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We perform direct numerical simulations to study the effect of the gravity centre offset
in spherical Rayleigh–Bénard convection. When the gravity centre is shifted towards the
south, we find that the shift of the gravity centre has a pronounced influence on the flow
structures. At low Rayleigh number Ra, a steady-state large-scale meridional circulation
induced by the baroclinic imbalance, created by the misalignment of the gravity potentials
and isotherms, is formed. At high Ra, an energetic jet is created on the northern side of the
inner sphere that is directed towards the outer sphere. The large-scale circulation induces
a strong co-latitudinal dependence in the local heat flux. Nevertheless, the global heat flux
is not affected by the changes in the large-scale flow organization induced by the gravity
centre offset.
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1. Introduction

The effect of an off-centre gravity location on the flow structures in turbulent thermal
convection has not been studied previously. Here, we use spherical Rayleigh–Bénard (RB)
convection as an idealized model system to study the effect of an off-centre gravity location
on thermal convection in a spherical system. The system consists of a fluid layer enclosed
between two spherical shells, heated from the inner sphere and cooled from the outer
one. Convection in spherical shells differs from the classical RB convection (Ahlers,
Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher 2012) owing to
the curvature of the boundaries, non-uniform gravity, and the geometrical asymmetry
between the boundary layer at the inner and outer spheres (Busse 1970; Spiegel 1971;
Jarvis, Glatzmaierand & Vangelov 1995; Tilgner 1996; Shahnas et al. 2008; Deschamps,
Tackley & Nakagawa 2010; O’Farrell, Lowman & Bunge 2013; Gastine, Wicht & Aurnou
2015).

Most studies on spherical RB convection focus on the case in which the gravity
centre coincides with the geometric one. Busse (1975) used perturbation analysis to
show the qualitative difference between convective flow patterns of odd and even
spherical harmonic order just above the onset of convection. Subsequently, in an infinite
Prandtl number (Pr) fluid with application to mantle convection, Bercovici, Schubert &
Glatzmaier (1989) showed that these convective patterns persist for Rayleigh numbers (Ra)
up to 100 times larger than the critical value. For Ra > 105, the axisymmetric convective
patterns break down when the flow starts to show time-dependent behaviour (Iwase &
Honda 1997; Deschamps et al. 2010; Futterer et al. 2013; Yanagisawa, Kameyama &
Ogawa 2016). In spherical RB convection, the influence of curvature is important. For
constant Ra, the length scale of the preferentially convective patterns decreases with
increasing radius ratio (Deschamps et al. 2010). Yanagisawa & Yamagishi (2005) find
that the convective rolls become smaller with increasing Ra when the radius ratio is
kept constant. Gastine et al. (2015) show that for Pr = 1, sheet-like thermal plumes are
formed near the inner and outer spheres, and these plumes undergo morphological changes
into mushroom-like plumes when they eject from the boundary layers to the bulk. These
plume dynamics are similar to the situation for classic RB convection (Puthenveettil &
Arakeri 2005; Shishkina & Wagner 2008; Zhou & Xia 2010; Chillà & Schumacher 2012).
However, due to the asymmetries between the hot and cold surfaces in spherical shells, the
mushroom-like plumes emitted from the outer sphere are thicker than those emitted from
the inner sphere (Gastine et al. 2015). Nevertheless, studies have shown that there are
similarities between spherical and classical planar RB convection. For example, Gastine
et al. (2015) showed that the effective heat transport (characterized by the Nusselt number
Nu) scaling exponent α in Nu ∼ Raα in spherical RB convection has a similar Ra number
dependence as in planar RB convection, where for Ra � 1011, typically 0.28 � α � 0.31
(Ahlers et al. 2009).

However, the misalignment between the gravity centre and the geometric one in the
spherical RB convection set-up has been overlooked to date. In this study, we use
three-dimensional direct numerical simulations to investigate the effect of the gravity
centre offset on the flow structures and heat transfer in spherical RB convection. The paper
is organized as follows. In § 2, we explain the numerical method and discuss the considered
parameter regime. In §§ 3.1–3.3, we discuss the large-scale flow pattern induced by the
off-centre gravity. The effect of the large-scale structure on heat transfer is shown in § 3.4.
In § 3.5, we study the effect of the gravity profile and Ra on flow structures and heat
transfer. The paper ends with a summary of our findings and conclusions in § 4.
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Figure 1. Schematic of spherical RB convection in between two concentric spheres with radius ratio η = ri/ro
between the inner and outer sphere, and gap size d = ro − ri. A no-slip boundary condition with constant
temperature is used on the inner (hot) and outer (cold) sphere. In spherical coordinates the longitudinal,
co-latitudinal and radial directions are represented by θ̂ , ϕ̂ and r̂, respectively. The gravity centre G is offset
from the geometric centre O, and P is an arbitrary fluid point in the spherical shell.

2. Numerical method and parameters

2.1. Set-up of convection in spherical shells
The spherical RB geometry is illustrated schematically in figure 1. Fluid fills a spherical
shell between the inner sphere of radius ri and the outer sphere of radius ro. The radius
ratio between the inner and outer spheres is given by

η = ri/ro. (2.1)

In this study, we consider a fixed aspect ratio η = 0.3. The surface temperatures of the
inner and outer spheres are kept constant at Ti and To, respectively, with Ti > To. No-slip
boundary conditions are imposed on both boundaries. Point G indicates the gravity centre,
which is offset from the geometric centre O. The gravity shift is defined as

ε = |OG|/ri, (2.2)

where |OG| indicates the displacement of the gravity compared to the geometrical centre;
see figure 1. In the absence of rotation (and magnetic field), for a sphere, there are no
north and south directions, therefore any diametrically opposite symmetry is equivalent
to another. Nevertheless, since the spherical coordinates are naturally clustered around
the polar axis, it is beneficial to consider the jet aligned along this axis, referred to as
north–south, from a computation point of view. For convenience, we always shift the
gravity centre G to the south.

