partial instantiation. Such declarations of

constants and equalities amount to extensions of (an existing type theory specified

in) PAL+ by new rules. One should, of course, make sure that the new rules lead

to a type theory that has good properties. For example, inductive types with strictly

positive constructors can be specified. We do not consider such issues here.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

326 Z. Luo

Given a kind K , if one introduces a constant f by declaring

f : K,

it has the effect of introducing the following rule:

Γ valid

Γ ` f : K

Computational equality can only be introduced between two objects of a type, or

between two types.2 If one introduces a computation rule by asserting

t = t′ : T where ki : Ki (i = 1, ..., n),

it extends the type theory with the following rule:

Γ ` ki : Ki (i = 1, ..., n) Γ ` T kind T ∈ Kind(0)

Γ ` t = t′ : T

In the following, we give several examples of introducing type constructors and

their associated operators as constants. We omit El to write A for El(A) in the

examples.

Example 3.1

The type of natural numbers can be introduced as follows:

N : Type

0 : N

s : (x:N) N

R : (C:(x:N)Type, c:C[0], f:(x:N, y:C[x])C[s[x]], z:N) C[z]

The corresponding computation rules are:

R[C, c, f, 0] = c : C[0]

R[C, c, f, s[x]] = f[x, R[C, c, f, x]] : C[s[x]]

where C:(x:N)Type, c:C[0], f:(x:N, y:C[x])C[s[x]], and x:N. (We omit such where-

clauses in the following examples.)

Example 3.2

The Π-types, Π[A,B] for a type A and a family of types B, can be introduced as

follows:

Π : (A:Type, B:(x:A)Type) Type

λ : (A:Type, B:(x:A)Type, f:(x:A)B[x]) Π[A,B]

EΠ : (A:Type, B:(x:A)Type, C:(F:Π[A,B])Type,

f:(g:(x:A)B[x])C[λ[A,B, g]],

z:Π[A,B])

C[z]

2 This conforms to the restriction considered in Luo (1999), where LF is used to specify type theories.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 327

The corresponding computation rule is:

EΠ[A,B, C, f, λ[A,B, g]] = f[g] : C[λ[A,B, g]]

The following simple example shows how local definitions may be used.

Example 3.3

The application operator for Π-types

app : (A:Type, B:(x:A)Type, F:Π[A,B], x:A) B[x]

can be defined by means of local definitions as follows:

app[A,B, F, a] = let C[G:Π[A,B]] = B[a]:Type in

let f[g:(x:A)B[x]] = g[a]:B[a] in EΠ[A,B, C, f, F]

Or alternatively, parametric abstractions, defined as special forms of let-expressions,

may be used to define the same application operator as follows:

app[A,B, F, a] =df EΠ[A,B, [G:Π[A,B]]B[a], [g:(x:A)B[x]]g[a], F]

With the above definition, we can show the expected equalities hold. For example,

we can show that the usual β-equality holds for the computational equality:

app[A,B, λ[A,B, g], a] = g[a].

Furthermore, for propositional equality =Π[A,B] (e.g. the Leibniz equality, which

can be defined when we have an impredicative universe of logical propositions, or

Martin-Löf’s equality type defined by introducing a single constructor eq[a] of type

a =Π[A,B] a), we can show that the logical η-rule holds, i.e. the following logical

proposition is provable:

λ[A,B, [x:A]app[A,B, F, x]] =Π[A,B] F.

Example 3.4

The family of types of vectors of objects of type A can be introduced as follows,

where N is the type of natural numbers as introduced above:

Vec : (A:Type, x:N) Type

nil : (A:Type) Vec[A, 0]

cons : (A:Type, n:N, a:A, l:Vec[A, n]) Vec[A, succ[n]]

EV : (A:Type, C:(n:N, v:Vec[A, n])Type,

c:C[0, nil[A]], f:(n:N, x:A, v:Vec[A, n], y:C[n, v])C[succ[n], cons[A, x, v]],

n:N, v:Vec[A, n])

C[n, v],

The corresponding computation rules are:

EV [A,C, c, f, 0, nil[A]] = c : C[0, nil[A]],

EV [A,C, c, f, succ[n], cons[A, n, a, v]]

= f[n, a, v,EV [A,C, c, f, n, v]] : C[succ[n], cons[A, n, a, v]].

