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We suppose throughout that G is a finite group with a faithful matrix represen-
tation X over the complex field. We suppose that X affords a character n of degree
r whose values are rational (hence rational integers). If the matrices in some
representation of G affording a character n0 are all permutation matrices, then n0

is called a permutation character. Permutation characters have non-negative inte-
gral values. In the general case, we consider what properties of permutation
characters are true of n, and in particular, under what circumstances n is a permu-
tation character. Note that assuming X to bs faithful is equivalent to considering
the image group X(G) instead of G.

In Section 1 we obtain some numerical results on n. In Section 2, we show that
if n has non-negative values, then the sum of the prime powers dividing the order
of an element of G is no greater than r+1 (Theorem 2.2). In Section 3, we assume
that n has non-negative values and r = p is a prime dividing g, the order of G. If
g ^ p(p — 1), then n is a transitive permutation character and G is solvable (results
3.6, 3.7 and 3.8). If g > p{p—\), then G is insolvable and has some properties of
doubly transitive permutation groups of degree p. In particular, the commutator
subgroup G' is simple and non-cyclic, and is the unique minimal normal subgroup
of G (Theorem 3.11). Also GjG' is cyclic of order dividing but less than p— 1
(Lemma 3.10). In Section 4, with the additional assumption that \{p — \) is prime,
we have [G : G'] = 1 or 2 when g > p(p-l) (Theorem 4.2).

This work was included in a thesis submitted to the University of New South
Wales in partial fulfilment of the requirements for an M.Sc. degree in 1967. The
work was carried out under the supervision of Dr. John D. Dixon, whose assistance
I gratefully acknowledge. In particular, I am indebted to him for simplifications
in the proofs of Theorems 1.1 and 2.2.

We recall the assumption that the character n afforded by the representation
X of G takes only rational values.

1.1. THEOREM. If xe G has order n, then for each positive divisor m of n, the
76
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[2] Permutation characters 77

<f>(m) primitive mth roots of unity appear with equal multiplicities as eigenvalues of
X(x).

PROOF. Let/(;) be the characteristic polynomial of X(x). Now X(x) is similar
to a diagonal matrix whose diagonal entries are its eigenvalues. Thus if st, • • •, sr

are the eigenvalues of X(x), we can write n(x') = s\ + - • - + ej. (z = 1, • • •, n).
Since n(xl) (i = 1, • • • ,« ) is rational, the elementary symmetric functions of the
eigenvalues of X(x) are rational. Thus f(t) has rational coefficients. If co is a
primitive mth root of unity, then the mth cyclotomic polynomial is the polynomial
irreducible over the rationals with co as a root [7, pp. 161-162]. Now the roots of
/ ( / ) are Mth roots of unity. Thus/(f) is a product of (not necessarily distinct) cyclo-
tomic polynomials. The roots of each cyclotomic polynomial are precisely all the
primitive mth roots of unity for some m\n [7, pp. 161-162]. The assertion is
now clear.

1.2. LEMMA. If xeG and q is prime, then

(1.2.1) iC**'"1) = <xq') (mod q*).

for each positive integer /?. If the order of x is a power ofq, then

(1.2.2) n(xq''1) = r (mod q").

PROOF. Suppose xeG has order n. Then by Theorem 1.1, we can write

(1.2.3) n{x") = Y J b m S " m (u = l, • • ; n )
m\n

where S%, is the sum of the wth powers of the primitive mth roots of unity, and the
bm are non-negative integers. To prove (1.2.1) it is sufficient to show that S%? ' =
S%? (mod qp) for each m.

Let fi be the Mobius function [7, p. 114]. Then fi(a) is the sum of the primitive
tfth roots of unity. Now if d = (m, u),

since the wth powers of primitive mth roots of unity are m/dth roots of unity, and
there are <£(m) primitive mth roots of unity and <t>(m/d) primitive m/dth. roots of
unity. Hence if qp X m, (m, q^1) = (m, q") and so Sf1 = S%. If q"\m, write
m = q"t where q X t and a ^ p. Then we must show

Since 4>{ab) = 4>(a)<j>(b) and n(ab) = y.{a)n{b) if (a, b) = 1, it is sufficient to
show that

M& ^ - K « " " ' ) (m o d«')•
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This follows because

<t>{qx) I q"-y if 1 g y ^ a

4>{q') \q*-\q-\) if y = 0
and

Thus we have (1.2.1). If n is a power of q the result (1.2.2) follows by induction.
(For properties of n and $ see van der Waerden [7, Section 36].)

