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Abstract

This paper discusses the development of an experimental software prototype that uses surro-
gate models for predicting the monthly energy consumption of urban-scale community
design scenarios in real time. The surrogate models were prepared by training artificial neural
networks on datasets of urban form and monthly energy consumption values of all zip codes
in San Diego county. The surrogate models were then used as the simulation engine of a gen-
erative urban design tool, which generates hypothetical communities in San Diego following
the county’s existing urban typologies and then estimates the monthly energy consumption
value of each generated design option. This paper and developed software prototype is part
of a larger research project that evaluates the energy performance of community microgrids
via their urban spatial configurations. This prototype takes the first step in introducing a new
set of tools for architects and urban designers with the goal of engaging them in the develop-
ment process of community microgrids.

Introduction

In “Redesigning the Metropolis the Case for a New Approach” (1989), Johnathan Barnett dis-
cusses the dynamic evolution of cities and urban areas. In this paper, Barnett emphasizes the
necessity of updating urban design and planning techniques as cities face constant changes in
their environmental, developmental, and political settings. Taking the environmental aspect of
built environments into consideration along with rapidly changing climatic conditions
(Andreson and Bausch, 2006), researchers suggest that reaching energy self-sufficient built
environments requires moving past building-scale analysis and adopting up-to-date and inno-
vative energy-related measurements for urban design and planning (Gossop, 2011; Davila
et al., 2016).

Addressing energy issues at an urban scale brings more complexity than those of a single
building. This is mainly due to the wide range of stakeholders, as well as the large number of
energy-relevant variables and features involved in urban-scale projects. With this comes
extended and obscurant power relations making urban issues ill-defined and multi-faceted,
especially when it comes to the inherently political nature of energy-related issues. In an
era where the causes and effects of climate change have been a topic of dispute among poli-
ticians and scientists, the goal of reaching low carbon and energy self-sufficient communities
and cities has become more urgent than before1. Research and planning communities have
come to the conclusion that a new understanding of how urban planning impacts the energy
dynamics in cities and communities is required (Cajot et al., 2017). Reaching low carbon and
energy self-sufficient communities entails reducing fossil fuel consumption and combating
greenhouse gas emissions by taking actions in pursuit of building resilient communities and
cities which are less pollutant and less energy demanding. A main action item for reaching
this goal is the development of community microgrids which support the local supply and
demand of clean energy in neighborhood-scale urban settlements (Amin and Wollenberg,
2005; Farhangi, 2010). To develop low carbon and energy self-sufficient community micro-
grids, the role of urban planning in improving the energy performance of these
power-grid-independent territories is considered essential. This is done by adding a spatial
dimension in evaluating the energy performance of community microgrids, a topic that pre-
viously has been only marginally addressed in the research and academic communities but has
remained intact in practice.

1EU COM 112/2011.
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Problem statement

The US department of energy refers to microgrids as a “group of
interconnected loads and distributed energy resources within
clearly defined electrical boundaries that acts as a single control-
lable entity with respect to the grid. A microgrid can connect and
disconnect from the grid to enable it to operate in both grid-
connected or island-mode” (Ton and Smith, 2012). Different
types of microgrids exist depending on their use and purpose of
development. Community microgrids [in this study] are
neighborhood-scale microgrids contextualized in cities and
urban areas which are typically developed for environmental pur-
poses and their loads consist of various mixes of residential and
nonresidential buildings.

With this definition, community microgrids are essentially
building-integrated energy systems. As with any other energy sys-
tem, the efficiency of a community microgrid’s energy perfor-
mance is evaluated by comparing the energy that is inputted
into the system to the energy that is outputted from the system
(Fernandez and Blumsack, 2010). The energy input comes from
on- and off-site sources of energy, and the energy output is in
the form of the energy used for building operations, the stored
energy in microgrids’ storage devices, and the wasted energy during
the conversion or distribution process. With community microgrids
being energy systems, improving their energy performance has been
typically associated with advocating technological advances enhanc-
ing the limited supplies of local energy and addressing the con-
stantly growing demands of the loads2 (Siderius, 2004; Wouters,
2015). However, an exclusive focus on technologically improving
a community microgrid’s infrastructure without considering the
characteristics of its superstructure limits a holistic understanding
of these energy systems being building-integrated.

This research argues that for a comprehensive understanding
of energy performance in community microgrids, one needs to
study and evaluate its superstructure – as of the spatial character-
istics of its urban form – in addition to the technicalities of its
infrastructure. This argument is supported by two sets of studies:

• The first set are those studies that claim focusing on technolo-
gical innovations alone wouldn’t solve the current energy issues
in the built environment. These studies verify that despite the
high rates of technological enhancements in energy systems,
per capita energy consumption specifically in residential build-
ings has been gradually increasing since the 1980s (Ewing and
Rong, 2008).