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

328 Z. Luo

Example 3.5

The W-types, W [A,B] for a type A and a family of types B, can be introduced as

follows:

W : (A:Type, B:(x:A)Type) Type

sup : (A:Type, B:(x:A)Type, x:A, y:(v:B[x])W [A,B]) W [A,B]

EW : (A:Type, B:(x:A)Type, C:(w:W [A,B])Type,

f:(x:A, y:(v:B[x])W [A,B], g:(v:B[x])C[y[v]])C[sup[A,B, x, y]],

z:W [A,B])

C[z]

The corresponding computation rule is:

EW [A,B, C, f, sup[A,B, x, y]]

= f[x, y, [z:B[x]]EW [A,B, C, f, y[z]]] : C[sup[A,B, x, y]].

Special cases of W-types include the type of ordinals and various types of well-

founded trees. Note that the notation of parametric abstraction is used in the

computation rule above.

4 Typed operational semantics for PAL+

In the next two sections, we study the meta-theory of PAL+. In this section, we

develop the typed operational semantics for PAL+, which is taken as the basis for

development of the meta-theory for PAL+ in the next section.

Typed Operational Semantics (TOS) was developed for the type theory UTT in

Goguen’s thesis (Goguen, 1994), and a concise account of TOS for LF can be found

inGoguen 91999). In Luo (2000), we have developed TOS for PAL+ with only

parametric abstractions (and without global definitions or let-expressions.) In this

paper, we take let-expressions as basic and develop the TOS and meta-theory. As

far as we know, this is the first treatment of meta-theory concerning such a calculus

with basic let-expressions (and η-rules).

4.1 TOS

The typed operational semantics for PAL+ has the following judgement forms:

• |= Γ→ Γ′ – context Γ has normal form Γ′.
• Γ |= K → K ′ – kind K is a well-typed and has normal form K ′ in context Γ.

• Γ |= k → k0 → k′ : K – k, k0, and k′ are of kind K in Γ, and k has weak-head

normal form k0 and normal form k′.

Notation We shall use the following notations:

• For ∆ ≡ x̄:K̄ and ∆′ ≡ x̄′:K̄ ′ of the same length, we shall use the notation

Γ |= ∆ → ∆′ to stand for the sequence of judgements Γ |= K1 → K ′1,

Γ,∆1 |= K2 → K ′2, ..., Γ,∆n−1 |= Kn → K ′n.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 329

Contexts

|= 〈〉 → 〈〉

|= Γ→ Γ′ Γ |= K → K ′
x /∈ FV (Γ) and x ∈ Var(Arity(K))

|= Γ, x:K → Γ′, x:K ′

|= Γ→ Γ′ Γ |= ∆→ ∆′ Γ,∆ |= T → T ′ Γ,∆ |= t→ t0 → t′ : T ′
v 6∈ FV (Γ), v ∈ DV (l(∆)) and T ∈ Kind(0)

|= Γ, v[∆] = t:T → Γ′, v[∆′] = t′:T ′

Kinds
|= Γ→ Γ′

Γ |= Type→ Type

Γ |= A→ A0 → A′ : Type

Γ |= El(A)→ El(A′)

Γ |= ∆→ ∆′ Γ,∆ |= T → T ′ T ∈ Kind(0)

Γ |= (∆)T → (∆′)T ′

Variables
Γ |= K → K ′ |= Γ, x:K,Γ′ → Γ1

Γ, x:K,Γ′ |= x→ x→ x : K ′

Γ |= ∆→ ∆′ Γ,∆ |= T → T ′
Γ, v[∆] = t:T ,Γ′ |= let v[∆] = t:T in v → k0 → k′ : (∆′)T ′

Γ, v[∆] = t:T ,Γ′ |= v → k0 → k′ : (∆′)T ′

Instantiations

Γ |= f → x→ x : (x̄:K̄)T x ∈ Var and x̄:K̄ 6≡ 〈〉
Γ |= k̄ → k̄0 → k̄′ : K̄ Γ |= [k̄/x̄]T → T ′

Γ |= f[k̄]→ x[k̄]→ x[k̄′] : T ′

Γ |= f → let v[x̄:K̄] = t:T in v → f′ : (x̄:K̄ ′)T ′ Γ |= k̄ → k̄0 → k̄′ : K̄ ′
Γ |= [k̄/x̄]T → T ′′ Γ |= [k̄/x̄]t→ t0 → t′ : T ′′ x̄:K̄ 6≡ 〈〉

Γ |= f[k̄]→ t0 → t′ : T ′′

Fig. 8. Basic TOS rules for PAL+.

• For k̄, k̄0, k̄′, and K̄ of the same length, we shall use Γ |= k̄ → k̄0 → k̄′ : K̄ to

stand for the sequence of judgements

Γ |= k1 → k01 → k′1 : K1,

Γ |= k2 → k02 → k′2 : K ′2,
...,

Γ |= kn → k0n → k′n : K ′n,

Γ |= δiKi → K ′i (i = 2, ..., n),

where δi (i = 2, ..., n) is the substitution [k1, ..., ki−1/x1, ..., xi−1].

