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Selmer groups and Mordell–Weil groups of elliptic

curves over towers of function fields

Jordan S. Ellenberg

Abstract

Silverman has discussed the problem of bounding the Mordell–Weil ranks of elliptic curves
over towers of function fields (J. Algebraic Geom. 9 (2000), 301–308; J. reine. angew.
Math. 577 (2004), 153–169). We first prove generalizations of the theorems of Silverman
by a different method, allowing non-abelian Galois groups and removing the dependence
on Tate’s conjectures. We then prove some theorems about the growth of Mordell–Weil
ranks in towers of function fields whose Galois groups are p-adic Lie groups; a natural
question is whether the Mordell–Weil rank is bounded in such a tower. We give some
Galois-theoretic criteria which guarantee that certain curves E/Q(t) have finite Mordell–
Weil rank over C(tp

−∞
), and show that these criteria are met for elliptic K3 surfaces whose

associated Galois representations have sufficiently large image.

1. Introduction

Let k be a field of characteristic prime to 6, C/k a smooth (but not necessarily proper) curve, and
E → C a non-isotrivial elliptic surface. Write ks for the separable closure of k. The rank of E over
ks(C) is bounded by the geometric expression

rankZ E(ks(C)) � f(E) := |N(E)| − 2χ(C) (1)

where N(E) is the conductor of E , a divisor on C (see [Shi92]). We emphasize that N(E) records
only the places of bad reduction of E over C, not over a compactification of C.

If C ′ → C is an étale cover of curves over k, one can try to bound the Mordell–Weil rank
rankZ E(k(C ′)) in terms of invariants of E/C and of the cover C ′/C. Denoting by E ′ the pullback
of E → C by C ′ → C, we have the elementary bound

rankZ E(k(C ′)) � rankZ E(ks(C ′)) = rankZ E ′(ks(C ′)) � f(E ′) = [C ′ : C]f(E).
However, one can typically do much better by using the fact that E ′ is not an arbitrary elliptic

surface over C ′, but one descending to a surface over C. In [Sil00] and [Sil04], Silverman proved
upper bounds on rankZ E(k(C ′)) in the case where C = Gm and C ′ → C is multiplication by n, or
in the case where C is proper and C ′ → C is abelian, and under the hypotheses that k is a number
field and Tate’s conjecture holds for the elliptic surface E ×C C ′. In the first part of this paper,
we generalize Silverman’s theorems to the case of arbitrary étale covers and arbitrary base field of
characteristic prime to 6, and remove the dependence on Tate’s conjecture.

If K is a finite group carrying an action of Gal(ks/k), we define a real number ε(K,Σ) in
Definition 2.6. This definition depends only on K and on the finite group Σ, which is the image of
Gal(ks/k) in Aut(K).
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Theorem (Theorem 2.8). Let k be a field of characteristic prime to 6, and C0/k a smooth (but not
necessarily proper) curve. Let f : C → C0 be a map of curves such that Cks → (C0)ks is an étale
Galois cover, with group K, and let E/C0 be a non-isotrivial elliptic curve over C0. Then

rankZ E(k(C)) � ε(K,Σ)(|N(E)| − 2χ(C0))

where N(E) is the conductor of E/C0 and χ(C0) is the Euler characteristic of C0.

When the action of Gal(ks/k) on K is trivial (e.g. if k is separably closed), one has ε(K,Σ) = |K|
and we do no better than (1). In the cases treated by Silverman, ε(K,Σ) agrees with his upper
bound. There are two main ideas. The first is to rephrase the problem in terms of a Selmer group
S(C, E [p∞]), a discrete p-primary Gal(ks/k)-module containing E(ks(C)) ⊗Z Qp/Zp. The Selmer
group, being a Galois-cohomological object, is easier to manipulate than the Mordell–Weil groups
themselves. Then the inclusion of Mordell–Weil groups into Selmer groups allows us to derive the
desired upper bounds on Mordell–Weil ranks from theorems on Selmer groups. The second idea is
the observation that theorems of this kind can be derived from (1) using the representation theory
of finite groups; no arithmetic input is needed and the dependence on Tate’s conjecture is avoided.

Theorem 2.8 and the results of Silverman show that, as C ′ varies through some natural families
of covers of C, the Mordell–Weil rank of E over k(C ′) grows much more slowly than does [C ′ : C]. A
natural question is thus: is the rank in fact unbounded in such a family? Stiller [Sti87], Shioda [Shi86],
and Fastenberg [Fas97] have given examples of elliptic curves over C(t) which have finite rank over⋃

r∈ZC(t1/r), and Ulmer [Ulm05] gives examples of elliptic curves over k(t) with finite rank over⋃
n∈Z�0

k(t1/pn
) for certain finite fields k and primes p. On the other hand, Ulmer exhibits in [Ulm02]

an elliptic curve over Fp(t) whose rank over Fp(t1/r) is unbounded as r grows. In [Sil04], Silverman
asks the following question.

Question 1. Let

· · · → Cn → · · · → C2 → C1 → C0 = C (2)

be a tower of curves over k such that ks(Cn)/ks(C) is an étale Galois extension for each n. Write
k(C∞) for the direct limit of the fields k(Cn). Under what circumstances is E(k(C∞)) finitely
generated? What about E(ks(C∞))?

The second part of the present paper is devoted to the above question in the case where the
Galois group of the tower is a pro-p p-adic Lie group K. In this case, the Selmer group of E/C∞ can
be thought of as a module for the Iwasawa algebra of K. Using this point of view, we prove that
the rank of E(ks(Cn)) is bounded as n grows in the case where K ∼= Zp and the image of Gal(ks/k)
on the Selmer group S(C0, E [p∞]) is large enough.

Theorem (Theorem 4.4). Let k be a field of characteristic prime to 6, let · · · → C2 → C1 → C0

be a tower of curves with Galois group K ∼= Zp, and let E/k(C0) be an elliptic curve. Let p be a
prime not equal to char k and greater than |N(E)| − 2χ(C0). Let k∞ be an extension of k such that
Gal(ks/k∞) acts trivially on K.

Suppose that, for every extension �/k∞ which is an abelian pro-p extension of a finite extension
of k∞, no divisible subgroup of S(C0, E [p∞]) is fixed by Gal(ks/�). Then rankZ E(ks(Cn)) is bounded
independently of n.