• The second set of studies are those from 1960s onwards which
have studied the impact that urban form has on the energy
required for space heating and cooling in buildings, as well as
the feasibility of adopting on-site renewable energy generators
such as Photovoltaic (PV) panels and wind turbines in urban
areas (Steadman, 1977; Owens, 1986; Grosso, 1998; Steemers,
2003; Cajot et al., 2017).

The motivation behind this research is to understand why the
spatial dimension of improving community microgrids’ energy
performance is currently being neglected in practice despite all
the researches that support this argument. More broadly, what
is causing the existing practical disengagement of the design sec-
tor in the development process of community microgrids?

Focus of this paper

The results of our research suggest two main reasons driving the
above-mentioned disengagement:

1. The first reason is the dearth of information that architects and
urban designers need to comprehend on how urban form and
geometry impact the energy performance of cities at large.
Typically, in practice, the energy implications of individual
buildings are considered and those of urban scales are easily
neglected. This could be due to the spatial complexity asso-
ciated with urban form and the fact that studies to date were
not able to capture the multidimensional influence of urban
form on community-scale energy performance. Measuring
and understanding the energy implications of an urban area,
unlike common knowledge, goes beyond summing up the
energy performance of each individual building within a cer-
tain regional boundary, hence the associated complexity with
urban-scale energy studies. Researchers suggest that the spatial
characteristics of urban form have a major impact on changing
the local wind patterns and trapping heat in urban areas and
therefore creating micro-climates (Santamouris et al., 2001;
Reinhert et al., 2013; Chatzidimitriou and Yannas, 2015;
Silva et al., 2017). Therefore, when considering the energy
implications of urban areas, the existing micro-climates, as
well as the energy performance of individual buildings, need
to be studied. Adding the feasibility study of accessing renewable
energy to this relational pattern brings the understanding of how
urban form impacts energy performance in community micro-
grids to another level of complexity. This, previously, has not
been offered to the building and urban design communities.

2. The second reason, concluded by our research, is the lack of
urban-scale energy modeling and simulation tools that capture
the presented complexity (Rahimian et al., 2018). Existing
urban-scale energy simulation tools use the summed amount
of each building’s energy performance within a region as the
value of energy performance of the urban region of study.
Based on the reasonings provided above, this returned value
is not an accurate reflection of the real-world energy perfor-
mance of an urban area. Additionally, the hardcoded backend
of these tools makes running urban-scale energy simulations a
tedious task and an expensive computation, practically impos-
sible to use for real-world projects.

In a recent publication by the authors of this paper, the first
reason for this disengagement has been thoroughly discussed
(Rahimian et al., 2020). The analysis offered in this paper captures
the complexity of urban form by understanding the multidimen-
sional impact that the spatial structure of urban form has on the
amount of energy consumed for community building operations.
Choosing San Diego County as a case study, this paper described
benefiting from artificial neural networks (ANN) to factor in the
multitude spatial dimensions of urban form, and to explore their
combined effect on community-wide net energy consumption. To
do so, 19 energy-relevant indices of urban form were selected
from past studies and measured for all zip codes in San Diego
County along with their monthly values of energy consumption,
from 2012 to 2018, which were acquired through the county’s
utility company, SDG&E. Inference on the resulting predictive
model was done using Shapley values showing that the most influ-
ential characteristics of urban form on energy consumption are
related to compactness, passivity, shading, and diversity of a

2A high-energy performance community microgrid ensures the extended duration of
energy self-sufficiency while not receiving energy supply from the larger power grid.
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community in the context of the case study. Through this work,
the strategic role of developing energy-efficient urban settlements
by looking beyond building-scale energy efficiency had been
acknowledged.

This paper, however, takes the above-mentioned study to the
next stage by addressing the second reason for the described dis-
engagement. In the current paper, a solution is suggested for
developing an urban-scale energy simulation tool that not only
captures the multidimensionality of measuring community-scale
energy consumption but also reduces the computing time to
close to real time.

Aim and significance: surrogate models for running
urban-scale energy simulations

The adoption of computer simulation codes and programs has
been extensively used in many science and engineering fields as
a flexible way to study complex and real-world phenomena
under controlled environments (Gorissen et al., 2010).
Compared to expensive physical experimentations, computer
simulations are economically more efficient and improve the
quality of engineered products and services. However, the down-
side of simulation activities, especially when the problem of inter-
est reaches a certain level of complexity, is the high cost of
computing a simulation that may take hours and days to perform
(Forrester et al., 2008).

An example of a complicated phenomenon for simulation pur-
poses is measuring the building and urban-scale energy perfor-
mance where the influence of various internal and external
factors needs to be considered. These factors include but are
not limited to environmental factors, such as weather conditions,
building-specific factors, and characteristics such as materials and
structure, building operational factors and components such as
HVAC system, as well as occupational factors such as the energy
behavior of the building occupants. For simulating a complex phe-
nomenon as such, researchers suggest three different methods for
measuring energy performance in the built environment including
(Magoules and Zhao, 2016; Silva et al., 2017; Seyedzadeh et al.,
2018)

• Engineering methods or white-box models: which use engineer-
ing and physics-based principles to calculate the energy perfor-
mance of the built environment at different scales. The basis of
this method is to precisely calculate the thermal dynamics and
physical performance of buildings based on their structural and
operational characteristics, environmental factors, and sublevel
building components which ultimately results in complex
mathematical models.