The dynamics of spherical RB convection is controlled by the Rayleigh and Prandtl
numbers

Ra = βgo �T d3

κν
, Pr = ν

κ
, (2.3a,b)

where β is the thermal expansion coefficient, go is the surface-averaged gravity at the
outer sphere, ν is the kinematic viscosity, and κ is the thermal diffusivity. We normalize
the fields and distances by the length scale d = ro − ri, the temperature difference �T
between the inner and outer spheres, and the free-fall velocity U = √

βgo �T d.
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2.2. Underlying dynamical equation and numerical method
We solve the Navier–Stokes equations under the Boussinesq approximation in spherical
coordinates, which in dimensionless form read

∂u
∂t

+ u · ∇u = −∇p +
√

Pr
Ra

∇2u + CggT, ∇ · u = 0, (2.4)

∂T
∂t

+ u · ∇T = 1√
Ra Pr

∇2T, (2.5)

where u, p, T and Cgg denote the fluid velocity, pressure, temperature and gravitational
acceleration acting in the three directions. The coefficients Cg,i (where i = 1, 2, 3
correspond to the θ̂ , r̂ and ϕ̂ directions, respectively) denote the decomposition of g, which
is detailed in Appendix A. Since we always shift the gravity centre G to the south, the three
components of the buoyancy coefficient can be written as

Cgg = (0, r + riε cos ϕ, −εri sin ϕ) r
−ng
o L

ng−1
GP , (2.6)

in which LGP = |GP| indicates the distance between a fluid point and the gravity centre;
see figure 1. We consider the gravity profile

g = (LGP/ro)
ng, (2.7)

and we use ng = −2, −1, 0 and 1. The value of ng can be inferred by physical
considerations on the mass ratio between the nucleus (r < ri) and the spherical shell (ri <

r < ro). The gravity is constant (ng = 0) when the mass of the spherical shell is negligible.
This assumption is typically used to model the Earth’s mantle (Bercovici et al. 1989). If
the mass is condensed centrally, then one obtains ng = −2. Gastine et al. (2015) showed
that only for this gravity distribution function is there an analytical relation between the
viscous dissipation rate (εU) and Nu, i.e. εU = (3/(1 + η + η2))(1/Pr)(Nu − 1). When
the density is constant within the fluid layer, and no mass is contained in the inner sphere,
gravity is directly proportional to the radial coordinate r (ng = 1) (Tilgner 1996).

The governing equations (2.4) and (2.5) are discretized by a staggered central
second-order finite-difference scheme in spherical coordinates. The numerical scheme is
based on the method by Verzicco & Orlandi (1996), which has been extended recently
to spherical coordinates by Santelli, Orlandi & Verzicco (2021). The advantage of this
scheme is that it allows arbitrary non-uniform grids in the radial and co-latitudinal
directions. Here, it is worthwhile to mention that singularities at the poles are prevented
by introducing a new set of quantities (uθ , urr2, uϕ sin ϕ), which results in trivial
boundary conditions uϕ sin ϕ = 0 at the north pole (ϕ = 0) and south pole (ϕ = π) in the
co-latitudinal direction. The code has been validated carefully by Santelli et al. (2021), and
we refer to that work for details on the method. For additional validation results relevant
to the flows considered here, we refer the reader to Appendix B.

2.3. Choice of parameters
To study the effect of the gravity centre location on the flow dynamics in spherical
RB convection, we considered different gravity distributions (ng ∈ {−2, −1, 0, 1}, see
(2.7)) and gravity centre offset (ε from 0 to 0.8, see (2.2)) for Ra = 107 and 108. All
simulations in this study are for Pr = 1. To ensure that the flow is resolved fully, we
place a sufficient number of computational grid points in the bulk and the boundary
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layers (Stevens, Verzicco & Lohse 2010). As we will use spectral analysis to study the
flow structures, we use a uniform grid in the longitudinal and co-latitudinal directions.
In the radial direction, the grid cells are clustered towards the inner and outer spheres to
ensure that the boundary layers are resolved adequately (Shishkina et al. 2010).

We calculate the Nusselt number Nu from the normalized averaged temperature
gradients at the inner and outer spheres as follows:

Nui = −η
d〈T〉θ,ϕ

dr

∣∣∣∣∣
ri

, Nuo = −1
η

d〈T〉θ,ϕ

dr

∣∣∣∣∣
ro

. (2.8a,b)

Here, 〈· · · 〉θ,ϕ represents the average over a spherical surface with fixed r, and · · · indicates
a time average. Also, Nui and Nuo as functions of the co-latitudinal direction are defined
as

Nui(ϕ) = −η
d〈T〉θ

dr

∣∣∣∣∣
ri

, Nuo(ϕ) = −1
η

d〈T〉θ
dr

∣∣∣∣∣
ro

, (2.9a,b)

where 〈· · · 〉θ represents the average over the azimuthal direction. The difference in Nu
values obtained at the inner and outer spheres is always less than 0.2 %. Also, we
verify that Nu calculated at the spheres is the same as the value obtained from the
volume-averaged Nusselt number Nuv , which is calculated from the surface-averaged
Nusselt number Nuh averaged over concentric spherical surfaces with fixed r, with