The conditions above appear to be fairly mild; in the final section of the paper we show that the
generic minimal elliptic K3 surface satisfies the conditions of Theorem 4.4. It follows from a Hilbert
irreducibility argument that there are infinitely many elliptic K3 surfaces E/Q(t) and primes p such
that E(Q̄(t1/p∞)) has finite rank.
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The generalization of Theorem 4.4 to p-adic Galois groups other than Zp seems to involve
interesting questions about Galois representations with coefficients in Iwasawa algebras: see, for
instance, Remarks 3.5 and 4.3.

2. Selmer groups of elliptic curves over finite extensions of function fields

The main idea of this section is the following: if C is a curve and K ⊂ Aut(Cks) is a finite subgroup,
then M = E(ks(C))⊗Z C is a complex representation of the group K � Gal(ks/k), and indeed of a
finite quotient K � Σ of this group. Then E(k(C)) is closely related to MΣ; moreover, the structure
of M as a K-module is strongly constrained by (1). We can then use purely group-theoretic facts
about the irreducible characters of K�Σ to bound the dimension of MΣ, and thereby the rank of E
over k(C). The key group-theoretic quantity ε(K,Σ) is defined in Definition 2.6; we give elementary
upper and lower bounds for ε(K,Σ) in Proposition 2.11, but there is certainly room for a more
precise understanding of this combinatorial invariant.

It turns out that the easiest way to bound the size of Mordell–Weil groups is by means of
corresponding Selmer groups; this is the approach we take below. We begin by introducing the
notation that we will use throughout the paper.

Let C/ks be a curve (smooth and absolutely irreducible) over a separably closed field of charac-
teristic prime to 6, and let f : E → C be a non-isotrivial family of curves whose generic fiber is an
elliptic curve. (From now on we refer to such an E simply as a ‘non-isotrivial elliptic curve over C’.)
In particular, we assume f admits a section. Let U be the maximal open dense subscheme of C over
which E is smooth. Let X be the closure of C (that is, the unique nonsingular curve having C as
open dense subscheme). Let P be the set X(ks)\C(ks) and let Q be the set C(ks)\U(ks). Write g
for the genus of X; so χ(C) = 2− 2g− |P |. Finally, let M be the set of points in C(ks) where E has
multiplicative reduction. Then the conductor N(E) is a divisor on C whose degree is 2|Q| − |M |.

We now fix a prime p not equal to char k. There is a natural descent map

δp : E(ks(C))⊗Z Qp/Zp ↪→ H1(πét
1 (U), E [p∞]).

We can replace the étale fundamental group above with a tame fundamental group, as the following
proposition demonstrates.

Proposition 2.1. The descent map δp factors through a map

E(ks(C))⊗Z Qp/Zp ↪→ H1(πtame
1 (U), E [p∞]).

Proof. Let x be a point in E(ks(C)) and let y be a point of E(k(C)s) with pαy = x. We need to
show that for every place v of ks(C), the extension of the local field ks(C)v generated by y is tamely
ramified. Since char k > 3, we know that E acquires semistable reduction over a tamely ramified
extension of ks(C)v; we therefore assume that E has semistable reduction. If E has good reduction
at v, the extension of ks(C)v generated by y is unramified. If E has multiplicative reduction at v,
the theory of the Tate curve implies that the extension generated by y is that obtained by adjoining
a pth root of an element of the local field ks(C)v; such an extension is again tamely ramified, since
p �= char k.

We now define the Selmer group whose study makes up the rest of this paper.

Definition 2.2. Let j : η ↪→ C be the inclusion of the generic point into C, and let A be a discrete
p-primary torsion sheaf on the étale site of η (alternately, a module for the absolute Galois group
of η). Then take FA = j∗A, and define S(C,A) to be H1(C,FA).

When there is no danger of confusion, we write F for the sheaf FE[p∞].
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Remark 2.3. The fact that ks is only separably closed, not algebraically closed, presents no problems,
since we may base change to the algebraic closure without affecting cohomology: compare [Mil80,
2.4.(c)].

We now explain briefly how this definition conforms with the more classical definition. Let π be
the tame fundamental group πtame

1 (U). For each place v of ks(C), let ks(C)v be the completion of
ks(C) at v; write πv for the local tame fundamental group Gal((ks(C)v)tame/ks(C)v). This group is
isomorphic to Ẑ if char k = 0 and to

∏
� �=q Z� if char k = q. There is a long exact sequence (see, e.g.,

[Mil80, III.1.25])

0→ S(C,A)→ H1(U,FA)→
⊕
v∈Q

H2
v (C,FA)→ H2(C,FA). (3)

Now H2
v (C,FA) = H1(πv, A) by excision, and H1(U,FA) = H1(π,A) (see [Mil80, V.2.17]). So we

can alternatively describe the Selmer group as

S(C,A) = ker(H1(π,A)→
⊕
v∈Q

H1(πv, A)). (4)

When A = E [p∞], we have a local descent map

δp;v : E(ks(C)v)⊗Z Qp/Zp → H1(πv, E [p∞]).

Note that we have E(ks(C)v)⊗ZQp/Zp = 0, since p �= char k. So (4) agrees with the classical def-
inition of the Selmer group S(C, E [p∞]). We denote the group

⊕
v∈Q H

1(πv, E [p∞]) by L(C, E [p∞]).
Note that the summand H1(πv, E [p∞]) is trivial unless E has multiplicative reduction at v, in which
case H1(πv, E [p∞]) is a cofree Zp-module of corank 1 by the theory of the Tate curve.

The global descent map δp gives an injection

E(ks(C))⊗Z Qp/Zp ↪→ S(C, E [p∞])

whence an inequality

rankZ E(ks(C)) � corankZp S(C, E [p∞])

which is the source of all bounds on Mordell–Weil groups in this paper. In a slight abuse of notation,
when C and E are defined over a field k which is not separably closed, we take S(C, E [p∞]) to mean
S(C ×k k

s, E [p∞]).

Remark 2.4. It will often be useful to know that the action of π on the torsion points of E has
large image. To be more precise: the image of π in Aut(E [p∞]) ∼= GL2(Zp) contains a finite-index
subgroup of SL2(Zp), since the j-invariant map from C to X(1) is dominant, and thus exhibits C
as a finite cover of the j-line. In particular, E [p∞]π is a finite group.