• Statistical methods or grey-box model: which combine physical
and engineering methods with data-based, statistical modeling
(Tardiolli et al., 2015). Gray-box models usually have very par-
ticular analysis methods including linear correlation, regression
analysis, stepwise regression analysis, logit models, ANOVA,
t-test, factor analysis, panel data, structural equation models,
and cross-tabulation (Silva et al., 2017) with the aim of correlat-
ing energy indexes with influencing variables.

• Data mining methods or black-box models: which extract
“implicit, previously unknown, and potentially useful knowl-
edge from data” by “applying data analysis and discovery algo-
rithms that produce a particular enumeration of patterns (or
models) over the data” (Fayyad et al., 1996; Tsui et al., 2006).
Data mining techniques originated a branch named machine

learning which is the “science and art of programming compu-
ters so that they can learn from data” (Géron, 2017) in which
“the ‘machine’ is able to identify and generalize patterns”
from large datasets without being explicitly programmed
(Samuel, 1959; Chen et al., 2000; Silva et al., 2017)

Over the past 60 years, hundreds of building energy simulation
programs have been developed utilizing engineering methods
(white-box models) with different levels of complexity depending
on the number and type of parameters they incorporate for run-
ning energy performance measurements (Crawley et al., 2008).
Common to all existing energy performance tools – whether it
runs analysis at the building scale or city scale, is stand-alone
such as TRNSYS3, or integrated into computational design work-
flows such as Ladybug tools4 and DIVA5 – is that their backends
are all hardcoded physical laws for the derivation of building
energy performance (Crawley et al., 2008; Magoules and Zhao,
2016; Tamke et al., 2018). Although the simulation results of
these tools are effective and accurate, in practice, they bear
some difficulties: firstly, they require lots of input parameters
about the building and its environmental context which might
not be accessible to all users. Secondly, the hardcoded backend
results in extremely time-consuming computing processes make
running simulations a tedious task to perform. This is especially
accurate when simulating buildings’ energy performance at a
city scale. In such cases, enormous amounts of time and resources
need to be dedicated to creating building energy models for hun-
dreds or thousands of buildings across a city in order to run
urban-scale energy simulations effectively.

Due to these reasons, researchers have utilized methods other
than physics-based and engineering methods to estimate building
energy performance in a less time- and resource-consuming way.
One way to deal with this problem is to construct simpler approx-
imation models in order to develop a relationship between input
and outputs and predict performance. When the “simpler approx-
imation model” is properly constructed, it could mimic the behav-
ior of a simulation program quite accurately while being
computationally cheaper for running evaluations. Different
methods exist for constructing such approximation models.
This paper is focused on the use of compact surrogate models,
also known as metamodels (Simpson et al., 2008), which are data-
driven approaches that incorporate either statistical analysis or
machine learning methodologies capable of mimicking the behav-
ior of a simulation program.

In a statistical approach, buildings’ historical data are used to
run statistical analysis to correlate energy performance with over-
simplified variables and predict future performance. In a machine
learning approach, which some argue may fall under statistical
methodology (Seyedzadeh et al., 2018), computer algorithms are
trained to learn from data without being explicitly programed.
In the paper “Machine learning for estimation of building energy
consumption and performance: a review” (2018), the authors pro-
vided a sufficient review of the application of different machine
learning techniques in forecasting building energy performance
such as the use of ANN, support vector machines, Gaussian-
based regression, and clustering. The authors conclude that tradi-
tional building energy modeling and forecasting using engineer-
ing methods are not fast enough to meet the demands of

3http://www.trnsys.com/
4https://www.ladybug.tools/
5https://www.solemma.com/diva

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 355

https://doi.org/10.1017/S0890060421000184 Published online by Cambridge University Press

http://www.trnsys.com/
http://www.trnsys.com/
https://www.ladybug.tools/
https://www.ladybug.tools/
https://www.solemma.com/diva
https://www.solemma.com/diva
https://doi.org/10.1017/S0890060421000184


decision-makers and therefore are not as frequently used by pro-
fessionals as could be expected. This is while machine learning
models have shown great potential for predicting building- or
city-scale energy performance quickly and accurately.

Most research on using machine learning for predicting build-
ing energy performance has been carried out in engineering as
reviewed by Seyedzadeh et al. (2018). However, the field of archi-
tecture has also been observing the benefits of machine learning
for design and for advancing performance-based decision-making
in design. In the paper “Machine Learning for Architectural
Design: Practices and Infrastructure”, Martin Tamke et al.
(2018) discusses the different potentials that machine learning
can bring into architectural practices throughout the design and
construction process. Currently, most research on the applications
of machine learning in architecture has been focused on image-
based design generation and shape recognition such as in the
work of Hu et al. (2020), Chaillou (2019), and Huang and
Zheng (2018). The value and importance that Tamke et al.
(2018) brings into play are suggesting emergent practices in archi-
tecture that can benefit from machine learning in creative use and
synthesis that goes beyond current design generation utilization.
Five novel and practical streams of applications are suggested by
the authors, including using “machine learning for short-
circuiting simulation”.