Nuh(r) =
√

Ra Pr 〈urT〉θ,ϕ − ∂r〈T〉θ,ϕ

−∂rTc
, (2.10)

where Tc(r) = η/[(1 − η)2r] − η/(1 − η) is the purely conductive temperature profile for
constant temperature boundary conditions. Subsequently, we perform radial integration
and time averaging to obtain Nuv as

Nuv = 1
d

∫ ro

ri

Nuh(r) dr. (2.11)

The volume-averaged root-mean-square (r.m.s.) Reynolds number is given by

Rerms =
√

Ra/Pr
√

〈uiui〉, i = 1, 2, 3. (2.12)

Here, 〈· · ·〉 denotes the average over the whole volume of the spherical shell. The details
of the simulations considered in this study are summarized in table 1.

3. Results

Before we discuss the turbulent flows in §§ 3.2–3.5, we first focus on the large-scale
circulation formation induced by off-centre gravity in a steady axisymmetric flow obtained
at Ra = 103. As indicated in (2.6), the radial and co-latitudinal buoyancy coefficients
depend on the gravity centre offset ε and the gravity distribution ng. To disentangle these
effects, for turbulent flows we first examine the effect of the gravity centre offset for
constant gravity (ng = 0) at Ra = 108 in §§ 3.2–3.4. The effect of ng and Ra is studied
in § 3.5.
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Ra ng Nθ × Nr × Nϕ ε Nu Nuv Rerms

106 0 241 × 71 × 121 0.01 4.89 4.88 151.4
0.05 4.86 4.86 152.6

107 −2 501 × 101 × 251 0 16.09 16.05 919.5
0.2 16.18 16.17 965.7
0.4 16.23 16.22 976.9
0.8 16.20 16.08 936.8

107 −1 401 × 91 × 201 0 11.89 11.90 657.5
0.2 11.91 11.89 692.5
0.4 11.96 11.95 702.6
0.8 11.41 11.14 526.6

107 0 301 × 81 × 151 0 8.73 8.77 485.6
0.01 8.92 8.91 486.1
0.05 8.94 8.93 493.6
0.2 8.91 8.91 497.6
0.4 8.97 8.96 494.4
0.8 8.81 8.74 409.3

107 1 321 × 85 × 161 0 7.04 7.05 358.4
0.2 6.93 6.89 356.3
0.4 7.06 7.03 359.5
0.8 7.10 7.06 319.4

108 0 501 × 101 × 251 0 17.36 17.38 1487.3
0.01 17.36 17.35 1487.9
0.05 17.37 17.42 1501.1
0.1 17.30 17.29 1505.2
0.2 17.15 17.15 1529.0
0.4 17.31 17.24 1513.7
0.8 16.62 16.53 1302.8

Table 1. Details of the simulations. The columns from left to right indicate: Ra, the gravity profile exponent
ng (see (2.7)); the number of grid points in the longitudinal, radial and co-latitudinal directions, Nθ × Nr × Nφ ;
the shift of the gravity centre with respect to the geometrical centre ε (see (2.1)); the average heat transfer Nu
across the inner Nui and outer Nuo spheres (see (2.8a,b)); Nuv (see (2.11)); and Rerms (see (2.12)).

3.1. Dynamics of steady flow
When the gravity centre offsets with the geometric one in spherical RB convection, the
crossing between temperature gradient (∇T) and gravitational acceleration (g) results
in the baroclinic torque, which plays an important role in the generation of vorticity
by density variations. Figure 2(a) shows gravitational potential isolines to intersect the
isotherms in an axisymmetric flow. The curl of the buoyancy term (∇ × gT) denotes the
Boussinesq baroclinic torque under the Boussinesq approximation (Schladow, Patterson &
Street 1989; Heifetz, Maor & Guha 2020). As shown in figure 2(b), the baroclinic torque
is strongest in the vicinity of the inner sphere where the angle between ∇T and g is the
largest. The baroclinic torque drives a northward-directed flow along the inner sphere.
This results in a large-scale circulation pattern as shown in figure 2(c). In steady flows,
large-scale circulations induced by baroclinic torque are also reported for side-heated
cavity (Jiang, Sun & Calzavarini 2019), stratified flow in a semicylindrical cavity (Kumar
& Pothérat 2020), and natural convection in spherical annuli (Scurtu, Futterer & Egbers
2008).