1.3. For x e G of order n, there exist unique integers ui, • • •, un such that

(1.3.1) n{xm) = YJiui (m = 1, • • •, n).
i\m

PROOF. The set of equations (1.3.1) has a unique solution found by solving
successively for ux, • • •, un. We show by induction on m that um, 1 ̂  m ^ n, is
an integer. By assumption, ut — n(x) is an integer. Assume m > 1 and ut is an
integer for 1 < i ^ m. Put m = p"t where p is a prime not dividing t, and a ^ 1.
Then

where s runs through the proper divisors of m which are divisible by/?". Since each
us is an integer by assumption, we have mum = 0 (mod px) using Lemma 1.2. As
this is true for each prime power p" dividing m, mum = 0 (mod m) so um is an integer.
Thus by induction we have that um, 1 ^ m ^ n, is an integer.

NOTE. If X(x) is a permutation matrix, um is the number of cycles of length
m in X{x), so each wm is a non-negative integer.

We remark that the results of Section 1 are true even if n is not faithful.

Throughout this section we assume the following.

(A) G is a finite group with a faithful character it of degree r.

(B) The values of TC are non-negative integers.

Let m be a positive integer with distinct prime divisors p^, • • • ,ps and suppose
m = pT • • • p*s. For the next theorem we require an estimate of

2.1. LEMMA. E{pl, m) ^ 0 except in the cases
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(2.1.1) E(2, 6) = - 1 , £(3, 12) = - 1 , E(Pl, 2p\l) = -2 (Pl odd).

Moreover, E{Pl, m) ^ 2 whenever m is odd and not a prime power.

PROOF. We consider several cases.

(i)lfs=l,E(p1,p?)=*O.

(ii) If s = 2, E(Pl, m) = m(\ - l/p2 - l/p\l - 1/pf) so E(pt, m) ^ 0 except
in the cases (2.1.1). However if m is o d d , / ^ , / ^ > 2 and so E(p1, m) ^ 2.

(iii) If s ^ 3, write n = m//>"s. We may suppose p2 < P3 < • • • < ps, so
we have ps ^ 3 in all cases, and ps ^ 5 if n = 6. Now i?(pl5 m) — E(pl, n) =
/i'<H«//>i'){ W ) - 1 } -i>"s. T h u s if « = 6. ^(Pi ,m)-E(Pi,n)^3ty(p?) - 1 } -
^ * ^ 4, since J7S ^ 5. If n > 6, E(Pl,m)~E(p1,n) ^ 5{<!>(?*/)-1}-P:° ^ 2,
since ps ^ 3. Thus in either case E(pt, m) ^ E(pt, n) + 2.

Collecting these results, we obtain the assertions.

2.2. THEOREM. Suppose hypotheses (A) and (B) hold. If XBG has order
n — p\l • • -pi' where the pt are the distinct prime divisors ofn, then YA=IPT = r>
except in the case n = 6«' with (6, n') = 1. In the latter case YA^IPT = r+1-

NOTE. In the case n = 6«' with (6, n') = 1, we shall say n is exceptional.

REMARK 1. This result improves a result of W. J. Wong [9] which shows that
under assumptions (A) and (B), the exponent of G divides the exponent of Sr,
the symmetric group of degree r i.e. in the above notation, pf ^ r (i = 1 , • • • , ? ) .

REMARK 2. For permutation groups of degree r, Yli=iPf = r m a ^ cases.
However it will be shown that Theorem 2.2 is the best possible under our weaker
assumptions.