The rules of TOS for PAL+ are given in figures 8 and 9. For the rules in figure 9

for object let-expressions of the form let v[∆] = t:T in k, we distinguish the cases

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

330 Z. Luo

let-expressions for objects

Γ |= T → T ′ Γ |= t→ t0 → t′ : T ′

Γ |= let v = t:T in v → t0 → t′ : T ′

Γ, v = t:T |= k → k1 → k2 : K k 6≡ v
Γ |= let v = t:T in K → K ′
Γ |= [t/v]k → k0 → k′ : K ′

Γ |= let v = t:T in k → k0 → k′ : K ′

Γ |= ∆→ ∆′ Γ,∆ |= T → T ′ |= Γ, v[∆] = t:T → Γ1 ∆ 6≡ 〈〉
Γ,∆x̄ |= t→ t0 → t′ : T ′ t′ 6≡ g[x̄] such that x̄ 6∈ FV (g)

Γ |= let v[∆] = t:T in v → let v[∆] = t:T in v → let v[∆′] = t′:T ′ in v : (∆′)T ′

Γ |= ∆→ ∆′ Γ,∆ |= T → T ′ |= Γ, v[∆] = t:T → Γ1 ∆ 6≡ 〈〉
Γ,∆x̄ |= t→ t0 → g[x̄] : T ′ Γ |= g → g → g : (∆′)T ′

Γ |= let v[∆] = t:T in v → let v[∆] = t:T in v → g : (∆′)T ′

Γ, v[∆] = t:T |= k → k1 → k2 : K k 6≡ v and ∆ 6≡ 〈〉
Γ |= let v[∆] = t:T in K → K ′
Γ |= [let v[∆] = t:T in v/v]k → k0 → k′ : K ′

Γ |= let v[∆] = t:T in k → k0 → k′ : K ′

let-expressions for kinds

Γ, v[∆] = t:T |= K → K1 Γ |= [let v[∆] = t:T in v/v]K → K ′

Γ |= let v[∆] = t:T in K → K ′

Fig. 9. The TOS rules for let-expressions in PAL+.

according to whether k ≡ v and whether ∆ ≡ 〈〉. For example, when k ≡ v and

∆ ≡ 〈〉, the let-expression let v = t:T in v computes to the weak-head normal form

and normal form of those of t (the first rule in figure 9).

4.2 Basic properties and completeness of the TOS

The TOS defined above has the basic properties concerning sub-derivations and

variable occurrences in contexts. Furthermore, it has the properties as given by

the following two lemmas, which are proved by induction on derivations of TOS

judgements.

Lemma 4.1

• If |= Γ→ Γ′, then Γ and Γ′ are contexts of the same length.

• If Γ |= K → K ′, then Γ is a context and K and K ′ are kind expressions of the

same arity.

• If Γ |= k → k0 → k′ : K , then Γ is a context, K is a kind expression, and k, k0

and k′ are object expressions of the same arity.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 331

Lemma 4.2

The following properties hold for the TOS:

1. (Determinacy)

• If |= Γ→ Γ′ and |= Γ→ Γ′′, then Γ′ ≡ Γ′′.
• If Γ |= K → K ′ and Γ |= K → K ′′, then K ′ ≡ K ′′.
• If Γ |= k → k1 → k2 : K and Γ |= k → k′1 → k′2 : K ′, then k1 ≡ k′1, k2 ≡ k′2,

and K ≡ K ′.
2. (Weakening) If Γ |= J , |= Γ1 → Γ′1, and Γ1 contains all entries of Γ, then

Γ1 |= J , where J is of the form K → K ′ or k → k0 → k′ : K .

3. (Strengthening) Let z ∈ Var ∪ DV and Z be either z:K (when z ∈ Var) or

z[∆] = t:T (when z ∈ DV).

• If |= Γ, Z,Γ′ → Γ1 and z 6∈ FV (Γ′), then |= Γ,Γ′ → Γ2 for some Γ2.

• If Γ, Z,Γ′ |= K → K ′ and z 6∈ FV (Γ′, K), then Γ,Γ′ |= K → K ′.
• If Γ, Z,Γ′ |= k → k0 → k′ : K and z 6∈ FV (Γ′, k), then Γ,Γ′ |= k → k0 →
k′ : K .

By induction on derivations of TOS, we can prove that it is complete with respect

to PAL+
0 – PAL+ without the substitution rules in figures 2 and 5. We use `0 to

represent the judgements in PAL+
0 .