Proposition 2.5. Let C, E , p be as above. Then:

• H1(π, E [p∞]) is a cofree Zp-module of corank |N(E)| − 2χ(C) + |M |;
• S(C, E [p∞]) is a Zp-module of corank |N(E)| − 2χ(C).

Proof. Write F for FE[p∞]. By [Mil80, V.2.17], we have H1(π, E [p∞]) = H1(U,F). Note that
H0(U,F) = E [p∞]π; this group is finite by Remark 2.4. It then follows from [Mil80, V.2.18]
that H1(π, E [p∞]) has Zp-corank

4g − 4 + 2|P |+ 2|Q| = |N(E)| − 2χ(C) + |M |.
Now H2(π, E [p]) = 0 (again by [Mil80, V.2.17]) so H1(π, E [p∞]) is divisible, which implies it is
cofree.
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The exact sequence (3) shows that the map H1(π, E [p∞])→ L(C, E [p∞]) has cokernel a subgroup
of H2(C,F). If C is affine, this cohomology group vanishes; if C is projective, H2(C,F) is dual to
H0(C,F), which is finite as already noted.

We conclude that

corankZp S(C, E [p∞]) = (N(E)− 2χ(C) + |M |)− corankZp L(C, E [p∞])

which yields the desired result.

We are now ready to state our first bound on Selmer groups. First, we need a group-theoretic
definition.

Definition 2.6. Let K be a finite group, and Σ a subgroup of Aut(K). Let G be the semidirect
productK�Σ. Let VG be the real vector space spanned by the irreducible complex-valued characters
of G, and VK the real vector space spanned by the irreducible complex-valued characters of K; we
say a vector v in VG (respectively, VK) is nonnegative if its inner product with each irreducible
representation of G (respectively, K) is nonnegative. Let [G/Σ] ∈ VG be the coset character of
G attached to Σ, and let [K/1] ∈ VK be the regular character of K. Finally, let ε(K,Σ) be the
maximum of the inner product 〈v, [G/Σ]〉 over all v ∈ VG such that:

• v is nonnegative;
• [K/1] − r(v) is nonnegative, where r : VG → VK is the restriction map.

Remark 2.7. The region of VG demarcated by the two conditions above is a compact polytope, so
ε(K,Σ) is well defined.

The first main theorem of this paper is the following.

Theorem 2.8. Let k be a field of characteristic prime to 6, and C0/k a smooth (but not necessarily
proper) curve. Let f : C → C0 be a map of curves such that Cks → (C0)ks is an étale Galois cover,
with group K, let Σ be the image of Gal(ks/k) in Aut(K), and let E/C0 be a non-isotrivial elliptic
curve over C0. Then

rankZ E(k(C)) � ε(K,Σ)(|N(E)| − 2χ(C0))
where N(E) is the conductor of E/C0 and χ(C0) is the Euler characteristic of C0.

Proof. Define X,U,P,Q,M, π, g as in the first part of this section; we denote the corresponding
objects attached to C0, by adding a subscript 0, so that, for example, M0 is the set of places of C0

where E has multiplicative reduction. Let p be a prime not equal to char k.

Lemma 2.9. Let S(C, E [p∞]) be the Selmer group defined above. Then

Hom(S(C, E [p∞]),Qp/Zp)⊗Zp Qp

is a free Qp[K]-module of rank |N(E)| − 2χ(C0).

Proof. If A is a discrete cofinitely generated Zp[K]-module, we denote by W (A) the finitely gener-
ated Qp[K]-module Hom(A,Qp/Zp)⊗Zp Qp.

First of all, L(C, E [p∞]) is a direct sum of |K| copies of L(C0, E [p∞]), permuted faithfully by K.
So W (L(C, E [p∞])) is a free Qp[K]-module of rank |M0|. As in the proof of Proposition 2.5, the
finiteness of H2(C,F) shows that

[W (H1(π, E [p∞]))] = [W (S, E [p∞])] + [W (L(C, E [p∞]))]

in the Grothendieck group of the category of Qp[K]-modules. By Shapiro’s lemma,

H1(π, E [p∞]) = H1(π0, E [p∞]⊗Z Z[K])
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and, as in [Mil80, Remark V.2.19], there is an identity

[H1(π0, A)]− [H0(π0, A)] = (2g0 − 2 + |P0|+ |Q0|)[A] (5)

for any π0-module A. Since the construction there is functorial, (5) is an identity in the Grothendieck
group of discrete cofinitely generated Zp[K]-modules when A = E [p∞]⊗ZZ[K]. Since H0(π0, E [p∞])
is a cotorsion Zp-module, it is killed by the functor W ; we conclude that

[W (H1(π, E [p∞]))] = (4g0 − 4 + 2|P0|+ 2|Q0|)[Qp[K]]

from which the desired result follows.

Now let � be the smallest extension of k over which the automorphisms in K are defined; then
Σ can be identified with Gal(�/k). Define

W = W (E(�(C))⊗Z Qp/Zp).

Then W is a representation of K � Σ over Qp, and dimW = rankZ E(�(C)). Moreover, we know by
Lemma 2.9 that W , considered as Qp[K]-module, is a quotient of Qp[K]|N(E)|−2χ(C0).

It follows by the definition of ε(K,Σ) that

rankZ E(k(C)) = dimQp W
Σ � ε(K,Σ)(|N(E)| − 2χ(C0))

which was to be proved.

Remark 2.10. The methods used to prove Theorem 2.8 should be applicable to abelian varieties of
arbitrary dimension. Pacheco has carried this out in a recent preprint [Pac06]; we thank him for
communicating this to us. See [Pac05] for an extension of Silverman’s results to abelian varieties of
higher dimension.

We now turn to the problem of computing, or at least bounding, the value of ε(K,Σ) in terms
of more readily computable invariants.

Proposition 2.11. Let K/Σ be the set of orbits of Σ on K, and let Irr(K)/Σ be the set of orbits
of Σ on irreducible characters of K. Then

|K/Σ| � ε(K,Σ) �
∑

χ∈Irr(K)/Σ

χ(1)2.

In particular, if K is abelian,

ε(K,Σ) = |K/Σ|.
Proof. The lower bound on ε(K,Σ) is obtained merely by taking V = [G/Σ]. Then r(V ) is the
regular character of K, while 〈V, [G/Σ]〉 is |K/Σ|, yielding

|K/Σ| � ε(K,Σ)

as desired.
We now address the upper bound. Let W be an irreducible representation of G = K � Σ with

character ψ; then there is a unique orbit O of Irr(K) under Σ such that

ψ =
∑
χ∈O
〈ψ|K,χ〉χ.