PROOF. Using the notation of Section 1, we write n(x) = S*t + - •
where -Ŝ 1, is the sum of the 0(n,-) primitive «fth roots of unity for some positive
divisor nf of n. Since x has order n, and n is faithful, n = l.c.m. {nt,- • -,nd}. We
can choose a minimal subset A of {nl, • • •, nd} such that n = l.c.m. A. Reordering
if necessary, we may suppose A = {n1, • • •, nc} where 1 ^ c ^ d. Clearly each
rij e A is divisible by at least one prime power p"* which does not divide any other
element of A. For each ns e A we choose a prime qj such that q?* is equal to some
p"' (i = 1, • • •, t) and qjJ\rtj but q]> Jfnk if nkeA and k ^ j . (For instance we
could choose q} to be the smallest such prime). We can then write nj = q^mj
(j = 1, • • •, c). Again in the notation of Lemma 1.2, we have

(2.2.1) *(*") = £ $ : , („ = ! , . . . , „ )
J = I

and in particular

(2.2.2) r = n(x") = £ </,(«,).

https://doi.org/10.1017/S1446788700010624 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010624


80 Fiona M. Ross [5]

If u = « / r i ; = i 9j, then Su
nj = -<H«,) / (<7 , - l ) U =l,";c) and Su

nj ̂  <£(«;)
(j = c+1, • • •, d). Since 7r(x") ^ 0, it follows from (2.2.1) and (2.2.2) that

Thus r—^\=iPV ^ h where we define

(2.2.3) h = ftfe,, • • •, qc) = ^ K
7 = 1 i = l

Sincep°[l " ' pV = 1-c.m. { « ! , • • • , nc}, we have

(2.2.4) h^tE(4j>nj)-
.7 = 1

We show that we can choose the 9; (1 ̂  j ^ c) so that h ^ 0, except in certain
cases which are treated differently.

By Lemma 2.1 and (2.2.4), h 5; 0 except when for some values of j , one of
the following occurs:

(') qj = 2, nj = 6,

(ii) ^. = 3, rij = 12,

(iii) nj = 2 ^ (?y odd).

Suppose (i) occurs for some value, sayy^ ofy. Then by definition of qj, there
is no other value of j for which (i) occurs, and neither (ii) nor (iii) can occur for
any value ofj. If 3 divides some n , e A, j ^j\,thenh 2: YJJ*JI E(qj> w./)+2<K3) —
2 > 0. If 3 divides no other rij e A, then we can choose qh = 3 instead, and we get
case (iii) which is treated later.

If (iii) occurs, suppose the ordering is such that

nj = 2 # , I I J I J , (qj odd)

rij ^ 2q]>, s<j£c.
Then by (2.2.4),

(2.2.5) hZ £ E(qj,nj)-2
j = s+l

If 4|n, then by (2.2.3),

(2.2.6) h* £ E(qj,nj).
j = s+l

Suppose (ii) also occurs, say ns+l — 12 and qs+1 = 3. Then if 4 divides no other
rij e A, we may choose #f+V = 4 instead of 3, and get h 2: 0 by (2.2.6). If 4
divides «,• for somey # 5+1 , n̂  e ^4, then by (2.2.3),

£
s+2

> 0.
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If (ii) occurs but not (iii), then the same argument applies (with s = 0) to give
ft > 0. Hence we may suppose that (iii) occurs, i.e. s > 0, but (ii) does not occur.
Thus by (2.2.6), if 4\n, h ^ 0, since none of (i), (ii), (iii) occurs for j > s. So
suppose 2| \n. If E(qj, rij) ^ 2 for some j , s+1 g j ^ c, then by (2.2.5), h ^ 0.
Hence assume E{qs, rij) < 2, s+l ?>j ts c. Then by Lemma 2.1, each w,-, J + 1 ^
f^j^c, is either even or a prime power. But if some «,•, s +1 ^ _/ :g c, is even
then by (2.2.3),

s+l

So suppose finally that each nj,s+l SjS c, is an odd prime power. We
have

n , = 2q{\ • • - , » , = 2 q > ; n s + , = <fc{, • • ; n c = q*e>

where 1 ^ s ^ c and qj is odd 1 5= j ^ c. Since here h = —2, we use another
argument. Put v = n/(2qs+l • • • qc). Then

r ^ r- n{xv)

s + l

So

^ 0

unless s = I, #?' = 3, i.e. n is exceptional, and then r — Yfi=iPV ^ —1- Thus the
theorem is proved.