Theorem 4.3 (Completeness)

• If |= Γ→ Γ′, then Γ valid in PAL+
0 .

• If Γ |= K → K ′, then Γ `0 K kind and Γ `0 K = K ′.
• If Γ |= k → k0 → k′ : K , then Γ `0 k : K , Γ `0 k = k0 : K , Γ `0 k = k′ : K ,

and Γ `0 K = K .

5 Meta-theoretic properties of PAL+

In this section, we first define the notions of reduction, weak-head normal form, and

normal form, and then, based on TOS, show that PAL+ has the desirable properties

such as Church–Rosser, Subject Reduction, and Strong Normalisation.

5.1 Reduction and weak-head normal and normal forms

Since we take let-expressions, rather than λ-abstractions, as basic expressions, the

notion of reduction and the associated notions are new, as defined below.

Definition 5.1 (reduction)

The reduction relation is denoted by Γ `M�N, where Γ is a context and M and N

are terms. Reduction is the reflexive and transitive closure of the one-step reduction

(Γ `M �1 N) defined inductively by the following rules:

• Basic rules (in the first three rules below, it is possible that ∆ ≡ 〈〉):
(v)Γ, v[∆] = t:T ,Γ′ ` v �1 let v[∆] = t:T in v

(β)Γ ` (let v[∆x̄] = t:T in v)[k̄]�1 [k̄/x̄]t (l(∆) = l(k̄))

(η)Γ ` let v[∆x̄] = t[x̄]:T in M �1 [t/v]M (x̄ 6∈ FV (t))

(d)Γ ` let v[∆] = t:T in M �1 [let v[∆] = t:T in v/v]M (M 6≡ v, ∆ 6≡ 〈〉)

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

332 Z. Luo

• Congruence rules (note that we assume that the expressions involved be terms):

Γ ` A�1 B

Γ ` El(A)�1 El(B)

Γ,∆ ` T �1 T
′

Γ ` (∆)T �1 (∆)T ′

Γ,∆i−1 ` Ki �1 K
′
i

Γ ` (x1:K1, ..., xn:Kn)T �1 (x1:K1, ..., xi:K
′
i , ..., xn:Kn)T

Γ ` f �1 f
′

Γ ` f[k̄]�1 f′[k̄]
Γ ` ki �1 k

′
i

Γ ` f[k1, ..., kn]�1 f′[k1, ..., k
′
i , ...kn]

Γ, v[∆] = t:T `M �1 M
′

Γ ` let v[∆] = t:T in M �1 let v[∆] = t:T in M ′
(M 6≡ v)

Γ,∆ ` t�1 t
′

Γ ` let v[∆] = t:T in M �1 let v[∆] = t′:T in M

Γ,∆ ` T �1 T
′

Γ ` let v[∆] = t:T in M �1 let v[∆] = t:T ′ in M

Γ,∆i−1 ` Ki �1 K
′
i

Γ ` let v[∆] = t:T in M �1 let v[∆′] = t:T in M

where, in the last rule, ∆ ≡ x1:K1, ..., xn:Kn and ∆′ ≡ x1:K1, ..., xi:K
′
i , ..., xn:Kn.

Remark The reduction relation respects the substitution operation.

Lemma 5.2 (Adequacy for reduction)

• If Γ |= K → K ′, then Γ ` K �K ′.
• If Γ |= k → k0 → k′ : K , then Γ ` k � k0 and Γ ` k0 � k

′.

Definition 5.3 (whnf and nf)

A term M is in weak-head normal form (whnf) if

• M ≡ x[k1, ..., kn] such that x ∈ Var(n) for some n > 0; or

• M ≡ let v[∆] = t:T in v such that ∆ 6≡ 〈〉.
A term M is in normal form, notation M ∈ NF , if

• M ≡ x[k1, ..., kn] such that x ∈ Var(n) for some n > 0 and ki ∈ NF;

• M ≡ let v[∆] = t:T in v with ∆ ≡ x1:K1, ..., xn:Kn, such that ∆ 6≡ 〈〉, Ki ∈ NF ,

t ∈ NF , T ∈ NF , and t 6≡ g[x̄] such that x̄ 6∈ FV (g);

• M ≡ Type;

• M ≡ El(A) such that A ∈ NF; or

• M ≡ (∆)T with ∆ ≡ x1:K1, ..., xn:Kn, such that Ki ∈ NF and T ∈ NF .

Lemma 5.4 (Adequacy of whnf and nf)

1. For any term M, M ∈ NF if and only if M has no reductions, i.e., for any

context Γ and any term N, DV (M) ⊆ DV (Γ) implies that Γ 6`M �1 N.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 333

2. If Γ |= K → K ′, then K ′ is in normal form. If Γ |= k → k0 → k′ : K , then k0

is in whnf and k′ and K are in normal form.