For different ng, figure 3(a) shows the radial (Cg,rgr̂) and co-latitudinal (Cg,ϕgϕ̂)
buoyancy coefficients for ε = 0.8 on the mid-plane of the spherical shell. It shows that
g increases monotonically from the north to the south pole when ng < 0. For ng > 0,

942 A21-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.360


Off-centre gravity induces large-scale flows in spherical RB

(a) (b) (c)

g
g

T

g

g

g

g

g

g

0.5

0.4

0.3

0.2

0.1

0

0.05

0.04

0.03

0.02

0.01

0

(uiui)
1/2∇ × gT

Figure 2. Baroclinic imbalance induces a regular large-scale circulation due to the offset gravity centre
towards the south (ε = 0.2, see (2.2)) for a steady flow with Ra = 103. (a) The misalignment of the gravitational
potentials (blue dashed circles) and isotherms (red circles) in a meridional cut. The direction is indicated by the
blue arrows. (b) The corresponding Boussinesq baroclinic torque ∇ × gT . Two dashed arrows correspond to
the direction of the baroclinic torque. (c) The vector field (coloured by the velocity magnitude) and streamlines
(grey curves) of the velocity in the meridian plane.

the opposite trend is observed, while for ng = 0, the gravity is constant as function of
the co-latitude location. We keep Ra = 103 and vary ng from −2 to 1. The baroclinic
torque (∇ × gT) for ε = 0.8 is shown in figure 3(b): ∇ × gT concentrates in the south
polar region when ng = −2, whereas the strongest ∇ × gT gradually moves to the equator
with increasing ng. The corresponding large-scale circulation is shown in figure 3(c); the
velocity field strengthens close to the inner sphere and its highest value moves from the
south to the equator, which is the same trend as for the baroclinic torque. In addition, the
magnitude of the velocity field decreases with increasing ng due to the decreasing mean
buoyancy power (〈gurT〉, see Gastine et al. 2015) averaged over the spherical shell.

3.2. Generation of convective jet and large-scale circulation
Figure 4 shows the temperature field on the meridional cut in figures 4(a–d), the equatorial
cut in figures 4(e–h, and the surfaces corresponding to the locations of the outer and inner
thermal boundary layer heights in figures 4(i–p). Figures 4(b–d) show that for ε ≥ 0.05,
the jet ejects hot plumes from the inner sphere towards the outer sphere. When ε is larger,
e.g. ε ≥ 0.4, thermal plumes preferably ascend northwards along the inner sphere, as
shown in figures 4(o,p). This happens because the plumes that form along the southern part
of the inner sphere move upwards, following the large-scale flow pattern induced by the
baroclinic torque; see figure 2(c). Consequently, the plumes combine at the northern part
of the inner sphere to form the northbound plume towards the outer sphere (figures 4c,d).
This creates a convective jet impinging on the north pole of the outer sphere, after which
thermal plumes descend southwards along the outer sphere, as shown in figures 4(k,l). As
a result, a limited number of plumes are ejected radially from the hot sphere to the cold
sphere in the equatorial region, as shown in figures 4(g,h). In addition, we visualize the
advection of temperature fluctuation by baroclinic flow U · ∇T ′ as shown in figures 4(q–t).
We find that U · ∇T ′ is intense where T is high, which indicates that baroclinic flow
works on the temperature perturbation to promote the generation of thermal plumes on the
northern side of the sphere. This confirms that the plumes combine at the northern part of
the inner sphere to form the northbound plume towards the outer sphere.
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(a)

(b)

(c)

0 200 400 0 0 1.5 3.0 0 0.45 0.9020 40

0 0.2 0.4 0 0.1 0.2 0 0.05 0.100 0.4

ng = –2 ng = –1 ng = 0 ng = 1

0.8

Figure 3. (a) The radial (Cg,rgr̂, red arrow) and co-latitudinal (Cg,ϕgϕ̂, blue arrow) decomposition of
buoyancy g GP (black arrow) in (2.6) for ε = 0.8. Different panels indicate the buoyancy components on
the mid-plane of the spherical shell for ng = −2, −1, 0, 1; see (2.7). The lengths of the arrows are scaled
by the co-latitudinal averaged gravity in the mid-plane. (b,c) Baroclinic imbalance induces regular large-scale
circulation due to the offset gravity centre ε = 0.8 for a steady flow with Ra = 103 and different gravity profiles.
(b) The Boussinesq baroclinic torque ∇ × gT in a meridional cut. (c) The vector field (coloured by the velocity
magnitude) and streamlines (grey curves) of the velocity in the meridian planes.
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(a) (b) (c) (d )

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) ( t)

ε = 0.05 ε = 0 ε = 0.4 ε = 0.8 

T
0 0.1 0.2 0.3

0.3 0.4 0.5 0.6 0.7 0.8

–0.9 0.9–0.3 0.3

Figure 4. (a–p) Snapshots of the temperature fields for Ra = 108, ng = 0 and ε = 0, 0.05, 0.4, 0.8. (a–d)
Meridional cut and temperature isosurface for T = 0.2. (e–h) Temperature field in the equatorial plane, and
(i–l,m–p) temperature field at the outer (inner) thermal boundary layer heights along the inner and outer spheres,
displayed in hammer projections. (q–t) Advection of temperature fluctuation by the baroclinic flow U · ∇T ′ at
the outer thermal boundary layer height.

We compare the unsteady flow fields for ε = 0.01 and 0.05, and different Ra, in
figures 5(a) and 5(b), respectively. The Ra = 103 cases are shown as reference in the
leftmost panel. For the very small ε = 0.01 in figure 5(a), the upward convective jet
is the strongest for Ra = 107. However, the convective jet and meridional circulation
are weakened significantly for large Ra = 108. For ε = 0.05, figure 5(b) shows that the
convective jet is the strongest for Ra = 106. Again, the convective jet weakens with
increasing Ra. In figure 5(c), we compare different ε for Ra = 108. As expected, the
convective jet is enhanced significantly with increasing ε. However, the shape of the
large-scale circulation is almost unchanged for ε ≤ 0.4. When ε increases to 0.8, the
large-scale circulation becomes a crescent shaped circulation, which results in its centre
moving northwards.
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(c)
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ε = 0.01 

Figure 5. The vector field (coloured by the velocity magnitude) and streamlines (grey curves) of the
longitudinal and time-averaged velocity in the meridian plane for: (a) ε = 0.01, and (b) ε = 0.05, with
increasing Ra = 103 (steady flow), Ra = 106, Ra = 107 and Ra = 108; (c) Ra = 108 and ng = 0 with
increasing ε = 0.1, 0.2, 0.4, 0.8.