We now show that the case Y!i=ip"' = r + 1 actually occurs. Let X be the
faithful representation of degree 11 of a cyclic group <x> of order 42 such that
X(x) is a diagonal matrix whose diagonal entries are: 1, 1, 1, the two primitive 6th
roots of unity and the six primitive 7th roots of unity. The values of n, the character
afforded by X, are non-negative integers, but the sum of the prime powers dividing
the order of x is one larger than the degree of n.

Let 1G denote the identity character of G, and let

xeG

(where g = \G\) denote the inner product of characters \\J, n of G.

2.3. LEMMA. <TI, 1G> ^ 1. Thus if G ^ 1, then n is reducible and n — 1G + Z
where / jj a faithful character ofG.

PROOF. We have <7t, 1G> = 1/^ ^ e G n(x) ^ 1/^ 7t(l) > 0. Then since in, 1G>
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is an integer, <7r, 1G> ^ 1. If G ^ 1, JI # 1G since n is faithful and so / = n— 1G

is a character of G. If x is in the kernel of i, %(x) = r — 1 and so n(x) = r, hence
x = 1. Thus # is faithful.

2.4. //"G # 1 a/iJ x w irreducible, then g ^ r (r— 1) andr—l divides g.

PROOF. Since x is irreducible and / # 1G, <x, Jt> = <X, X> + <X. 1G> = 1
and so £ x e G /(^)TI(X) = g. Since xC*)7^*) = 0 f°r x e ^xCO^CO = r ( r ~ 0
^ gr. Since / is irreducible of degree r—l, r—l divides g [6, p. 332, Theorem
12.2.27].

Throughout this section we make the following assumptions.

(A) G is a finite group with a faithful representation X affording a char-
acter 7t.

(B) The values of n are non-negative integers.

(C) The degree TT(1) of n is a prime/? which divides the order g of G.

NOTE 1. If if is a subgroup of G, and p\ \H\, then TI|H is a character of H
satisfying (A), (B), (C) with H in place of G.

NOTE 2. If G is a transitive permutation group of degree p, then the corre-
sponding permutation character satisfies (A), (B), (C).

3.1. LEMMA. We have <TI, 1G> = 1 and so x = n — 1G " a faithful character of
G which does not contain 1G.

PROOF. By assumption G contains an element x of order p. As in Section 1,
expressing K(X) as a sum of the eigenvalues of X(x), we have 7r(*) =
1 + e + • • • + ep~ * where e is a primitive />th root of unity. Thus TC|<X> contains the
identity character exactly once. Hence <7t, 1G> ^ 1. Lemma 2.3 now gives the
required result.

Let P be a Sylow p-group of G, N(P) = NG(P) its normalizer in G and
C(/>) = CG(P) its centralizer in G.

3.2. LEMMA.

(i) 1̂ 1 = P.
(ii) C(P) = P.

(iii) /> divides the number of conjugates of each element not in a Sylow p-group
ofG.

(iv) N{P)jP is cyclic of order dividing p—\.

PROOF. By a result of W. J. Wong [8, Theorem 1], g divides/?!. This gives (i).
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By Theorem 2.2, G contains no element of orderpm, m > 1. Hence no non-identity
element of order prime to p can commute with an element of a Sylow /?-group P.
Thus since P is cyclic, C(P) = P and we have (ii). If x has order different from 1
and/?, then;? does not divide the order of its centralizer sop divides the number of
conjugates of x. This proves (iii). Finally N(P)/C(P) = N(P)/P is isomorphic to
a subgroup of the group of automorphisms of P [6, p. 50] which is cyclic of order
p—\ [4, p. 86]. Thus N(P)/P is cyclic of order dividing/?— 1 and (iv) is proved.

3.3. LEMMA. There is a unique (normal) Sylow p-group of G if and only if

PROOF. Let np be the number of Sylow /?-groups of G. If g ^ p(p — 1) then
np = 1, since by Sylow's theorems np = 1 (mod/?) and np\g. If g > /?(/?— 1), then
by Lemma 3.2, N(P) ^ G, so np > 1.