Proof

(1) By induction on the structure of M and (2) by induction on derivations in TOS.

q

5.2 Subject reduction and normalisation

The subject reduction theorem captures both subject reduction and Church–Rosser.

Therefore, a notion of parallel reduction is called for.

Definition 5.5 (parallel reduction)

The parallel reduction relation, Γ `M ⇒ N, is defined as the least relation satisfying

the following rules:

Γ ` x⇒ x

v ∈ DV (Γ)

Γ ` v ⇒ v

Γ ` ∆⇒ ∆′ Γ,∆ ` t⇒ t′ Γ,∆ ` T ⇒ T ′

Γ, v[∆] = t:T ,Γ′ ` v ⇒ let v[∆′] = t′:T ′ in v

Γ ` k̄ ⇒ k̄′ Γ,∆ ` t⇒ t′ l(∆) = l(k̄)

Γ ` (let v[∆x̄] = t:T in v)[k̄]⇒ [k̄′/x̄]t′

Γ,∆x̄ ` t⇒ t′[x̄] Γ, v[∆x̄] = t:T `M ⇒M ′ x̄ 6∈ FV (t′)
Γ ` let v[∆x̄] = t:T in M ⇒ [t′/v]M ′

Γ ` ∆⇒ ∆′ Γ,∆ ` t⇒ t′ Γ,∆ ` T ⇒ T ′
Γ, v[∆] = t:T `M ⇒M ′ M 6≡ v and ∆ 6≡ 〈〉

Γ ` let v[∆] = t:T in M ⇒ [let v[∆′] = t′:T ′ in v/v]M ′

Γ ` f ⇒ f′ Γ ` k̄ ⇒ k̄′

Γ ` f[k̄]⇒ f′[k̄′]

Γ ` ∆⇒ ∆′ Γ,∆ ` t⇒ t′ Γ,∆ ` T ⇒ T ′
Γ, v[∆] = t:T `M ⇒M ′

Γ ` let v[∆] = t:T in M ⇒ let v[∆′] = t′:T ′ in M ′

We omit the obvious rules for kinds and contexts.

Lemma 5.6

Parallel reduction has the following properties:

1. Γ `M ⇒M for any context Γ and term M.

2. If Γ `M �1 N, then Γ `M ⇒ N.

3. If Γ `M ⇒ N, then Γ `M �N.

Remark Parallel reduction also respects the substitution operation.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

334 Z. Luo

Lemma 5.7 (parallel subject reduction)

• If |= Γ→ Γ0 and ` Γ⇒ Γ′, then ` Γ′ ⇒ Γ0.

• If Γ |= K → K0, ` Γ⇒ Γ′, and Γ ` K ⇒ K ′, then Γ′ |= K ′ → K0.

• If Γ |= k → k0 → k′ : K , ` Γ⇒ Γ′, and Γ ` k ⇒ k1, then for some k′1 and k01,

Γ′ |= k1 → k′1 → k′ : K , Γ ` k0 ⇒ k01, and Γ |= k01 → k′1 → k′ : K .

Proof

By induction on derivations in TOS. q

Corollary 5.8 (subject reduction)

• If Γ |= K → K ′ and Γ |= K �1 K1, then Γ |= K1 → K ′.
• If Γ |= k → k0 → k′ : K and Γ ` k �1 k1, then Γ |= k1 → k′1 → k′ : K for some

k′1 such that Γ ` k0 � k
′
1.

Proof

By Lemmas 5.7, 5.2 and 5.6. q

Corollary 5.9 (Church–Rosser)

• If Γ |= K → K ′, Γ ` K � K1, and Γ ` K � K2, then Γ ` K1 � K ′ and

Γ ` K2 �K
′.

• If Γ |= k → k0 → k′ : K , Γ ` k � k1, and Γ ` k � k2, then Γ ` k1 � k′ and

Γ ` k2 � k
′.

Proof

By Corollary 5.8 and Lemma 5.2. q

The following shows that TOS only types strongly normalisable terms. For any

term M, we say that M is strongly normalisable in context Γ, notation M ∈ SN(Γ),

if for any term N, Γ `M �1 N implies that N ∈ SN(Γ).

Lemma 5.10 (strong normalisation)

• If Γ |= K → K ′, then K ∈ SN(Γ).

• If Γ |= k → k0 → k′ : K , then k ∈ SN(Γ).