As the term suggests, trained machine learning-based surrogate
models can be used for simulating building energy performance
rapidly in a time frame very close to real time. Short-circuiting
buildings’ performance simulation – whether it is energy, struc-
tural, mechanical, thermodynamics, or other – can help with
understanding the behavior of architecture well before its construc-
tion. Since current energy performance simulation tools are based
on physical laws, running these simulations is time consuming and
computationally intensive and therefore is not often used within
the design process and as a tool to drive design decisions. Using
trained surrogate models as the backend of such tools for predicting
simulation results, in a very short amount of time can aid with inte-
grating simulation into the design process and advancing
performance-based design methodologies.

In this paper, we provide a proof-of-concept software proto-
type that benefits from trained machine learning models as its
backend. The development of an urban-scale energy simulation
software prototype is described herein that predicts the monthly
value of the energy consumed by any inputted community design
scenario by evaluating and measuring its urban form. Unlike
existing building and urban-scale energy simulation tools, this
prototype does not operate on a hardcoded backend that takes
hours to run; it rather uses predictive trained models to estimate
the monthly value of energy consumption for any designed com-
munity scenario in real time.

Methodology

This section describes the different steps taken for developing the
described software prototype based on surrogate models. This
prototype has been developed for Rhinoceros6 which is a common
3D modeling tool extensively used among architects and
designers. The tool takes 3D community design scenarios and
instantly outputs predictive estimations of the design’s monthly
energy consumption. Therefore, there are two aspects to this
tool: a user-facing component in which the 3D communities

are designed, and a simulation engine that outputs the energy
consumption values.

The next three sections describe the preparation of these two
components of the prototype and how they’re merged towards
a functional prototype.

A machine learning-based simulation engine

The dataset in which the machine learning models were trained
entails measurements of urban form and monthly energy consump-
tion values for 110 zip codes in San Diego county. Part of the data-
set is shown in Figure 1; each row has the zip code number, followed
by 19 numbers representing the urban form7, then 12 monthly val-
ues of energy consumption and then total energy consumed in one
year. This is repeated seven times for each zip code each row repre-
senting one year of data from 2012 to 2018. More information on
how this dataset has been processed and cleaned can be found in
“A Machine Learning Approach for Mining the Multidimensional
Impact of Urban Form on Community Scale Energy Consumption
in Cities” by the authors (Rahimian et al., 2020).

The goal of the proposed software prototype is to use any
inputted 3D community design scenario and estimate its monthly
values of energy consumption. This requires having ANN trained
on monthly values of energy consumption and using the resulting
predictive models as the backend of the software prototype. The
approach used here is to train separate neural networks for each
month of the year; the reason behind this logic is to avoid
unnecessary complexity by training one neural network over a
dataset with 12 months as outputs. In this regard, 12 subsets of
the dataset were extracted – each has the same predictor variable
(19 indices of urban form), but the response variable changes
based on the specific month of the year on which the dataset
has the energy information.

After establishing the 12 datasets, the next step was to train
specific machine learning models on the datasets. ANN were
used as the specific machine learning method to model and fore-
cast community energy consumption. Finding the best perform-
ing artificial neural network architecture is an empirical process
(Rahimian et al., 2020). Usually, different architectures are tested
and the one which yields the best accuracy is selected. Empirically
finding the best performing artificial neural network for each
month of the year was a time-consuming procedure. As a solution
for simplifying this process, we developed a code for performing a
grid search operation so that for each month’s dataset the algo-
rithm tests different artificial neural network architectures and
selects the ones with the highest performance (highest perfor-
mance means lowest mean squared error). The variables institut-
ing the different permutations of the grid search were:

• Optimizer: adam, nadam
• First layer size: 512, 1,024, 2,048
• Number of layers: 6, 7, 8

Some parameters along with their values were also selected to
be used throughout all the neural network variations. For exam-
ple, the activation function for all neural networks was set to
Relu, dropout layers were added at the rate of 0.2 8, number of

6https://www.rhino3d.com/

7It is assumed that in all these 7 years of study, the urban form has majorly remained
the same.

8Dropout was used on the first hidden layer as a regularization method to avoid poten-
tial overfitting due to the small size of the datasets.
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epochs were set to 300, and patience value 9 was set to 100. Note
that the choice of the static parameters, as well as the different
permutable variables, were all based on the empirical training
experience gained in our previously published paper (Rahimian
et al., 2020). With this setting for each of the 12 datasets, 2*3*3
= 18 different artificial neural network architectures were trained,
and the top 5 best performing models were returned. For each
month, the top five (5) returned models were compared against
each other based on the value of their mean squared error, the
behavior of their learning curve plot, and the accuracy of each
predictive model in predicting the values for the observations of
the validation dataset. The human intuition in selecting the best
performing ANN [among the top 5] is deemed necessary since
there’s no universal rule on structuring best performing ANN,
also since it is a problem highly dependent on the nature of
any dataset and the problem of interest.