Note that 〈ψ|K,χ〉 does not depend on the choice of χ ∈ O. Choose such a χ, and write Wχ for the
χ-isotypical part of W .

Choose a projection π : W → Wχ compatible with the action of K. Then we have a map of
complex vector spaces Π : W → (Wχ)|Σ| defined by

Π(w) =
⊕
σ∈Σ

π(wσ).
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The kernel of Π is preserved by all of G; since W is irreducible, the map Π must be an injection.
Now Π(WΣ) is contained in the diagonal of (Wχ)|Σ|; we conclude that

dimWΣ � dimWχ = 〈ψ|K,χ〉χ(1).

Now let V be an arbitrary representation of G satisfying the two constraints in the definition of
ε(K,Σ). By the above argument, each irreducible constituent W of V satisfies

dimWΣ � 〈ψW |K,χ〉χ(1)

whenever χ is an irreducible character of K with 〈ψW |K,χ〉 nonzero. On the other hand, the fact
that [K/1] − r(V ) is nonnegative implies that∑

W

〈ψW |K,χ〉 � χ(1).

For each orbit O of Irr(K)/Σ, let V (O) be the sum of all irreducible constituents W of V such that
〈ψW |K,χ〉 > 0 for some (whence every) χ ∈ O. Then the above inequalities show

dimV (O)Σ �
∑

W⊂V (O)

dimWΣ � χ(1)2.

Summing over all orbits O yields the desired upper bound on ε(K,Σ).
The statement on abelian K now follows immediately.

Remark 2.12. Neither bound in Proposition 2.11 is sharp in general. For instance, if we take G =
S4,K = A4,Σ = Z/2Z, the proposition yields

7 � ε(K,Σ) � 11.

In fact, by direct examination of the irreducible characters of G one computes that ε(K,Σ) = 8. It
would be interesting to give tighter bounds on ε(K,Σ) that do not involve knowing the character
table of G. In light of the second half of this paper, it would also be interesting to understand how
ε(K,Σ) varies as K � Σ varies among quotients of a certain fixed pro-p group.

In the case where K is abelian, Theorem 2.8 and Proposition 2.11 combine to yield the following
bound on Mordell–Weil rank.

Corollary 2.13. Let C/k be a smooth curve with an abelian group K of fixed-point free auto-
morphisms. Let E be an elliptic curve over C. Let |K/Gk | be the number of orbits of K under the
action of the absolute Galois group of k. Then

rank E(k(C)) � (|K/Gk |/|K|)(|N (E)| − 2χ(C)).

Corollary 2.13 implies, in particular, unconditional versions of the main theorems of [Sil00] and
[Sil04]. Theorem 1 of [Sil00] is the case in which C = Gm and K is the abelian group µn. Theorem 1
of [Sil04] is the case in which C is an arbitrary proper curve, and K is an abelian group of fixed-
point-free automorphisms.

We now consider more specifically the case where K is a finite p-group, with p �= char k. This
case can be seen as a bridge to the next section, in which K becomes an infinite pro-p group and
we consider asymptotic questions about towers of function fields.

We first observe that, in some such cases, the rank of E(k(C)) is not only subject to an upper
bound as in Theorem 2.8, but is actually zero.

Proposition 2.14. Let k be a field of characteristic prime to 6p and C0/k a smooth curve. Let
C/k → C0/k be a map of curves such that Cks → (C0)ks is an étale Galois cover, with Galois group
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a finite p-group K. Let E be a non-isotrivial elliptic curve over C0, and define π, π0,M0 as in § 2.
Let � be an extension of k over which all the elements of K are defined.

Suppose that E [p∞]π and S(C0, E [p∞])Gal(ks/�) are trivial. Then rankZ E(�(C)) = 0.

Proof. The Hochschild–Serre spectral sequence, together with the fact that H0(C,F) = E [p∞]π is
trivial, yields an isomorphism

S(C0, E [p∞])→ S(C, E [p∞])K .

Taking Gal(ks/�)-invariants yields

0 = S(C0, E [p∞])Gal(ks/�) = (S(C, E [p∞])Gal(ks/�))K .

Since K is a p-group, the fact that the discrete Zp[K]-module S(C, E [p∞])Gal(ks/�) has no
K-invariants implies that it is trivial, so (E(ks(C))⊗Z Qp/Zp)Gal(ks/�) is also trivial. The map

E(�(C))⊗Z Qp/Zp → E(ks(C))⊗Z Qp/Zp

has finite kernel, so rankZ E(�(C)) = 0 as desired.

3. Pro-p towers of function fields

We now turn our attention to questions of a more Iwasawa-theoretic flavor, replacing our finite étale
covers of curves with profinite towers of curves.

Definition 3.1. Let p be a prime different from char k. A pro-p tower over a smooth curve C0/k
is a tower

· · · → Cn → · · · → C1 → C0 (6)
such that:

• Cn → C0 is a map of curves over k;
• Cn/k

s → C0/k
s is a finite étale Galois cover whose Galois group, denoted by Kn, is a p-group.

If
Cn → · · · → C1 → C0

is a pro-p tower, we denote by K = lim←−Kn the Galois group of the tower, and by K(n) the kernel
of the projection K → Kn. We denote by k∞ the minimal algebraic extension of k whose Galois
group acts trivially on K.

Let E be a non-isotrivial elliptic curve over k(C0). Then, following Silverman [Sil04], one can
ask the following questions.

• Is rankZ E(k(Cn)) bounded as n grows?
• Is rankZ E(ks(Cn)) bounded as n grows?

For example, Fastenberg [Fas97], Shioda [Shi86], and Stiller [Sti87] give examples of elliptic
curves E/C(t) with the property that rankZ E(C(t1/r)) is bounded independently of r. (Indeed,
their results are stronger than those we will prove, since they apply to towers of extensions whose
degrees involve multiple primes.) Similarly, Ulmer [Ulm05] exhibits elliptic curves over k(t), with k
a finite field, such that rankZ E(k(t1/pn

)) is bounded as n grows.
On the other hand, Ulmer has also, in [Ulm02], exhibited an elliptic curve over k(t), where k is

a finite field, such that E(k(t1/pn
)) is unbounded as n grows. In fact, in this case the rank grows as

fast as Theorem 2.8 permits.
In Theorem 4.4 we will show that the answer to both questions above is yes if K = Zp and a

certain ‘large Galois image’ condition is satisfied by the action of Gal(ks/k) on S(C0, E [p∞]).
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We begin by observing that one can use Proposition 2.14 to construct towers in which E(k(Cn))
has rank 0 for all n.