3.4. THEOREM. Suppose assumptions (A), (B), (C) of this section are satisfied.
Then pnp divides the order of each normal subgroup H # 1 of G. If np > 1, then
\H\ > pnp.

REMARK 1. This result is known for the case when G is a transitive permutation
group of prime degree/?. In this case G is primitive [6, p. 269, Theorem 10.5.3] and
so each normal subgroup # 1 is transitive [2, p. 196] and thus its order is divisible
by/?.

REMARK 2. Theorem 3.4 shows that if 1 # H«a G, assumptions (A), (B),
(C) are satisfied with H in place of G and n\H in place of n.

PROOF. Suppose 1 # H^ G and/? X \H\. Then there is an element x of order
p in G\H. Since C(x) = <x> by Lemma 3.2, C(x) n H - 1. By a result of Feit
and Thompson [3, p. 783, Lemma 4.3] since / is faithful, %{x) — 0- However by
Theorem 1.1, %(x) = — 1 and so we have a contradiction. Thus/? divides \H\.
Since H*3 G, every Sylow/?-group of G is in H and so pnp divides l̂ fYI. Suppose
\H\ = pnp. Then the normalizer of a Sylow /?-group P in H has order p and so
equals its centralizer. By a theorem of Burnside [6, p. 137, Theorem 6.2.9], H then
has a normal subgroup K of order np. Applying the above result to H, since
p\ \H\, we have/?| \K\ if K # 1. However p X np, so \K\=np=\. The theorem
is now proved.

3.5. LEMMA. IfN(P) = P then g = p.

PROOF. If N(P) = P then N(P) = C(P) by Lemma 3.2. But then G has a
normal subgroup of order g/p [6, p. 137, Theorem 6.2.9]. Now/? X gjp (see proof
of Lemma 3.2), so by Theorem 3.4, g/p = 1.

3.6. THEOREM. We assume (A), (B), (C) of this section, and also that / = n — 1G

is reducible. Then the following are true.

https://doi.org/10.1017/S1446788700010624 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010624


84 Fiona M. Ross [9]

(i) The order g of \G\ divides but is less thanp(p—\).

(ii) G is solvable. In fact G' = P, the unique Sylowp-group (unless g = p when
G' = \),andG" = 1.

(iii) G is isomorphic to a transitive permutation group of degree p and n is the
corresponding permutation character.

REMARK. This generalizes a theorem of W. Burnside which states that if a
permutation group of degree p is not doubly transitive, then it is solvable of order
dividing/?^-1) [6, p. 367, Theorem 12.9.2].

PROOF. By Lemma 3.1., we can write

••• +Xt

where /j (/ = 1, • • •, f) are irreducible characters of G different from l c . Since x
is assumed reducible, t 'Si 2. Let xeG have order p. As in Section 1, n(x) =
1 +£+• • •+ep~1, where £ is a primitive pth root of unity. Let Q be the rational
field. For each integer k, I ^ k ^ p — 1, there is an automorphism of Q(e) which
sends e -> e* and hence the group of all automorphisms permutes the Xi transitively.
Hence each Xi 0 = 1>' ' ' > 0 has the same degree, namely (p—l)/t. We next show
that if y e G has order prime top, then Xt(y) 1S rational for each i. Otherwise let h
be the smallest integer such that Xi{y) e Qi03) where co is a primitive hth root of
unity. The smallest cyclotomic extension field of Q containing Xi(x)is 2(e)- Now
if q is a prime dividing h, then by a result of Brauer [1, Theorem 2, Corollary
2], G contains elements of order qp. This contradicts Theorem 2.2. Thus
Xi{y) e Q if y has order prime to p. Now since the automorphisms of <2(e)
which send s -» sk, 1 ^ k ^p— 1, permute the / , but fix Q, we have Xi(y) =
Xj{y) for all 1 ^ i, j ^ t. The same argument as in Scott [6, p. 369 equation 3 to
end of p. 370] now shows that n(y) = 1 if y =fc 1.

Thus we have

n(l)=p

(3.6.1) n(x) — 0 if x has order p

n(x) = 1 if x # 1 has order prime top.