The downside of performing multiple trainings in a grid
search run one after another is that the computer’s GPU memory
does not clear after each run and there’s a possibility that the
training information from one model may leak to another train-
ing procedure. Therefore, another layer of investigation and fine-
tuning were performed on the 12 selected ANN. In this investiga-
tion phase, each of the neural network architectures was re-built
and re-trained one-by-one on their designated datasets and the
resulting learning curves were plotted in Tensorboard10. One of
the advantages of Tensorboard is that metrics, such as loss and
accuracy, could be tracked and visualized for each model. This
is especially useful in the case of comparing the performance of
different neural networks trained on the same dataset. When a
model’s learning curve was not performing as expected, a fine-
tuning and slight modification was performed on the code and
the new model’s performance was plotted on Tensorboard
ready for comparison and, ultimately, selecting the best perform-
ing one. In this process, some of the selected original neural network
architectures were modified and some architectures remained the
same. Table 1 shows the variables in the selected model architectures
for each month from the grid search procedure, as well as the final
variables after fine-tuning the selected architectures.

Figure 2 takes the month of February as an example to dem-
onstrate how the final ANN [trained on the month’s dataset]
was structured based on the “final variables” identified in
Table 1. An ANN consists of several neurons that are organized
into three types of layers known as the input, hidden, and output
layers. The input layer is used to introduce the dataset to the

network with no computation performed. The shape of the data-
set is defined in this layer by identifying the number of inputs or
features of the dataset; the neurons placed and defined in this
layer are responsible for passing the dataset’s input information
to the hidden layers. In the example shown below, the input
layer has 512 neurons.

Hidden layers are placed between the input and output layer;
their quantity and the number of neurons in each of them can
be as many as desired (in the demonstrated ANN, six hidden
layers with different numbers of neurons are specified).
Defining the hidden layers is done manually and does not follow
any specific logic. Typically, different structures are tested and the
one that yields the best results for the desired problem of the study
is selected. These layers are named “hidden” because the outputs
of their computation remain in the network and are not available
outside the neural network. The “black box” perception of neural
networks is due to the abstract nature of the computations hap-
pening in hidden layers. The hidden layers are responsible for
performing all sorts of computation on the features entered
from the input layer and then transferring the results to the out-
put layer; for instance, the ANN architecture demonstrated herein
consists of six hidden layers. Finally, the output layer puts forward
the information learnt by the network to the outside of the neural
network. The number of neurons in the output layer directly cor-
responds to the number of outputs or response variables of the
dataset. In this example, we are interested in outputting one num-
ber which represents the amount of energy consumed for February
therefore, we have one neuron placed in the output layer.

ANNs are normally fully connected implying that the neurons
of the adjacent layers are fully connected to each other, and each
connection has an associated weight (Ciaramella et al., 2015).
These neurons operate in correspondence with their associated
weight, bias, and activation function in the following procedure:
each neuron sums the result of multiplying each input by its asso-
ciated weight of the input connection and after adding a bias, it
applies a function to the result. So, if a neuron is considered to
be X = Σ (weight*input) + bias, a function is applied to the value
of X whose functionality is to decide whether a neuron should
be activated or not. Referred to as the activation function, its pur-
pose is to add non-linearity to the output of the neurons assuring
its learning capabilities. Different variants of activation functions
exist including but not limited to Sigmoid, Rectified Linear Unit
(Relu), Tanh, and Leaky Rectified Linear Unit (Leaky Relu).
Knowing certain characteristics of the problem of interest can
help with choosing appropriate activation functions that lead to
faster training and more accurate results. For the example
shown in Figure 2, Relu demonstrated the best performance as
the activation function of this ANN.

Fig. 1. The first several rows of the dataset show urban form and energy consumption data for 7 years for one zip code in San Diego.

9Patience value is the number of epochs to wait before early stopping if no progress on
the validation set was made.

10https://www.tensorflow.org/tensorboard
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Table 1. Original and modified variables in the ANN architecture after retraining process and its resulting MSE

Table of original and modified variables in the ANNa training and retraining procedure

Variables in the selected model architectures
from grid search Final variables after retraining

Final returned MSEb value# of layers 1st layer size Optimizerc # of layers 1st layer size Optimizer

January 6 512 Adam 6 512 Nadam 0.009350555156575199

February 6 512 Adam 6 512 Adam 0.010599181247866586

March 8 512 Nadam 8 512 Adam 0.008406761498070537

April 7 512 Adam 7 512 Adam 0.008348045845998105

May 8 512 Nadam 8 512 Nadam 0.011946498677007852

June 7 2,048 Nadam 7 512 Adam 0.008610573696633138

July 6 1,024 Adam 7 512 Nadam 0.008045464576725394

August 7 512 Nadam 7 512 Adam 0.00773768380128509

September 7 512 Nadam 7 512 Adam 0.00706806445608078

October 6 512 Nadam 6 512 Adam 0.007876764878022083

November 7 2,048 Nadam 7 2,048 Nadam 0.009284132136650806

December 6 1,024 Nadam 7 512 Adam 0.008146409050588875

aArtificial neural network.
bMean squared error.
cOptimizers are methods or algorithms used to change the attributes of ANN such as weights and biases.