3.3. Modal analysis to identify large-scale structures
When the gravity centre is moved towards the south pole (increasing ε), the total turbulent
kinetic energy (TKE), which is defined as

TKE = 1
2

Ra
Pr

〈uiui〉, i = 1, 2, 3, (3.1)
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Figure 6. (a) Volume-averaged TKE(ε)/TKE(ε = 0) as a function of ε for Ra = 108 and ng = 0. The error
bars indicate the corresponding standard deviations. (b) Plot of 〈Cm=0〉 of TKE for � > 0, normalized by
〈Cm=0〉 for ε = 0. The inset shows 〈C�,m=0〉, normalized by 〈C�,m=0〉 for ε = 0, as a function of the spherical
harmonic order �, for different ε.

first increases slightly (ε ≤ 0.4) and then decreases considerably (ε = 0.8) (see figure 6a).
To study the effect of the off-centre gravity on the distribution of TKE, we perform a modal
analysis of the flow. In spherical coordinates, a surface spherical harmonic function is the
expansion of plane waves, where the order m and degree � represent the wavenumbers
along the longitudinal and co-latitudinal directions, respectively. Here, we define the power
spectrum on a spherical surface as

C�,m = a2
�,m + b2

�,m, (3.2)

where a�,m and b�,m are the spherical harmonics expansion coefficients, which are detailed
in Appendix C. We define the power spectrum in the longitudinal direction as

Cm = 1
n − m + 1

n∑
�=m

C�,m, n = min(Nϕ − 1, (Nθ + 1)/2), (3.3)

where Nϕ and Nθ represent the numbers of grid points in the co-latitudinal and
longitudinal directions, respectively. Radial integration and temporal averaging are used
to obtain 〈· · · 〉r. The large-scale circulation is represented by (m = 0, � > 0) modes as
demonstrated in Appendix C.

Figure 6(a) shows that the average TKE is almost unchanged for ε ≤ 0.4, but the
distribution among the different modes is changed. As we have seen in figure 5, a
large-scale circulation is formed when ε ≥ 0.05 for Ra = 108. Figure 6(b) shows that the
axisymmetric (m = 0) mode, which indicates the large-scale mode, increases strongly with
ε. For ε = 0.8, both the m = 0 mode and the total TKE decrease sharply, while it is still
enhanced compared with ε = 0. Interestingly, only a small gravity centre offset (ε ≥ 0.05)
is required to form the convective jet and the corresponding meridional circulation for
Ra = 108. The inset of figure 6(b) shows the distribution of the m = 0 mode over the
different co-latitudinal structures (〈C�,m=0〉r), which shows that the large-scale circulation
is dominated by the co-latitudinal modes with � ≤ 3. With increasing ε, 〈C�,m=0〉r is
enhanced for low (� ≤ 3) and high (� ≥ 70) wavenumbers, compared with ε = 0.
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Figure 7. (a) Mean temperature 〈T〉θ (r, ϕ) averaged over time and longitudinal direction shown in the
meridian plane for ε = 0.05, 0.4 and 0.8. (b) Mean temperature profiles (〈T〉θ (r)) at three co-latitudes for
ϕ = 0, π/2 and π, respectively. The inset for ϕ = π/2 shows the temperature gradient d〈T〉θ (r)/dr.

3.4. Effect of large-scale flow on heat transfer distribution
As we have shown above, the gravity centre offset influences strongly the flow structures.
This raises the question of how the local temperature profiles and heat fluxes are affected.
Figure 7(a) shows the mean temperature in the meridian plane. For ε = 0, the temperature
is uniform in the co-latitude direction. However, with increasing ε, the effect of the
north-pole convective jet, which brings hot fluid from the inner to the outer sphere,
becomes more pronounced. The effect of the jet is more visible in figure 7(b), which
shows the temperature profiles at selected angular positions in the co-latitudinal direction.
Most of the temperature drop occurs in the thermal boundary layer regardless of ε and ϕ.
However, for ε = 0.4 and 0.8, the positive temperature gradient (d〈T〉θ /dr), observed at
ϕ = π/2 and shown in the inset, indicates some thermal stratification in the bulk region.

Next, we examine how the local heat fluxes depend on ε. Figure 8 shows the Nusselt
number along the inner Nui(ϕ) and outer Nuo(ϕ) spheres. It is observed that the local heat
fluxes on the outer sphere decrease from ϕ = 0 (north pole) to ϕ = π (south pole), whereas
the opposite trend is observed on the inner sphere. This happens because the hot convective
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Figure 8. Nusselt number Nu on (a) the inner sphere and (b) the outer sphere, as functions of the co-latitudinal
direction for Ra = 108 and ng = 0. The inset of (b) shows Nu(ε)/Nu(ε = 0) as a function of ε. The error bars
represent standard deviations. We note that the error bars for standard errors are smaller than the size of the
symbols, which are representative for the uncertainty in the presented global Nusselt values.

jet impinges on the outer boundary layer, resulting in a thinner thermal boundary layer and
larger heat flux than without the jet. On the inner sphere, the formation of the convective
jet reduces temperature gradients, and therefore the heat transport, at the north pole of
the inner sphere, as shown in figure 7(a). Surprisingly, the formation of the large-scale
circulation and corresponding non-uniform heat flux distribution has a limited influence
on the overall heat flux, which globally is not sensitive to the large-scale dynamics in the
flow (Ahlers et al. 2009) (see inset in figure 8b), although some reduction in the heat
transport is observed for ε = 0.8 when the flow becomes stratified more thermally.