Proof

By induction on derivations in TOS. We briefly consider two cases. First, consider

the first rule for object let-expressions (the first rule in figure 9). By induction

hypothesis, T , t ∈ SN(Γ). We show that, if

let v = t:T in v �1 k,

then k ∈ SN(Γ), by considering all possible one-step reductions leading to k. In this

case, it must be either (1) let v = t:T in v �1 t ≡ k by the basic reduction rule (η)

or (β), or (2) it is from a congruence rule for reduction because t�1 t1 or T �1 T1.

For (1), k ≡ t ∈ SN(Γ); for (2), since T and t are both strongly normalisable in

Γ, so is any reduct from T or t, and therefore k is strongly normalisable (from the

argument of (1)).

Next, we briefly consider a more difficult case, the second instantiation rule (the

last rule in figure 8). By induction hypothesis, we have f, k̄, [k̄/x̄]t ∈ SN(Γ). If

f[k̄] �1 k, there are three possible subcases, of which we only consider the case

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 335

k ≡ f1[k̄] such that Γ ` f �1 f1. By subject reduction (Corollary 5.8), for some f′1,

we have

Γ |= f1 → f′1 → f′ : (x̄:K̄ ′)T ′ and Γ ` let v[∆] = t:T in v � f′1.

Then, by case analysis of f′1 being a whnf (by Lemma 5.4), we can show that

f1[k̄] ∈ SN(Γ). q

Remark Note that the above results of Church–Rosser, subject reduction and strong

normalisation are for the TOS of PAL+, but not for PAL+ itself. To show that these

properties hold for PAL+, we need to show the soundness theorem.

5.3 Soundness of TOS

To prove the soundness of the TOS wrt PAL+, we first prove the following lemma

about admissibility of substitution and instantiation. This lemma is proved by

induction on the following measure on kinds:

• |Type| = |El(A)| = 0.

• |(x1:K1, ..., xn:Kn)T | = |K1|+ ...+ |Kn|+ n, where n > 1.

• |let v[∆] = t:T in K| = |K|.
The measure extends to pure contexts as well.

Lemma 5.11

1. Let Z be a context entry. When Z is of the form z:K , k is an object expression

such that Γ |= k → k0 → k′ : K ′ and Γ |= K → K ′. When Z is of the form

z[∆] = t:T , k ≡ let z[∆] = t:T in z. Then we have

• If |= Γ, Z,Γ′ → Γ1, then |= Γ, [k/z]Γ′ → Γ2 for some Γ2.

• If Γ, Z,Γ′ |= K → K1, then Γ, [k/z]Γ′ |= [k/z]K → K2 for some K2.

• If Γ, Z,Γ′ |= k0 → k1 → k2 : K , then Γ, [k/z]Γ′ |= [k/z]k0 → k′1 → k′2 : K ′,
Γ, [k/z]Γ′ |= [k/z]k1 → k′1 → k′2 : K ′, and Γ, [k/z]Γ′ |= [k/z]K → K ′ for

some k′1, k′2 and K ′.
2. If Γ |= f → f0 → f′ : (x̄:K̄)T and Γ |= k̄ → k̄0 → k̄′ : K̄ , then Γ |= f[k̄] →
t0 → t′ : T ′ and Γ |= [k̄/x̄]T → T ′ for some t0, t′ and T ′.

Theorem 5.12 (Soundness)

• If Γ valid, then |= Γ→ Γ′ for some Γ′.
• If Γ ` K kind, then Γ |= K → K ′ for some K ′.
• If Γ ` K1 = K2, then Γ |= K1 → K ′ and Γ |= K2 → K ′ for some K ′.
• If Γ ` k : K , then Γ |= K → K ′ and Γ |= k → k0 → k′ : K ′ for some K ′, k0,

and k′.
• If Γ ` k1 = k2 : K , then Γ |= K → K ′, Γ |= k1 → k10 → k′ : K ′, and

Γ |= k2 → k20 → k′ : K ′, for some K ′, k′, k10, and k20.

Proof

By induction on derivations in PAL+. We consider several cases.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

336 Z. Luo

• First, consider the following substitution rule in figure 2:

Γ, x:K,Γ′ ` k′ : K ′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ : [k/x]K ′

By induction hypothesis, Γ, x:K,Γ′ |= k′ → k′0 → k′′ : K ′′ and Γ, x:K,Γ′ |=
K ′ → K ′′, for some K ′′, k′0, and k′′. By Lemma 5.11(1), we have Γ, [k/x]Γ′ |=
[k/x]k′ → k′1 → k′2 : K1 and Γ, [k/x]Γ′ |= [k/x]K ′ → K1, for some k′1, k′2 and

K1.