Since by Lemma 3.1, £ x e G n(x) = ff, there must bsg—p elements such that n(x) =
1 and p elements such that n(x) # 1. Thus G has a unique Sylow /?-group P. By
Lemma 3.2., N(P)jP = G/P is cyclic of order dividingp—\, so g divides p{p— 1).
Also g < p(p—\), since otherwise </, x) = 1 and then # would be irreducible,
contrary to assumption. Thus we have result (i).

Since G\P is abelian G' g ? , s o G ' = l or P. If G' = 1, G is abelian and
g = p. Otherwise G' = P and G" - 1. In either case (5 is solvable and we have
result (ii). Result (iii) is clear when g = p, so suppose g > p.

Put g = pn where (n,p) = 1. Since G is solvable, there is a subgroup H of
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order n, and every element of order prime to p is in a conjugate of H [4, p. 141,
Theorem 9.3.1]. There are (n — \)p of these elements, apart from 1, so i? has at
leastp conjugates. However N(H) 2 H so H has at most/? conjugates. Hence H
has exactly/; conjugates, and any pair intersect in the identity. Thus G can be faith-
fully represented as a transitive permutation group of degree p on the cosets of H
[4, pp. 57-58, Theorems 5.3.1 and 5.3.2]. Let 6 be the character afforded by this
representation. Then 6(x) is the number of conjugates of H containing x, and so
(3.6.1) shows that 0 = n. Hence (iii) is proved. This complets the proof of the
theorem.

3.7. LEMMA. / / / is irreducible, then g = p{p—\)k where k divides (p — 2)\.
If k > 1, G is insolvable.

PROOF. If % is irreducible, its degree/?— 1 divides g. Since g\p\ (see proof of
Lemma 3.2), g = p(p—\)k where k\(p — 2)!. Suppose G is solvable. Then the
derived series has the form

G = G(0) => G(1) =>•••=> G1"-^ => G(n) = 1

for some n. Each group is characteristic in the preceding one, so G( n - 1 ) is charac-
teristic in G. By Theorem 3.4,p\ IG*""1^. Now G^""1^ is abelian, and so by Lemma
3.2, IG^"1^ = p. Thus G has a unique Sylow /?-group and by Lemma 3.3,
g ^ p(p— 1). Hence k — \. Thus G is insolvable if k > 1.

3.8. THEOREM. We assume (A), (B), (C) of this section, and that g = p(p— 1).
Then the following are true.

(i) G is solvable. In fact G' = P, the unique Sylow p-group (except if p = 2
when G' = 1), and G" = 1.

(ii) G is isomorphic to a transitive permutation group of degree p, and % is the
corresponding permutation character.

PROOF. If/? = 2 the results are obvious. Henceforth assume/? > 2. By Lemma
3.3, G has a unique Sylow /?-group P. Thus N{P) = G and by Lemma 3.2, G/P is
cyclic and G' s P. Now G is not abelian, since C(P) = P # G, so G' = P and
G" = 1. Thus we have result (i). Since G is solvable and (p,p—l) = 1, G has a
subgroup H of order/?— 1, and every element of order prime to/? is in a conjugate
of H[A, p. 141, Theorem 9.3.1 ]. Now H has p conjugates, and any pair intersect in
the identity. Thus G can be represented faithfully as a transitive permutation group
of degree p on the cosets of H [4, pp. 57-58, Theorems 5.3.1 and 5.3.2]. The
corresponding permutation character 6 is given by

0(1)=/?

(3.8.1) 9(x) = 0 if x e P \ l

d(x) = 1 ifx<$P.
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On the other hand, % is irreducible by Theorem 3.6, so XXEGZC*)2 = g. Thus
^*#p z(x)2 = ° ' since %(\) = p—\ and %(x) = — 1 if xeP\\ (see proof of
Lemma 3.1). Hence /(*) = 0 for x $ P. From (3.8.1) we see that 6 = x + 1G = i
and so 7t is a permutation character. We now have (ii) and the theorem is proved.

3.9. LEMMA, (i) / is reducible if and only ifg < p(p—\).

(ii) G is solvable if and only ifg ^ p(p—l).