3.5. Effect of Ra and gravity profile
So far, we have focused on the effect of the gravity centre offset on the flow structures.
In this subsection, instead, we show that convective jet and large-scale flow structures are
formed for a wide range of ng and Ra, and that the control parameters modify significantly
the intensity of the large-wavelength structures. However, as we have seen above, the
global heat flux depends only weakly on ε in the considered parameter regime.

Figures 9(a–d) show visualizations of the convective jet for Ra = 107, ε = 0.4, and
different gravity profiles. The figures show that the convective jet forms with ur > 0
in the north pole region when the gravity centre shifts to the south. As expected, the
jet becomes more turbulent when ng is decreased, as this increases the mean buoyancy
power over the spherical shell. As shown previously in figure 3(a), the co-latitudinal
buoyancy component Cg,ϕgϕ̂ points to the north pole in all circumstances. However,
the radial buoyancy coefficient Cg,rgr̂ is strongly dependent on the co-latitude. It is well
accepted that the stronger radial velocity component tends to induce more intense thermal
plumes. However, the convective jet is still observed in the north pole region rather than
the south pole region when ng = −2, as shown in figure 9(d). This confirms that the
large-scale circulation is a result of the baroclinic imbalance due to the misalignment of
the gravity isopotential and isothermal lines, which is indicated by steady flows shown in
figures 3(b,c).

The corresponding Rerms(r), presented in figure 10(a), shows that the turbulent intensity
is enhanced greatly with decreasing ng. This reveals that the flow becomes more
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Figure 9. (a–d) Instantaneous isosurfaces of T = 0.2 for different gravity distributions from ng = 1 to
ng = −2 (see (2.7)) for Ra = 107 and ε = 0.4. Panel (e) shows Ra = 108, ng = 0 and ε = 0.4, for comparison.
The colour indicates ur at the isosurface. (Two movies for Ra = 107, ng = 0 and ε = 0.8 are provided; see
supplementary movies 1 and 2.)

turbulent when ng decreases, due to the increased buoyancy power over the volume.
Correspondingly, figure 10(b) shows that the TKE spectrum of 〈Cm〉r increases for all
wavenumbers. We note that 〈Cm=0〉r, which dominates TKE and indicates the strength
of the large-scale circulation, increases with decreasing ng. With increasing Ra from
107 to 108, the normalized Rerms(r) is enhanced as shown in figure 10(c). As shown
in figure 10(d), the enhancement happens for all wavenumbers, especially for the high
wavenumber structures. Thus for a constant ε = 0.4, the large-scale circulation is more
energetic for higher Ra and smaller ng, due to the increased mean buoyancy power over
the volume and the relatively stronger baroclinic torque as indicated in figures 3(b,c).

The generation of large-scale structures can induce highly non-uniform co-latitudinal
heat flux distribution. We showed previously that the global heat transfer is relatively
insensitive to ε for ng = 0 and Ra = 108. Figure 11 shows that a similar trend is observed
for different ng and Ra. In particular, for ε ≤ 0.8, the difference between Nu(ε > 0) and
Nu(ε = 0) is less than 8 %, which indicates that the effect of the large-scale flow structures
on the overall heat transport is relatively limited.

4. Summary and conclusions

We demonstrated using direct numerical simulations that even a small shift of the gravity
centre location can introduce pronounced changes in the flow organization and local heat
fluxes in spherical RB convection. In the Rayleigh number (Ra) space explored in the
present study, we observe the presence of the baroclinic flow, which induces a large-scale
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Figure 10. Plots of (a,c) Rerms(r) as function of the gap width, and (b,d) the TKE spectrum of 〈Cm〉r for
ε = 0.4. (a,b) Here, Ra = 107 with different ng; (c,d) here, ng = 0 with different Ra. Figures are normalized
by Ra = 107 with ng = 0. The values of buoyancy power for Ra = 107 and ng = 1, 0, −1, −2, and Ra = 108

and ng = 0, are 3.3, 5.55, 12.3, 42.8 and 9.46, respectively.
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Figure 11. Plots of Nu(ε)/Nu(ε = 0) as a function of ε for different Ra and gravity profiles ng; see (2.7).

circulation and jet for ε ≥ 0.05. However, for very small ε = 0.01 and large Ra = 108, the
baroclinic flow is weakened significantly due to the dominance of the strong convective
flow. In turbulent flows with ε ≥ 0.05, a strong convective jet on the northern side of the
inner sphere is formed, which leads to hot/cold fluid going towards the north/south along
the inner/outer sphere. The formation of the large-scale circulations has been confirmed
by modal analysis. Due to the large-scale flow organization, the heat transfer at the inner
and outer sphere is highly non-uniform. In particular, around the north pole, the heat flux
is enhanced on the outer sphere due to the impingement of the convective jet, while the
formation of the convective jet at the north pole of the inner sphere reduces temperature
gradients, and therefore the local heat transport. However, surprisingly, the global heat flux
is relatively insensitive to the gravity centre shift. These findings do not seem to depend
much on Ra (over our explored range) or the particular gravity profile.
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.360.