Corollary 3.2. Let k be a field of characteristic prime to 6p. Let

· · · → Cn → · · · → C1 → C0

be a pro-p tower with Galois group K over C0/k. Let E be a non-isotrivial elliptic curve over C0.
Let π be the kernel of the natural map π0 → K, and let k∞ be the minimal algebraic extension of
k whose Galois group acts trivially on K.

Suppose, furthermore, that:

• E [p∞]π is trivial;

• the action of Gal(ks/k∞) on S(C0, E [p∞]) has trivial space of invariants.

Then rankZ E(k∞(Cn)) = 0 for all n.

Proof. The proof is immediate from Proposition 2.14 applied to Cn → C0.

One knows from experience with the Iwasawa theory of elliptic curves that it is often useful to
describe the Selmer group of an elliptic curve over an infinite extension as a module for a certain
Iwasawa algebra. Suppose we are given a tower over C0/k, and define

S(C∞, E [p∞]) = lim−→
n

S(Cn, E [p∞]).

Then S(C∞, E [p∞]) is a discrete p-primary group which carries a continuous action of K, whence
an action of the Iwasawa algebra

Λ(K) := lim←−
H

Zp[K/H]

where H ranges over open normal subgroups of K. In general, we write H i(C∞,F) to mean
lim−→H i(Cn,F|Cn).

We now introduce a simplifying hypothesis, which is in place for the remainder of this paper.

Hypothesis 1. We hypothesize that K is a nontrivial pro-p finite dimensional p-adic Lie group
with no p-torsion element.

Under this hypothesis, the Iwasawa algebra Λ(K) is a left and right Noetherian local ring with
no zero divisors, and H i(K,M) is a cofinitely generated Zp-module whenever M is a cofinitely
generated Λ(K)-module (see [How02, Lemma 1.6]). There is a natural notion of the corank of a
cofinitely generated discrete Λ(K)-module. Namely, we write

corankΛ(K)M =
∑
i�0

(−1)i corankZp H
i(K,M).

This definition was introduced by Howson, who also showed that it agrees with other natural
definitions [How02].

Proposition 3.3. The Λ(K)-module S(C∞, E [p∞]) is cofinitely generated.

Proof. By Nakayama’s lemma [Coa99, Proposition 2.1], it suffices to show that

S(C∞, E [p∞])K

is a cofinitely generated Zp-module. By the Hochschild–Serre spectral sequence, the cokernel of the
map

S0(C0, E [p∞])→ S(C∞, E [p∞])K
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is a submodule of

H2(K, E [p∞]π).

The lemma follows from the fact that S0(C0, E [p∞]) andH2(K, E [p∞]π) are both cofinitely generated
Zp-modules.

Proposition 3.4. The Λ(K)-corank of S(C∞, E [p∞]) is |N(E)| − 2χ(C0).

Proof. By definition of corank,
2∑

j=0

(−1)j corankΛ(K)H
j(C∞,F) =

∑
i�0

2∑
j=0

(−1)i+j corankZp H
i(K,Hj(C∞,F)).

However, by the Hochschild–Serre spectral sequence, the last quantity is equal to∑
k�0

corankZp(−1)kHk(C0,F).

Now H0(C0,F) and H2(C0,F) are both finite modules as in the proof of Proposition 2.5, so
their Zp-corank is zero. Similarly, H0(C∞,F) and H2(C∞,F) both have finite Zp-corank, which
implies that their Λ(K)-corank is 0. We conclude that

corankΛ(K) S(C∞, E [p∞]) = corankZp S(C0, E [p∞])

and the result follows from Proposition 2.5.

Remark 3.5. The map S(Cn, E [p∞]) → S(C∞, E [p∞])K
(n)

has kernel H1(K(n), E [p∞]π). Suppose
that E [p∞]π is finite; then H1(K(n), E [p∞]π) is also finite. On the other hand, the composition

E(k∞(Cn))⊗Z Qp/Zp → E(ks(Cn))⊗Z Qp/Zp → S(Cn, E [p∞])

also has finite kernel. We conclude that the map

E(k∞(Cn))⊗Z Qp/Zp → S(C∞, E [p∞])Gal(ks/k∞)

has finite kernel. In particular, if S(C∞, E [p∞])Gal(ks/k∞) has finite Zp-corank, it follows that the
rank of E(k∞(Cn)) is bounded independently of n. This leads us to consider the image of the Galois
representation

ρ : Gal(ks/k∞)→ AutΛ(K)(S(C∞, E [p∞])).

For example, suppose K = Zm
p and that S(C∞, E [p∞]) is a Λ(K)-module of corank R. Let F be the

fraction field of Λ(K) ∼= Zp[[T1, . . . , Tm]]. We then have a composition

ρF : Gal(ks/k∞)→ AutΛ(K)[Hom(S(C∞, E [p∞]),Qp/Zp)⊗Λ(K) F ] ∼= GLR(F ).

To say that S(C∞, E [p∞])Gal(ks/k∞) has positive Λ(K)-corank is to say that ρF acts trivially on
some line in FR.

Is there some general class of Zm
p -towers for which ρF is irreducible? In the case m = 1, irre-

ducibility and nontriviality of ρF would imply that S(C∞, E [p∞])Gal(ks/k∞) was a cotorsion Λ(K)-
module, which is to say a module of finite Zp-corank; so in that case E(k∞(Cn)) would have bounded
rank.