PROOF. These assertions follow from results 3.6, 3.7 and 3.8.

3.10. LEMMA. If H ^ 1 is a normal subgroup of G, then G/H is cyclic of order
dividingp—\. Moreover [G : H] < p — 1 unless g = p(p — 1).

PROOF. By Theorem 3.4, H contains all Sylow /^-groups of G. Thus G =
H- N(P) where P is a Sylow /?-group of G [6, p. 136, Theorem 6.24]. Since
//=sa G and P < N(P), we have

G _H- N(P) _ N(P) _ N(P)/P

H H = if n N(P) = (H n iV(P))/P

By Lemma 3.2, the last group is cyclic of order dividing p — 1. Therefore G/H is
cyclic of order dividing/? — 1. Moreover if H n A^-P) # P, then G/H has order less
than / » - l . However by Lemma 3.5, H n N(P) = P implies H = P. Thus
[<? : f/T] < p — 1 except when g = />(/>— 1).

3.11. THEOREM. Under assumptions (A), (B), (C) we have the following results.

(i) G has a unique minimal normal subgroup K.

(ii) K = G' except when g = p.

(iii) G' is simple.

(iv) G' is non-cyclic if and only ifg > p(p—l).

(v) Every subnormal subgroup of G is normal in G.

REMARK. This generalizes the result that a transitive permutation group of
degree/? has a unique minimal normal subgroup. See Burnside [2, p. 202] for the
case g > p{j>-\), and Scott [6, p. 274, Theorem 10.5.21] for the case g ^ p(p-1).

PROOF. For g = p the results are obvious, so suppose g > p. Result (iv)
follows from results 3.6, 3.7 and 3.8. Let H i= 1 be a normal subgroup of G. Then
by Lemma 3.10, GjH is cyclic and so G' s H. Now G' ¥= 1, since G is not abelian,
so G' is the unique minimal normal subgroup of G and we have (i) and (ii). Since
G" =3 G, applying these results to G' shows that either \G'\ = p and G" = 1 or
G" = G' # 1; in either case G' is simple so we have (iii). If 1 ^ 11*3 G, applying
(i) and (ii) to H shows that H' = G' or H' = 1. In the latter case, |J/ | = p and
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so G' = H. In either case, any nonidentity normal subgroup of H contains G' and
so is normal in G. By induction every subnormal subgroup of G is normal in G,
and (v) is proved.

Throughout this section we make the following assumptions.

(A) G is a finite group with a faithful character n.

(B) The values of n are non-negative integers.

(C) The degree of n is a prime p dividing the order g of G.

(D) q = K/'-1)isPrime-
(E) g > p(p—l), hence by Lemma 3.9, / = n— lG is an irreducible character

of G and G is insolvable.

REMARK. If these assumptions are satisfied, and 1 ^ i /«a G then by Theorem
3.4,p\ \H\. By Lemma 3.10, G/His cyclic, and since G is insolvable, His insolvable.
Hence by Lemma 3.9, \H\ >p(p—l). It follows that the above assumptions are
satisfied with H replacing G and n\H replacing n.

4.1. LEMMA. If G is simple and p ^ 5, the order of the normalizer of a Sylow
p-group is odd.

PROOF. Let P = <x> be a Sylow/>-group of G and suppose that 2| \N{P)\
Then N(P) contains an element z of order 2 and z does not commute with x
(Theorem 2.2). Hence z~1xz = x'1. Suppose the matrix representation Y of G
affords / . Then

Y(z)-1Y(x)Y(z) = F(xr

and with a suitable choice of Y,

- i

e

£P-I

Y(z) =

£-(P-D

Y(z)

where £ is a primitive pth root of unity. Put

u =

Ll
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Then w"1 = u. (All the matrices are (p— 1) x (j>— 1)). Then

[13]

and

then

so Y(z)u is a diagonal matrix

Y(z)u =

7 ( Z ) =

.Put

"flu

-flp-i.p-i

Now %(z) = trace y(z) = 0 since p— 1 is even. As z has order 2, #(z) is a sum of
p— 1 terms, each of which is 1 or — 1 . Supposes of them are — l.ThenO = /(z) =
—s+p—l—s and so 5 = \(j>— 1) = #. Since # is odd when /> # 5, det F(z) =
(—1)* = — 1. The homomorphism x -» det F(x) of G is an isomorphism since G
is simple and det Y(z) ^ 1. Therefore G is abelian, contrary to (E). Thus we con-
clude that N(P) has odd order.