Fig. 2. The architecture of the ANN that was trained on February dataset.
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Figures 3–14 show each month’s learning curve on the left
(x-axis: number of epochs, y-axis: epoch loss), and prediction
accuracy plot on the right where predictions are made for the vali-
dation dataset and the results are compared against the validation
true values11.

After fitting and evaluating the neural network models on each
dataset, the finalized models are run on held-back test datasets –
which the models have never seen before – to verify the models’
performance. The test results of the month of September are
shown in Figure 15 as an example. The resulted mean squared
error from the testing procedure is reported as
0.046819390610493866. In Figure 15, the orange line shows the
true energy consumption values from the test dataset, and the
blue line shows the predicted value of energy consumption for
each of the observations in the test dataset.

Comparing the model’s performance on the test dataset with
the model’s performance on the training dataset, a performance
mismatch is observed; there is a promising performance when
evaluating the model on the training dataset and a poor perfor-
mance when evaluating it on the test dataset. One of the reasons
behind model performance mismatch is training on a small and
unpresented dataset. This means that the examples in the training
set do not effectively cover the cases observed in the broader
domain. Another reason is the stochastic nature of machine learn-
ing algorithms resulting from the random initial weights in an

artificial neural network, the shuffling of data, etc. This means
that with the same artificial neural network architecture run on
the same dataset, different sequences of random numbers are
used which in turn return models with different performances.
This could potentially be problematic in small datasets, such as
the ones used in this research, where each data point or observa-
tion counts towards training a model; there might be
hard-to-learn observations which sometimes are in training and
sometimes are in the validation or test datasets as a result of shuf-
fling. The remedy is often to enrich the dataset to become larger
and more representative, a solution that was not possible in the
course of this research. Therefore, while being cognizant of this
problem, the final trained models are used towards developing
the predictive software prototype.

After the training and testing procedure, 12 predictive surro-
gate models are prepared which can predict each month’s value
of energy consumption for any unseen and new values of the
urban form if the unseen data follow the generalization principle.
The generalization principle indicates that trained machine learn-
ing models can provide valid predictions for new data as long as
they are drawn from the same distribution as the original dataset
that was used for training. Honoring this principle and the fact
that our trained models are limited to San Diego, it is important
to note that the produced surrogate models are unable to estimate
valid values of energy consumption for “any” designed urban
form scenario; the unseen values of urban form that will be
given to the trained models for prediction purposes should fall
in the same range of urban form values as the training dataset,
representing hypothetical communities as if they were constructed
in San Diego.

Fig. 3. January’s learning curve (left) and prediction accuracy plot (right).

Fig. 4. February’s learning curve (left) and prediction accuracy plot (right).

11For an advanced and high fidelity set of analysis on the training and testing proce-
dures, please visit a previously published paper by the authors of this paper, titled as “A
Machine Learning Approach for Mining the Multidimensional Impact of Urban Form on
Community Scale Energy Consumption in Cities” (Rahimian et al., 2020).
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Fig. 5. March’s learning curve (left) and prediction accuracy plot (right).

Fig. 6. April’s learning curve (left) and prediction accuracy plot (right).

Fig. 7. May’s learning curve (left) and prediction accuracy plot (right).

Fig. 8. June’s learning curve (left) and prediction accuracy plot (right).
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Fig. 9. July’s learning curve (left) and prediction accuracy plot (right).

Fig. 10. August’s learning curve (left) and prediction accuracy plot (right).

Fig. 11. September’s learning curve (left) and prediction accuracy plot (right).

Fig. 12. October’s learning curve (left) and prediction accuracy plot (right).
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Therefore, to make sure that the software prototype is estimat-
ing values of energy consumption for valid design scenarios, a
generative urban design algorithm has been developed as part
of the software prototype. The generative algorithm generates
3D community design scenarios following San Diego’s urban

form, the county’s principles of urban planning, and zoning stan-
dards. By this, any community designs generated by this algo-
rithm will be similar to the existing urban fabric of San Diego
and consequently, their derived measurement of urban form fol-
lows the same distribution as the original dataset. Then by adding

Fig. 13. November’s learning curve (left) and prediction accuracy plot (right).

Fig. 14. December’s learning curve (left) and prediction accuracy plot (right).