• Consider the following instantiation rule in figure 3:

Γ ` f : (x̄:K̄)T Γ ` k̄ : K̄

Γ ` f[k̄] : [k̄/x̄]T

By induction hypothesis, determinacy (Lemma 4.2(1)) and inversion, we have

Γ |= f → f0 → f′ : (x̄:K̄ ′)T ′ and Γ |= k̄ → k̄0 → k̄′ : K̄ ′, with Γ |= K̄ → K̄ ′
and Γ, x̄:K̄ |= T → T ′, for some f0, f

′, K̄ ′, T ′, k̄0 and k̄′. By Lemma 5.11(2),

we have Γ |= f[k̄] → t0 → t′ : T ′ and Γ |= [k̄/x̄]T ′ → T ′′ for some t0, t′ and

T ′′. Therefore, for this case, we only have to show that Γ |= [k̄/x̄]T → T ′′. But

by Lemma 5.11(1), Γ |= [k̄/x̄]T → T ′′′ for some T ′′′. By adequacy (Lemma 5.2)

and subject reduction (Corollary 5.8), Γ |= [k̄/x̄]T ′ → T ′′′. By determinacy

(Lemma 4.2(1)), T ′′ ≡ T ′′′. So we have Γ |= [k̄/x̄]T → T ′′.
• Consider the following (letβ) rule in figure 7:

Γ, v[x̄:K̄] = t:T valid Γ ` k̄ : K̄

Γ ` (let v[x̄:K̄] = t:T in v)[k̄] = [k̄/x̄]t : [k̄/x̄]T

By induction hypothesis, determinacy (Lemma 4.2(1)) and properties of sub-

derivations, we have |= Γ → Γ′, Γ |= K̄ → K̄ ′, Γ, x̄:K̄ |= T → T ′, Γ, x̄:K̄ |=
t→ t0 → t′ : T ′, and Γ |= k̄ → k̄0 → k̄′ : K̄ ′, for some Γ′, K̄ ′, T ′, t0, t′, k̄0 and k̄′.
We show that, for some T ′′, t1 and t′′,
1. Γ |= [k̄/x̄]T → T ′′,
2. Γ |= [k̄/x̄]t→ t1 → t′′ : T ′′, and

3. Γ |= (let v[x̄:K̄] = t:T in v)[k̄]→ t1 → t′′ : T ′′.
For the first, applying Lemma 5.11(1) suffices to show the existence of T ′′. For

the second, by Lemma 5.11(1), Γ |= [k̄/x̄]t→ t1 → t′′ : T ′′1 and Γ |= [k̄/x̄]T →
T ′′1 for some t1, t′′ and T ′′1 . By determinacy (Lemma 4.2(1)), T ′′1 ≡ T ′′.
For the third, we need to consider two cases according to whether x̄:K̄ ≡ 〈〉.
If x̄:K̄ 6≡ 〈〉, by either the third or the fourth rule in figure 9, for some f′,

Γ |= let v[x̄:K̄] = t:T in v → let v[x̄:K̄] = t:T in v → f′ : (x̄:K̄ ′)T ′.

Therefore, by the second instantiation rule (the last rule in Figure 8), Γ |=
(let v[x̄:K̄] = t:T in v)[k̄]→ t1 → t′′ : T ′′.
If x̄:K̄ ≡ 〈〉, we only have to show that Γ |= let v = t:T in v → t1 → t′′ : T ′′,
and for this, use of the first rule in Figure 9 suffices. q

With soundness and completeness of the TOS for PAL+ and the relationship

between reduction and TOS, we can easily show that the system PAL+ has nice

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

PAL+: a lambda-free logical framework 337

meta-theoretic properties. These include admissibility results of the structural rules

(e.g. the substitution rules), and computational properties for the reduction relation

such as Church–Rosser, Subject Reduction and Strong Normalisation for well-typed

terms.

Remark When PAL+ is extended with new constants of the object type theories, we

remark that the techniques developed in Goguen (1994) can be used to prove the

meta-theoretic results of the object type theories such as UTT.

6 Conclusions

We have presented and studied PAL+, a logical framework based on param-

eterisation and definitions rather than lambda-abstraction. Further extensions of

meta-features such as coercive subtyping (e.g. see Luo, 1999) may be considered.