4.2. THEOREM. If (A), (B), (C), (D), (E) are true, then one of the following
occurs.

(i) g = p(p-\)k where k # 1, k\(p-2)\ and k = 1 (mod p). There are k
Sylow p-groups in G. The only non-trivial ( ^ 1, G) normal subgroup of G is G'
which is simple of index 2.

(ii) g = p{p- \)k where k\(p-2)\ and k = q+1 (mod p). G has 2k Sylow
p-groups and G = G' is simple.

If p = 5, then in case (i) G = A5 the alternating group of degree 5, and in
case (ii) G=S5, the symmetric group of degree 5. In each case, n is the correspond-
ing transitive permutation character.

PROOF. By Lemma 3.7, g = p(p- \)k where k\(p-2)\. By Lemmas 3.2 and 3.5,
|iV(P)| divides/?(/7 — 1) and is greater than/7. Thus \N{P)\ = 2p, qp or 2qp, np = qk,
2k o rk (respectively), andk = p — 2, g + l o r l (modp) (respectively).

First suppose p # 5, i.e. q is odd.

(a) Suppose \N(P)\ = 2p. Then by Lemma 4.1, G is not simple. Thus there
is a non-trivial normal subgroup, whose order is divisible by but larger than qpk
(Theorem 3.4). This is impossible, since g = 2qpk, so this case cannot occur.
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(b) Suppose \N(P)\ = qp. Then G is simple, since any non-trivial normal
subgroup would have order divisible by but larger than 2pk (Theorem 3.4). Thus
we have case (ii).

(c) Suppose \N(JP)\ = 2qp. Then any non-trivial normal subgroup H of G
has order 2pk or qpk by Theorem 3.4. f \H\ = 2pk, then since \NH(P)\ = 2p,
the case (a) above gives a contradiction. By Lemma 4.1, G is not simple, so there
must be a normal subgroup of index 2. Theorem 3.11 shows that there is exactly
one, namely G', and it is simple. Thus we have case (i).

Now we consider the case/> = 5. Then g = 20k where k\6, k > 1 and k = 1
or 3 (mod 5). Hence g = 60 or 120.

If<7 = 60, then n5 = 6 and G is simple, since any non-trivial normal subgroup
would have order exceeding 30 (Theorem 3.4). Thus we have case (ii). Moreover
G = A5, since up to isomorphism there is only one simple group of order 60 [2,
p. 504]. Now As has only one irreducible character of degree 4 [5, pp. 265, 272],
so 7t is the required permutation character.

If g = 120, then «5 = 6. Any non-trivial normal subgroup has order 60
(Theorem 3.4). If there is such a subgroup, then by Theorem 3.11, it is unique,
equal to G' and simple. Now G can be faithfully represented as a transitive permu-
tation group of degree 6 on its Sylow 5-groups. The subgroups of order 120 of S6

are all isomorphic to S5 [2, pp. 208-209], so G = Ss. Because Ss has exactly one
irreducible character of degree 4 whose values are integers no smaller than - 1
[5, p. 265], n is a transitive permutation character. Now S5 is not simple, hence
[G : G'] = 2. Thus we have case (i).

The proof of the theorem is now complete.
We conclude by stating some further results without proof.

4.3. Under the hypotheses of S e c t i o n 4 , if 8 Jf g , then G ^ P S L ( 2 , I i ) or
G ^ A 5 .

4 . 4 . THEOREM. Suppose the hypotheses (A) and (B) of Section 4 hold and (E)'

n — 1G is irreducible.

Suppose the degree p of % is 2, 3, 5, or 1. Then the order of G is divisible by p. and
n is a transitive permutation character.

REMARK. Here we did not need to assume that/?|#. However the assumptions
imply <TT, 1G> = 1, and perhaps this is equivalent to (C) under (A) and (B).
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