Acknowledgements. The authors thank the three anonymous referees for constructive comments that
improved the paper. We also acknowledge the Irene at Très Grand Centre de Calcul du CEA (TGCC) under
PRACE project 2019215098, and the national e-infrastructure of SURFsara, a subsidiary of SURF cooperation,
the collaborative ICT organization for Dutch education and research. We acknowledge PRACE for awarding
us access to MareNostrum at Barcelona Supercomputing Center (BSC), Spain (projects 2020225335 and
2020235589).

Funding. G.W. and R.J.A.M.S. acknowledge financial support from ERC (the European Research Council)
Starting grant no. 804283 UltimateRB. This work was sponsored by NWO Science for the use of supercomputer
facilities.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Guiquan Wang https://orcid.org/0000-0003-4753-7676;
Roberto Verzicco https://orcid.org/0000-0002-2690-9998;
Detlef Lohse https://orcid.org/0000-0003-4138-2255;
Richard J.A.M. Stevens https://orcid.org/0000-0001-6976-5704.

Appendix A. Buoyancy components of off-centre gravity

The two-step transformation of a vector GP in Cartesian coordinates xyz to
spherical coordinates ϕθr (x′′y′′z′′) is shown in figure 12. A random fixed point
G(xG, yG, zG) is representing the gravity centre location. The other random point,
P(r sin ϕ cos θ, r sin ϕ sin θ, r cos ϕ), is a moving point representing a fluid parcel. Initially,
both P and G are in Cartesian coordinates xyz. Using two steps, we will transfer GP to
spherical coordinates ϕθr (x′′y′′z′′).

(i) Rotating xyz to x′y′z′ about z by an angle θ using the right-hand side rule. The
corresponding rotation matrix is

Rz(θ) =
⎡
⎣cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ . (A1)

(ii) Rotating x′y′z′ to x′′y′′z′′ about y′ by an angle ϕ using the right-hand side rule. The
corresponding rotation matrix is

Ry(ϕ) =
⎡
⎣ cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ

⎤
⎦ . (A2)

After the above two steps we obtain that x′′y′′z′′ overlaps with ϕθr. The transformation
matrix Mθϕ from GPxyz to GPx′′y′′z′′ is defined by

Mθϕ = Rz(θ) × Ry(ϕ) =
⎡
⎣cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ

⎤
⎦

=
⎡
⎣cos ϕ cos θ − sin θ sin ϕ cos θ

cos ϕ sin θ cos θ sin ϕ sin θ

− sin ϕ 0 cos ϕ

⎤
⎦ . (A3)
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Figure 12. Schematic figure of the two-step transformation of a vector GP in Cartesian coordinates xyz to a
spherical coordinates ϕθr (x′′y′′z′′) frame. Circular arrows about the z- and y′-axes show rotation axes.

In the Cartesian coordinate frame, GPxyz = (r sin ϕ cos θ − xG, r sin ϕ sin θ − yG, r cos ϕ −
zG). Using the above transformations, we find that GP in spherical coordinates x′′y′′z′′ is

GPx′′y′′z′′ = GPxyz × Mθϕ = (−xG cos ϕ cos θ − yG cos ϕ sin θ + zG sin ϕ,

xG sin θ − yG cos θ, r − xG sin ϕ cos θ − yG sin ϕ sin θ − zG cos ϕ). (A4)

In the dimensionless equations for the velocity u, the buoyancy term is given by
gT GP/LGP, where

LGP = |GP| =
√

(r sin ϕ cos θ − xG)2 + (r sin ϕ sin θ − yG)2 + (r cos ϕ − zG)2. (A5)

The three components in the ϕ̂, θ̂ and r̂ directions can be decomposed as

Cg,θ = (xG sin θ − yG cos θ)/LGP,

Cg,r = (r − xG sin ϕ cos θ − yG sin ϕ sin θ − zG cos ϕ)/LGP,

Cg,ϕ = (−xG cos ϕ cos θ − yG cos ϕ sin θ + zG sin ϕ)/LGP.

⎫⎪⎬
⎪⎭ (A6)

Appendix B. Code validations

We validated extensively our code against the results presented by Gastine et al. (2015),
who performed a systematic parameter study for spherical RB convection with Pr = 1
covering radius ratios 0.2 ≤ η ≤ 0.95 for different gravity profiles in table 2. The table
shows that Nu and the volume-averaged Reynolds number Rerms agree within 2 % with
the results from Gastine et al. (2015) for all cases. To ensure that the off-centre gravity is
implemented correctly, we verified that the flow dynamics for the same LOG (see figure 1)
are identical for five different gravity centre locations. The last five rows of table 2 confirm
that both Nu and Rerms obtained from these simulations are consistent.