Fig. 15. Plot showing the model’s performance on the
test dataset for the month of September.
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the trained surrogate models to the generative algorithm, monthly
energy consumption values will be estimated for those generated
designs. The next section offers a brief description of the genera-
tive algorithm.

A generative algorithm for generating communities following
San Diego’s urban form

Generative design is a design automation technology based on
different artificial intelligence techniques ranging from shape
grammars and procedural rule-based systems to genetic algo-
rithms and advanced machine learning-based processes (Gu
et al., 2010). In generative design, instead of laboriously designing
a single artifact, a design system is programmed which starts with
a set of design goals, constraints, and variables – often stemmed
from the designer’s past experiences and the environment
where the design is situated – and then innumerable possible per-
mutations of a solution are explored.

Although overlaps and similarities exist among the different
generative design techniques, some appear to be more suitable
for certain design and automation tasks (Gu et al., 2010). For
example, rule-based systems, like shape grammars, tend to be
used when there is strong domain knowledge; Stochastic systems
like genetic algorithms are used when there is weaker domain
knowledge. To elaborate, methods of generative design can be
classified into being explicit or implicit depending on the avail-
ability and complexity of data:

• Explicit or Strong AI methods – teaching an AI by feeding it
human-readable information related to what the programmer/
designer thinks the generative system needs to know for gener-
ating design options. Rule-based systems are an example of
explicit methods.

• Implicit or Weak AI methods – where raw data is fed into an AI so
the algorithm can analyze and construct its own implicit knowl-
edge about the design such as different machine learning-based

Fig. 16. A portion of San Diego’s map from 1979. Source: www.sunnycv.com.
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generative models that is, autoregressive models, variational auto-
encoders, and generative adversarial neural networks.

The generative urban design algorithm constructed herein is
developed upon explicit methods of generation, namely shape
grammars. Shape grammars were used to extract the rules and
patterns forming the structure of San Diego’s urban typologies
leading to its urban form. The extracted shape grammars were
then codified into a generative algorithm using Python12 and
Grasshopper13, capable of producing various community design
scenarios following San Diego’s urban form14. Figure 16 shows
a map of San Diego studied for the shape grammars and
Figure 17 demonstrates two samples of communities generated
by this algorithm which are all spatial representatives of commu-
nities in San Diego.

Implementation and software architecture

With the generative algorithm and the twelve-monthly surrogate
models established, the next step was to tie these two main com-
ponents to develop and finalize the experimental software proto-
type. For each generated community design scenario, this tool is
intended to measure its urban form values and estimate the com-
munity’s monthly estimate of energy consumption accordingly.

For measuring the 19 indices of urban form, several different
equations and formulas were added to the generator based on

their measurement metric outlined in Figure 18. By this, the gen-
erator can compute the urban form value for energy generated
design and output it as a data tree.

The important point to note here is that these 19 indices
needed to be sorted and fed into the trained models in the
same order that was initially used for training the ANN. A
Python communicator was then scripted in Grasshopper which
takes the produced 19 values of urban form as a data tree, con-
verts it into a list, and sends it to the server 15. The server is a vir-
tual computer scripted in Python language which uses websockets
and Tensorflow16 (Keras17) to load all 12 surrogate models (in .h5
format) from the database where they are stored. By loading the
models, the server takes any set of 19 numbers and inputs them
to the surrogate models as urban form values and uses that to pre-
dict and output twelve-monthly values of energy consumption. The
urban form values are inputted to the server via the Python com-
municator. By receiving these values, the server uses the loaded sur-
rogate models to instantly estimate its relevant twelve-monthly
values of energy consumption and to send the outputs back to
the Python communicator through a local network. A visualization
script is added to the Python communicator which takes the
received predicted values from the Python communicator and
visualizes them as a bar chart on the Rhino viewport. When the
generator generates a community design scenario, it takes only a
fraction of a second to simulate and visualize the design’s monthly
value of energy consumption. A screenshot of the output of the
software prototype is shown in Figure 19.

Fig. 17. Two samples of community designs generated
by the generative tool.

12https://www.python.org/
13https://www.rhino3d.com/6/new/grasshopper/
14This paper is not going into the details of developing the generative algorithm; more

information on the extracted rules and shape grammars can be found in “A
Grammar-Based Generative Urban Design Tool Considering Topographic Constraints:
The Case for American Urban Planning” (Rahimian et al., 2019).

15A server is a computer designed to process requests and deliver data to another com-
puter over the internet or a local network.

16https://www.tensorflow.org/
17https://keras.io/
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A diagram is provided in Figure 20 which shows the proto-
types architecture for clarification. To summarize the diagram:

1. Database: is a folder on the computer storing all trained
machine learning models in. h5 format.

2. Back-end is a server responsible for calling and loading the
trained machine learning models from the database, receiving
and computing requests, and delivering data to other comput-
ing programs.

3. Front-end: is the interface the user works with. In this proto-
type, the front-end is the urban generator in Grasshopper
where the user can change certain parameters and have the
algorithm generating various different 3D community-scale

urban scenarios based on San Diego’s principles of urban plan-
ning. The front-end is also used to visualize the energy simula-
tion results.