We note that ρF is very similar to the Galois representations defined by Ihara in [Iha86]. In each
case, one starts with a cofinitely generated Zp-module M with actions of π0 and Gal(ks/k); in our
case the module is E [p∞], while in [Iha86] it is Qp/Zp. ThenH1(π,M) is a cofinitely generated Λ(K)-
module which carries an action of Gal(ks/k∞); one then studies the properties of the representation
of Gal(ks/k∞) in AutΛ(K)H

1(π,M).
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4. Mordell–Weil ranks over Zp-towers of function fields

In this section, we show that the general machinery set up in the section above can be used to show
that the Mordell–Weil rank of E(ks(Cn)) is bounded as n grows, under the hypothesis that K = Zp

and Gal(ks/k) acts with sufficiently large image on S(C0, E [p∞]).
Let p be a prime, k a field with characteristic prime to 6p, and

· · · → Cn → · · · → C1 → C0

a pro-p tower over a smooth curve C0/k with Galois group K = Zp. As above, let k∞ be the minimal
algebraic extension of k over which all elements of K are defined. Let E/C0 be a non-isotrivial elliptic
surface. For every extension �/k, write �(C∞) for the direct limit of the function fields �(Cn).

In this section we will prove a theorem about the Mordell–Weil group of E over the field ks(C∞).
To this end, we would like to show that the action of Gal(ks/k) on E(ks(C∞)) ⊗Z Qp/Zp factors
through a small quotient. Of course, if E(ks(C∞)) is a finitely generated abelian group, then this
Galois action factors through some finite quotient Gal(�/k). We will prove a weaker condition on �,
which will suffice for the applications below.

Proposition 4.1. Let {Cn} be a tower of curves as above, and suppose that p > |N(E)| − 2χ(C0).
Then there exists an extension �/k∞ such that:

• Gal(ks/�) acts trivially on E(ks(Cn))⊗Z Qp/Zp for all n;

• � is an abelian pro-p extension of a finite extension of k∞.

Proof. Since S(C∞, E [p∞]) is a cofinitely generated Λ(K)-module, the group S(C∞, E [p∞])[p]K is
a finite-dimensional vector space over Fp. Let �0 be a finite extension of k∞ whose absolute Galois
group G�0 acts trivially on S(C∞, E [p∞])[p]K .

Lemma 4.2. Let K be a pro-p p-adic Lie group with no p-torsion element, and let M be a cofinitely
generated Λ(K)-module. Suppose that G is a subgroup of AutΛ(K)M which acts trivially on M [p]K .
Then G is a pro-p group.

Proof. Let m be the maximal ideal in Λ(K); then M [p]K = M [m]. So, for each g in G, the endo-
morphism g − 1 of M kills M [m], so (g − 1) acts nilpotently on the finite submodule M [ma] for all
a � 0. Since M [ma] is a finite abelian p-group, the image of G on Aut(M [ma]) is thus also a finite
p-group. Now M = lim−→M [ma], so G is a pro-p group.

In particular, the lemma applies to the image of G�0 in AutΛ(K)(S(C∞, E [p∞])). Let �′/�0 be a
pro-p extension so that G�′ acts trivially on S(C∞, E [p∞]).

We now consider the action of G�0 on E(ks(Cn)) ⊗Z Qp/Zp, a cofree cofinitely generated
Zp-module which we denote by Mn. First of all,

φ : S(Cn, E [p∞])→ S(C∞, E [p∞])Kn

has kernel H1(K(n),H0(C∞,F)) = H1(K(n), E [p∞]π). By Remark 2.4, the image of π0 in
AutZp(E [p∞]) contains a finite-index subgroup of SL2(Zp), which implies that E [p∞]π is a finite
group. It follows that kerφ is also finite.

Now Mn is a Gk-submodule of S(Cn, E [p∞]). For each g ∈ G�′ , the image (g − 1)Mn of the
endomorphism g − 1 applied to Mn vanishes in S(C∞, E [p∞]), so it lies in the finite group kerφ.
Since (g − 1)Mn is also a quotient of a divisible group, it is trivial. We conclude that G�0 acts on
Mn through its pro-p quotient Gal(�′/�0). Moreover, since E(ks(Cn)) is a finite-rank Z-module, the
action of G�0 on Mn in fact factors through a finite p-group quotient. Call this group Gn.

Recall that, if M is a cofinitely generated Zp-module, we denote by W (M) the Qp-module
Hom(M,Qp/Zp) ⊗Zp Qp. Then W (Mn) is a finite-dimensional Qp-representation of Kn which is
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a quotient of W (S(Cn, E [p∞])). Write r for |N(E)| − 2χ(C0). Then, by Lemma 2.9, W (Mn) is a
quotient of Qp[Kn]r. So W (Mn) is isomorphic to

∑n
i=0 Qp(ζpi)ai , where a generator of Kn acts

on the ith factor via multiplication by ζpi , and ai � r. Now, because Mn is divisible, the map
Gn → AutΛ(K)W (Mn) is injective. However, AutΛ(K)W (Mn) is just a direct sum of matrix algebras⊕n

i=0Mai(Qp(ζpi)). A nonabelian representation of Gn has dimension at least p, so since p > r, we
conclude that the image of Gn inside each matrix algebra is abelian, and so Gn itself is abelian.

Now take �n to be the field fixed by the kernel of the projection G�0 → Gn. Then taking � to be
the compositum of all of the �n yields the desired result.

Remark 4.3. It would be interesting to extend Proposition 4.1 to towers of curves with more gen-
eral Galois group. In particular, the argument above suggests the following purely group-theoretic
question. Let K be a pro-p p-adic Lie group with no p-torsion, and let M be a cofinitely generated
Λ(K)-module carrying an action

H ↪→ AutΛ(K)(M)

with the property that the image of H in

AutΛ(K)(M
N )

is finite for every open normal subgroup N of K. (For example, if K is abelian the action of K on
M satisfies this condition.) Is it then the case that H fits into an exact sequence

1→ N → H → H0 → 1

where H0 is finite and N is a uniform pro-p group? If so, what more can we say about N?

We can now show that, if the Galois action on S(C0, E [p∞]) has large image, the Mordell–Weil
group E(ks(C∞)) is finitely generated.

Theorem 4.4. Define p, k, {Cn}, E as in the beginning of this section, and suppose p > |N(E)| −
2χ(C0).

Suppose also that, for every extension �/k∞ which is an abelian pro-p extension of a finite
extension of k∞, no divisible subgroup of S(C0, E [p∞]) is fixed by Gal(ks/�).

Then E(ks(C∞)) is finitely generated.