PAL+ is developed partly as an underlying framework for implementing proof

development systems. Most of the proof systems (e.g. those based on type theory

like ALF (Magnusson & Nordström, 1994), Coq (Barras et al. , 2000), Lego (Luo &

Pollack, 1992), NuPRL (Constable et al. , 1986) and Plastic (Callaghan & Luo, 2001)),

have some form of definition mechanism. Taking definition (and parameterisation)

as basic, the proposed lambda-free framework should lead to a better understanding

of the underlying theories. We also expect that the simplicity and directness gained

would benefit implementation as well as the user (e.g. it is expected that the use of

de Bruijn indices would be simplified, and the treatment of meta-variables may be

dealt with using the simple method as proposed in Luo (1997) and implemented in

Plastic (Callaghan & Luo, 2001)). Paul Callaghan at Durham has implemented a

prototype of PAL+, based on his implementation of LF in the system Plastic. We

have done some experiments on proof development (e.g., about inductive types and

universes) based on the prototype implementation. A better understanding of what

we can gain in implementations requires further research and a real development of

a proof system.

The development of meta-theory here uses the TOS tool heavily, which shows

that TOS is a robust approach that can be adapted to other calculi. Among other

related work, Severi and Poll have considered meta-theory of adding definitions into

PTS (Severi & Poll, 1994), but they do not consider let-expressions as basic and PTS

does not have η-rules either. Another interesting aspect is to consider categorical

theories corresponding to PAL+, in a similar way as Cartmell’s notion of contextual

categories (Cartmell, 1978, 1986) corresponds to Martin-Löf’s logical framework.

Another aspect this paper has not discussed is the use of type theories as logi-

cal frameworks following the ‘judgement-as-types’ approach (Harper et al., 1987).

We think that the idea to develop lambda-free logical frameworks can similarly

be considered and should benefit the users of systems based on the principle of

judgement-as-types.

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

338 Z. Luo

Acknowledgements

This work is based on some notes I wrote in 1997 of the same title, which I did

not finish, and a further development of my note in LFM’00 (Luo, 2000). It is

partly supported by UK EPSRC grants GR/K79130 and GR/M75518, and the EU

TYPES WG grant 29001. I am grateful to Paul Callaghan, Healfdene Goguen, Conor

McBride, Bengt Nordström, Randy Pollack, and others, who have read this paper

or its earlier versions and given many useful suggestions and comments. Callaghan’s

prototype implementation of PAL+ has been extremely useful. I am also grateful

to the discussions on this topic I have had with members of the Computer-Assisted

Reasoning Group at Durham.

References

Barras, B. et al. (2000) The Coq Proof Assistant Reference Manual (Version 6.3.1). INRIA-

Rocquencourt.

Callaghan, P. and Luo, Z. (2001) An implementation of LF with coercive subtyping and

universes. J. Automated Reasoning, 27(1), 3–27.

Cartmell, J. (1978) Generalized algebraic theories and contextual category. PhD thesis, Uni-

versity of Oxford.

Cartmell, J. (1986) Generalized algebraic theories and contextual category. Ann. Pure Appl.

Logic, 32.

Constable, R. L. et al. (1986) Implementing Mathematics with the NuPRL Proof Development

System. Prentice-Hall.

de Bruijn, N. G. (1980) A survey of the project AUTOMATH. In: Hindley, J. and Seldin,

J., editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism.

Academic Press.

Goguen, H. (1994) A typed operational semantics for type theory. PhD thesis, University of

Edinburgh.

Goguen, H. (1999) Soundness of typed operational semantics for the logical framework.

Typed Lambda Calculi and Applications (TLCA’99).

Harper, R., Honsell, F. and Plotkin, G. (1987) A framework for defining logics. Proc. 2nd

Ann. Symp. on Logic in Computer Science.

Luo, Z. (1994) Computation and Reasoning: A Type Theory for Computer Science. Oxford

University Press.

Luo, Z. (1997) Meta-variables and existential judgements. Notes.

Luo, Z. (1999). Coercive subtyping. J. Logic & Computation, 9(1), 105–130.

Luo, Z. (2000) pal+: a lambda-free logical framework. Proc. Int. Workshop on Logical

Frameworks and Meta-languages (LFM’2000), Santa Barbara, CA.

Luo, Z. and Pollack, R. (1992) LEGO Proof Development System: User’s Manual. LFCS

Report ECS-LFCS-92-211, Department of Computer Science, University of Edinburgh.

Magnusson, L. and Nordström, B. (1994) The ALF proof editor and its proof engine. In:

Barendregt, H. and Nipkow, T., editors, Types for Proof and Programs: Lecture Notes in

Computer Science 806. Springer-Verlag.

Nordström, B., Petersson, K. and Smith, J. (1990) Programming in Martin-Löf’s Type Theory:

An Introduction. Oxford University Press.

Severi, P. and Poll, E. (1994) Pure type systems with definitions. Proc. LFCS’94: Lecture

Notes in Computer Science 813. Springer-Verlag

https://doi.org/10.1017/S0956796802004525 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004525