4. Data: are the values being inputted to the server (19 values of
urban form) and the data outputted from the server (twelve-
monthly values of energy consumption). When the user selects
its custom community design through the front end, the genera-
tor algorithms automatically extract 19 features of urban form
and through a python code send that to the server. The server
immediately predicts the monthly values of energy consumption
as outputted by the trained models and sends it back to
Grasshopper. The front-end instantly visualizes the predicted
energy values as a bar chart in the Rhino environment.

Fig. 18. Energy-relevant indices of urban form along with their measurement metric.
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Discussion

One important point drawn from this study is the importance of
having urban-scale energy simulation programs that do not rely
on complex mathematical models and physics-based computa-
tions. In order to encourage architects and urban designers to
design energy self-sufficient communities, the first step is to pro-
vide them with tools that enable them to do so. This research pro-
vides a prototype of a software that runs urban-scale energy
simulations in real time which can be used for community designs
in the context of San Diego. While this prototype is specific to San
Diego, but its development process provides a guideline for devel-
oping similar tools as well offering practical avenues for more
advanced developments.

This prototype does not provide exact numbers of energy con-
sumption for any designed community but rather offers a “predic-
tive” number. An imprecise simulation of energy performance
provided in real time while designing an urban area is more prac-
tical and useful for an architect and urban designer than a soft-
ware that takes hours to run a simulation but provides a more
accurate number. This is particularly useful when a project is in
its schematic phase or early stages of design; with a real-time
tool, the designer would be able to constantly change the design
and see the simulation results instantaneously and thus produce
design scenarios with improved energy performances. With a
time-consuming simulation tool that runs on hardcoded formulas
which requires heavy computing processes, it would be difficult to

Fig. 19. A picture screen of the output of the software. The urban setting that was created by the tool is shown on the right, its values of urban form are shown on
the top left, and the predicted values of energy consumption are shown on the bottom left.

Fig. 20. The prototype’s software architecture.
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be used in a practical and efficient way by designers. Firstly,
because the designs need to be fairly detailed and elaborated to
initiate the simulation process and thus the tool cannot be reason-
ably used in the schematic phase of a design project. Secondly,
since the simulation process takes an extensive amount of time
to be processed, it becomes unlikely for the designer to delicately
change their designs if their intended energy targets are not met
in their initial rounds of iterations. Moreover, for urban-scale
energy planning and design, an approximate number is sufficient
to guide the designs from a high level towards more energy-
conscious solutions. This prototype, and the process of developing
it, sheds light for future researchers to develop a similar tool that
can run urban-scale energy simulations for other – or any – climatic
regions.

Conclusion

As mentioned previously, the motivation behind this research is
the practical disengagement of the design sector in the develop-
ment process of community microgrids given that the importance
of this involvement has been marginally highlighted among
research and academic communities. Our research shows that
one reason driving this disengagement is the illiteracy among
architects and urban designers on the impact of urban form
and urban geometry on the energy performance of cities at
large. This is due to the spatial complexity associated with
urban form and the fact that studies to date were not able to cap-
ture the multidimensional influence of urban form on community
and urban-scale energy performance.

The second reason behind the above-mentioned disengage-
ment is the lack of urban-scale energy modeling and simulation
tools that capture the presented complexity. As explained in “A
Review of Predictive Software for the Design of Community
Microgrids” from the authors of this paper (Rahimian et al.,
2018), the quantity outputted from existing urban-scale energy
simulation tools are the summed amount of each building’s
energy performance in an area, which is not an accurate reflection
of the real-world energy performance of cities. Moreover, the
hardcoded backends of these tools make running urban-scale
energy simulations a tedious task and of expensive computation,
practically impossible to use for real-world projects. The software
prototype described in this paper provides a preliminary example
of a tool used by architects and urban designers for spatially
designing energy-conscious microgrid-connected communities
well before their construction. This is done by helping the users
of this tool to reach the required energy targets for their designs
within a much lesser time compared to any similar and commer-
cially existing tool. A tool as such helps architects and urban
designers in using passive design solutions for spatially designing
and/or retrofitting urban settlements towards communities with
improved rates of energy performance. Then when a microgrid
system is to be established at the community’s infrastructure
level, the number of active systems required for electrification
will be minimized, resulting in high-energy performance commu-
nity microgrids.

By setting the path to take ownership of designing energy self-
sufficient community microgrids, this study enables architects
and urban planners to carefully and profoundly address the press-
ing issues related to the local supply and demand of clean energy
within their profession. This means that planners could be more
and more involved in the technical conversation of developing
community microgrids by not only handling the esthetics and

quality of life in urban communities but also to get quantitively
concerned with energy system design and engineering. In this
regard, this research has reached its main goal of adding a spatial
dimension to the development of community microgrids where
architects and urban planners get more involved in the develop-
ment process of these local energy systems.
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