Appendix C. Spectral analysis in spherical coordinates

This appendix describes the spectral analysis procedure used in this study. For further
reading on this topic, we refer to pp. 122–145 of MacRobert (1947). In planar
configurations, Fourier transformations can be applied when performing spectral analysis.
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Ra η ng G(θ, r, ϕ) Nθ , Nr, Nϕ Nu Nu(ref) Rerms Rerms(ref)

7 × 106 0.3 1 O 181, 73, 181 6.42 6.40 282.2 287.2
0.3 0 O 181, 73, 181 8.19 8.15 377.5 377.8

3 × 107 0.3 1 O 251, 93, 163 9.39 9.38 592.0 595.5
5 × 106 0.35 1 O 257, 55, 257 6.80 6.74 274.8 274.1
3 × 108 0.35 1 O 577, 119, 577 21.47 21.23 1815.6 1824.8
5 × 106 0.6 0 O 257, 71, 257 11.85 11.68 437.3 442.7
106 0.6 −2 O 325, 71, 325 9.02 8.90 255.4 259.2
3 × 104 0.6 −2 O 129, 49, 97 3.42 3.40 44.1 44.0

−2 (0, ri/2, π/2) 129, 49, 97 3.197 — 40.8 —
−2 (π/2, ri/2, π/2) 129, 49, 97 3.187 — 40.8 —
−2 (0, ri/2, 0) 129, 49, 97 3.191 — 41.1 —
−2 (π/4, ri/2, π/4) 129, 49, 97 3.182 — 40.9 —
−2 (π/7, ri/2, 3π/5) 129, 49, 97 3.186 — 41.0 —

Table 2. Parameters of the spherical RB simulations with Pr = 1, which are compared to the results (Nu(ref)
and Rerms(ref)) of Gastine et al. (2015). Here, G(θ, r, ϕ) is the gravity centre location, and Nθ , Nr, Nϕ indicate
the numbers of grid points in the longitudinal, radial and co-latitudinal directions, respectively. The last five
simulations for Ra = 3 × 104 are used to verify that the coefficients Cg,i (see (A 6)) are implemented correctly,
by putting the gravity centre G in five different locations with the same LOG (see figure 1).

However, for a spherical configuration, the basis wave functions are found by solving
the Laplace equation. Analogous to the complex exponential in planar configuration, the
spherical harmonics Ym

� (θ, ϕ) read

Ym
� (θ, ϕ) = Pm

� (ϕ) eimθ , (C1)

where � and m (−� ≤ m ≤ �) represent the wavenumbers along a meridian and the
equatorial plane, respectively. The polar angle ϕ ranges from 0 to π, and θ is the azimuthal
angle, in the range 0 ≤ θ ≤ 2π. Also, Pm

� (ϕ) are the associated Legendre functions. For
computational purposes, the normalized associated Legendre functions in (C2) are more
attractive since Pm

� (ϕ) can overflow the computer (Swarztrauber 1979):

P̄m
� (ϕ) =

[
2� + 1

2
(� − m)!
(� + m)!

]1/2

Pm
� (ϕ). (C2)

The use of the spherical harmonics for approximating functions on a sphere is motivated
by the fact that they form a complete system of orthogonal functions. Therefore, any
function f (θ, ϕ) that is continuous and has continuous derivatives up to second-order may
be expanded in an absolutely and uniformly convergent series

f (θ, ϕ) =
∞∑

�=0

�∑
m=−�

P̄m
� (ϕ)

(
a�,m cos(mθ) + b�,m sin(mθ)

)
, (C3)

where the expansion coefficients are given by

a�,m = 1
π

∫ 2π

0

∫ π

0
f (θ, ϕ) P̄m

� (ϕ) cos(mθ) sin ϕ dθ dϕ, (C4)

b�,m = 1
π

∫ 2π

0

∫ π

0
f (θ, ϕ) P̄m

� (ϕ) sin(mθ) sin ϕ dθ dϕ. (C5)

942 A21-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.360


Off-centre gravity induces large-scale flows in spherical RB
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Figure 13. Spectral analysis of a regular large-scale circulation in a steady flow field for Ra = 103,
ng = −2 and ε = 0.4. (a) The streamlines (curves coloured by the velocity magnitude) and vortical structures
(isosurfaces of the Q-criterion, Q = 0.006, coloured black). (b) The equatorial cut, meridional cut and radial
surface located at r = ri + 0.05d of the velocity magnitude. (c) Plot of 〈C�,m=0〉r of the velocity field as a
function of the spherical harmonic order � + 1 in logarithmic scale. Also shown is the spherical harmonic
basis of � = 0, 1, 2, 3, 4 for m = 0.

The spherical harmonics Ym
� (θ, ϕ) are orthonormal, so

1
2π

∫ π

ϕ=0

∫ 2π

θ=0
Ym

� Ym′∗
�′ dΩ = δ��′ δmm′, (C6)

where δi,j is the Kronecker delta, and dΩ = sin ϕ dθ dϕ is the differential solid angle
in spherical coordinates. Coefficients (C4) and (C5) are obtained by solving (C3) on a
uniform spherical grid by using the SPHEREPACK library (Adams & Swarztrauber 1999).

The power spectrum on a spherical surface C�,m and in the longitudinal direction
Cm is defined in (3.2) and (3.3), respectively. To demonstrate the formation of (m =
0, � > 0) modes corresponding to the meridional large-scale circulation, we perform a
simulation for ng = −2 and ε = 0.4 with Ra = 103 (much lower than the critical Rayleigh
number when ε = 0). The advantage of using this steady flow is a regular large-scale
circulation generated without longitudinal dependent structures (m /= 0), which can be
seen from figures 13(a,b). The spectrum of the kinetic energy, i.e. 〈C�,m=0〉r, is shown in
figure 13(c). Except for the mode of (m = 0, � = 0) representing the mean flow, apparently
the large-scale circulation is represented by (m = 0, � > 0) modes.
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