Remark 4.5. For notational simplicity, we say that a cofinitely generated Zp-module A with action
of Gal(ks/k∞) has property L if, for every �/k∞ which is an abelian pro-p extension of a finite
extension of k∞, no divisible subgroup of A is fixed by Gal(ks/�). It is clear that property L is
inherited by submodules; if F ⊂ A is a finite submodule, and A has property L, then so does A/F .
Finally, if 0→ A→ B → C is an exact sequence and A and C have property L, then so does B.

Remark 4.6. Note that Theorem 4.4 bounds the Mordell–Weil rank of E over a tower of function
fields over a separably closed field, which is not possible using Corollary 3.2. On the other hand,
Theorem 4.4 never applies in the interesting case where k is a finite field; and indeed, as the example
of [Ulm02] shows, it is possible for E(k(C∞)) to be infinitely generated in this case.

Proof. Choose � to satisfy the conditions of Proposition 4.1, and define

M = (S(C∞, E [p∞]))Gal(ks/�).

The cokernel of the map

S(C0, E [p∞])→ S(C∞, E [p∞])K (7)

is a submodule of H2(K, E [p∞]π), which is trivial since K has p-cohomological dimension 1. The
group E [p∞]π is finite; this follows from the fact that π is a normal subgroup of π0 with quotient
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isomorphic to Zp, and that the image of π0 in Aut(E [p∞]) contains a finite-index subgroup of SL2(Zp)
as in Remark 2.4. It follows that the kernel of (7) is finite. So S(C∞, E [p∞])K inherits property L
from S(C0, E [p∞]), which has property L by hypothesis. So

MK = ((S(C∞, E [p∞]))K)Gal(ks/�)

is a finite group. By a standard fact of Iwasawa theory, a cofinitely generated Λ(K)-module with a
finite group of K-invariants is cotorsion, and in particular has finite Zp-corank, which we denote by
N . Since

S(Cn, E [p∞])→ S(C∞, E [p∞])

has finite kernel, we have corankZp S(Cn, E [p∞])Gal(ks/�) � N for all n; whence also

corankZp(E(ks(Cn))⊗Z Qp/Zp)Gal(ks/�)

is at most N . By hypothesis on �,

(E(ks(Cn))⊗Z Qp/Zp)Gal(ks/�) = E(ks(Cn))⊗Z Qp/Zp.

Lemma 4.7. Suppose the Mordell–Weil rank of E(ks(Cn)) is bounded independently of n. Then
E(ks(C∞)) is finitely generated.

Proof. Without loss of generality we may suppose that the rank of E(ks(Cn)) is equal to the rank
of E(ks(C0)) for all n. (If not, just replace C0 with a curve farther up the tower.)

It suffices to show that there exists an integer M such that ME(ks(Cn)) ∈ E(ks(C0)) for all n.
Now an element P of E(ks(Cn)) gives rise to a class ζ in H1(Kn, E(ks(Cn))tors) by the rule

ζ(k) = P k − P.
Since Kn is a p-group, we know that ζ lies in H1(Kn, E(ks(Cn))[p∞]) = H1(Kn, E [p∞]πn). Let m
be the order of the finite group E [p∞]π. Then m annihilates H1(Kn, E(ks(Cn))tors). This means, in
turn, that mP differs by a torsion element from an element of E(ks(C0)). We are now finished as
long as we can show that the torsion subgroup of E(ks(C∞)) is finite. We have already shown that
the p-primary torsion is finite. Let q be a prime other than p and suppose that E(ks(C∞))[q∞] is
infinite. However, the image of K in the automorphism group of E(ks(C∞))[q∞] must have finite
image, since q �= p; so this implies E(ks(Cn))[q∞] is infinite for some n, which is impossible by the
Mordell–Weil theorem. Taking M = m|E(ks(C∞))tors|, we are done.

The lemma yields the statement of the theorem.

5. Example: elliptic K3 surfaces

In this section we use Theorem 4.4 to show that there are many examples of elliptic curves over
rational function fields k(t) which have finite Mordell–Weil rank over ks(tp

−∞
).

We begin with some remarks on the relationship between Selmer groups of elliptic curves over
function fields and the étale H2 of the corresponding elliptic surfaces.

Let k be a field of characteristic prime to 6p, let C/ks be a smooth curve, and let f : E → C be
a non-isotrivial elliptic surface (i.e. a fibration whose generic fiber is an elliptic curve.)

Let j : η → C be the inclusion of the generic point, and write F̃ for the sheaf R1f∗(Qp/Zp) on
C, so that F = j∗j∗F̃ . Then the map

H1(C, F̃ )→ H1(C,F) = S(C, E [p∞])

is surjective, since the kernel of F̃ → F has zero-dimensional support.
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The Leray spectral sequence yields an exact sequence

0→ H1(C,Qp/Zp)→ H1(E ,Qp/Zp)→ H0(C, F̃ )→ H2(C,Qp/Zp)→ H2(E ,Qp/Zp). (8)

The image of the last map in H2(E ,Qp/Zp) is generated by the class of a fiber F of f in E ,
which vanishes unless C is projective. Let M be the quotient of H2(E ,Qp/Zp) by the class of F .
Then the Leray spectral sequence in degree 2 yields

0→ H1(C, F̃ )→M → H0(C,R2f∗(Qp/Zp))→ H2(C, F̃ ).

The group H2(C, F̃) is finite, so we find that

corankZp H
1(C, F̃ ) = corankZp M − corankZp H

0(C,R2f∗(Qp/Zp)).

The generic stalk of R2f∗(Qp/Zp) has corank 1; the stalk of a fiber v of f with mv irreducible
components has corank mv. So the corank of H0(C,R2f∗(Qp/Zp)) is 1 +

∑
v(mv − 1); we will use

this fact later.
The composition

M → H0(C,R2f∗(Qp/Zp))→ H0(C, j∗j∗R2f∗(Qp/Zp)) = Qp/Zp

is the degree map; that is, the class of a one-dimensional subscheme of E is sent to its degree as a
divisor on the elliptic curve E

k(C)
. Denote by G(E) the quotient of the space of degree-0 classes in

H2(E ,Qp/Zp) by the class of F . Then H1(C, F̃) is a submodule of G(E).
We can now prove the existence of many examples of elliptic surfaces meeting the conditions of

Theorem 4.4.
We restrict our attention to elliptic K3 surfaces. From now on we restrict our attention to the

case where k is a subfield of C. For the basic facts used here, see [MO93, § 3.2]. Suppose that
f : S → P1 is a minimal elliptic K3 surface over k; by minimal we mean there are no exceptional
curves contained in the fibers of f . Let Σ : P1 → S be the zero section and F a fiber of f . Then the
class 3F + Σ is a polarization of S of degree 4. The cohomology group H2(S(C),Z) is isomorphic
to Z22, and is endowed with a natural quadratic form Q by the intersection pairing. Let Γ′ be the
group of automorphisms of H2(S(C),Z) which preserve Q and stabilize the classes F,Σ, and let Γ
be a finite-index subgroup of Γ′.

Write S̄ for S ×k k̄. For each α > 0, denote by Γα the image of Γ in Aut(H2(S̄,Z/pαZ)), and
write Γp for the inverse limit of the Γα; so Γp is a closed subgroup of Aut(H2(S̄,Zp)).

Theorem 5.1. Let f : S → P1 be a minimal elliptic K3 surface over a field k ⊂ C. Choose g in k(t)
and let p be a prime greater than 20 + 4deg(g). Let E/k(t) be the generic fiber of f . Suppose that:

• the image of Gal(k̄/k) in Aut(H2(S̄,Zp)) contains Γp;

• the fiber St of f at t is an elliptic curve without complex multiplication whenever t ∈ P1(k̄) is
a zero or pole of g.

Then the Mordell–Weil rank of E over k̄(g1/pn
) is bounded as n→∞.

Proof. Let k∞ = k(ζp∞). Then the image of Gal(k̄/k∞) in Aut(H2(S̄,Zp)) still contains a finite-
index subgroup of Γp, since the determinant map sends Γp to a finite group.

Write H for the submodule of H2(S̄,Zp) generated over Zp by the classes of F and Σ. Then
Gal(k̄/k∞) acts irreducibly on (H2(S̄,Zp)/H)⊗Zp Qp. Let F⊥ be the submodule of H2(S̄,Zp) which
is orthogonal to F , and let FZp be the submodule generated over Zp by F . Since F · Σ = 1, the
map

F⊥/FZp → H2(S̄,Zp)/H
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is an isomorphism. On the other hand, Hom(F⊥/FZp,Qp/Zp) is precisely the subquotient G(E) of
H2(S̄,Qp/Zp) that we defined above. So Gal(k̄/k∞) acts irreducibly on G(E); more precisely, no
nontrivial proper divisible subgroup of G(E) is preserved by the Galois action.

Let k′ be a finite Galois extension of k∞. Then let A ⊂ G(E) be the group generated by all
divisible subgroups which are fixed by some Gal(k̄/�), where � varies over abelian extensions of k′.
Clearly A is preserved by Gal(k̄/k∞), so it is either trivial or all of G(E). However, in the latter
case, there would be some abelian extension �/k′ such that Gal(k̄/�) acted trivially on G(E); this is
not the case, since Γp does not have an abelian subgroup of finite index. So A is trivial. We conclude
that G(E) has property L, whence so does its submodule H1(P1, F̃).

By the corank computation above,

corankZp H
1(P1, F̃) = 21−

(
1 +

∑
v

(mv − 1)
)

= 20−
∑

v

(mv − 1)

where mv is the number of irreducible components of the fiber of f above v. However, this corank
is equal to |N(E)| − 2χ(P1) (see, e.g., [Shi92, Proposition 1]), which is the corank of H1(P1,F)
by Proposition 2.5. (In fact, it follows from the irreducibility of the Galois action on G(E) that
both coranks are 20, so that all fibers of f are irreducible.) We now know that the surjection
H1(P1, F̃) → H1(P1,F) has finite kernel; from this we may conclude that H1(P1,F) also has
property L by Remark 4.5.

Now let Z/k̄ be the scheme of zeroes and poles of g in P1, and let C/k̄ = P1 −Z. We then have
an exact sequence

0→ H1(P1,F)→ H1(C,F)→ H0(Z,F(−1)|Z) =
⊕

t∈Z(k̄)

H1(St,Qp/Zp(−1)).

Since the St are not CM by hypothesis, we know that H0(Z,F(−1)|Z) has property L, whence so
does H1(C,F) = S(C, E [p∞]). Plainly, the Zp-corank of S(C, E [p∞]) is at most 20 + 4deg(g). We
are now in the situation of Theorem 4.4, taking C0 to be C and Cn the étale cover of C obtained
by adjoining g1/pn

. The desired conclusion follows.

We recall that if k is a field and V/k a variety, a subset of V (k) is called thin if it is contained
in f(W (k)) for some morphism f : W → V such that dimW � dimV and f does not admit a
k-rational section. We say k is Hilbertian if P1(k) is not a thin subset of itself. Note that number
fields are Hilbertian. See [Ser92, ch. 3] for more properties of these definitions.

Corollary 5.2. Suppose that k is a Hilbertian subfield of C, and let X be P1
k parametrized by the

variable t. Then there are infinitely many isomorphism classes of elliptic K3 surfaces S → X such
that the Mordell–Weil rank of S over k̄(t1/pn

) is bounded as n→∞.

Proof. By [MO93, Proposition 3.27], there is an open dense subset U ⊂ P27 parametrizing isomor-
phism classes of elliptic K3 surfaces: in particular, there is a map S → P1

U of U -schemes such that,
for each u ∈ U , the fiber Su → P1

u is an elliptic K3 surface. Let Γ be the image of the monodromy
map

π1(U(C), u)→ Aut(H2(Su(C),Z)).

By [MO93, Theorem 3.2.10], Γ is a finite-index subgroup of Γ′. Pick some α � 0 and recall that
Γα denotes the image of Γ in Aut(H2(Su(C),Z/pαZ)). From the surjectivity of π1(U(C), u) → Γα

and the Hilbertianness of k, one knows that there are infinitely many points x ∈ U(k) such that the
image of Gal(k̄/k) in Aut(H2(S̄x,Z/p

αZ)) contains Γα. For some sufficiently large α, this implies
that the image of Gal(k̄/k) in Aut(H2(S̄x,Zp)) contains Γp (see, e.g., [Ell04, Lemma 3].) We can
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reparametrize the base curve so that the fibers of S over zero and infinity are smooth elliptic curves
without CM. Then by Theorem 5.1, if we consider Sx as an elliptic curve E/k(t), then the rank of
E(k̄(t1/pn

)) is bounded as n grows.
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