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Abstract. For a group H and a subset X of H, we let HX denote the set {hxh−1 |
h ∈ H, x ∈ X}, and when X is a free-generating set of H, we say that the set HX is
a Whitehead subset of H. For a group F and an element r of F , we say that r is
Cohen–Lyndon aspherical in F if F{r} is a Whitehead subset of the subgroup of F that
is generated by F{r}. In 1963, Cohen and Lyndon (D. E. Cohen and R. C. Lyndon,
Free bases for normal subgroups of free groups, Trans. Amer. Math. Soc. 108 (1963),
526–537) independently showed that in each free group each non-trivial element is
Cohen–Lyndon aspherical. Their proof used the celebrated induction method devised
by Magnus in 1930 to study one-relator groups. In 1987, Edjvet and Howie (M. Edjvet
and J. Howie, A Cohen–Lyndon theorem for free products of locally indicable groups,
J. Pure Appl. Algebra 45 (1987), 41–44) showed that if A and B are locally indicable
groups, then each cyclically reduced element of A∗B that does not lie in A∪B is Cohen–
Lyndon aspherical in A∗B. Their proof used the original Cohen–Lyndon theorem.
Using Bass–Serre theory, the original Cohen–Lyndon theorem and the Edjvet–Howie
theorem, one can deduce the local-indicability Cohen–Lyndon theorem: if F is a locally
indicable group and T is an F-tree with trivial edge stabilisers, then each element of
F that fixes no vertex of T is Cohen–Lyndon aspherical in F . Conversely, by Bass–
Serre theory, the original Cohen–Lyndon theorem and the Edjvet–Howie theorem
are immediate consequences of the local-indicability Cohen–Lyndon theorem. In this
paper we give a detailed review of a Bass–Serre theoretical form of Howie induction
and arrange the arguments of Edjvet and Howie into a Howie-inductive proof of
the local-indicability Cohen–Lyndon theorem that uses neither Magnus induction nor
the original Cohen–Lyndon theorem. We conclude with a review of some standard
applications of Cohen–Lyndon asphericity.
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1. Introduction.

NOTATION 1.1. Let F be a multiplicative group, fixed throughout the paper.
The disjoint union of two sets X and Y will be denoted by X ∨ Y .
By a transversal for a (left or right) F-action on a set X we mean a subset of X that

contains exactly one element of each F-orbit of X ; by the axiom of choice, transversals
always exist.

For elements x and y of F , we write x := x−1, xy := xyx, [x, y] := xyx y and
CF (x) := {f ∈ F | f x = x}. For any subgroup H of F , we say that x and y are H-
conjugate if there exists some h ∈ H such that hx = y. Conjugation actions will always
be left actions in this paper.

If R and X are subsets of F , we let 〈 R 〉 denote the subgroup of F generated by
R, and we write XR := {xr | r ∈ R, x ∈ X} and F/〈|R|〉 := F/〈 FR 〉. If R consists of a
single element r, we simply write 〈 r 〉, Xr and F/〈|r|〉, respectively. We say that X is a
free-generating set of F if the induced group homomorphism 〈 X | 〉 → F is bijective.

A subset Y of F is said to be a Whitehead subset of F if there exists some free-
generating set X of F such that FX = Y , that is, Y is closed under the F-conjugation
action and some transversal for the F-conjugation action on Y is a free-generating set
of F .

Borrowing terminology from [3], we say that an element r of F is Cohen–Lyndon
aspherical in F if Fr is a Whitehead subset of 〈 Fr 〉. Thus, r is Cohen–Lyndon aspherical
in F if and only if some transversal for the 〈 Fr 〉-conjugation action on Fr is a free-
generating set of 〈 Fr 〉. Thus, r is Cohen–Lyndon aspherical in F if and only if there
exists some subset X of F such that X is a transversal for the (〈 Fr 〉CF (r))-action on F
by multiplication on the right and, moreover, Xr is a free-generating set of 〈 Fr 〉. Here
X 
= ∅ and r 
= 1, and the map X → Xr, x �→ xr is bijective.

We say that a subset R of F is Cohen–Lyndon aspherical in F if no two distinct
elements of R are F-conjugate and FR is a Whitehead subset of 〈 FR 〉. Thus, R is Cohen–
Lyndon aspherical in F if and only if no two distinct elements of R are F-conjugate
and some transversal for the 〈 FR 〉-conjugation action on FR is a free-generating set of
〈 FR 〉. Thus, R is Cohen–Lyndon aspherical in F if and only if no two distinct elements
of R are F-conjugate and there exists some family ( Xr | r ∈ R) of subsets of F with the
properties that, for each r ∈ R, Xr is a transversal for the (〈 FR 〉CF (r))-action on F by
multiplication on the right and, moreover,

⋃
r∈R

(Xr r) is a free-generating set of 〈 FR 〉.
A group is said to be indicable if it is trivial or has some quotient that is infinite

and cyclic. A group is said to be locally indicable if all its finitely generated subgroups
are indicable. For example, all free groups are locally indicable.

Cohen and Lyndon [4, Theorem 4.1] proved the following.

The original Cohen–Lyndon theorem. If F is a free group, then each non-trivial element
of F is Cohen–Lyndon aspherical in F. �

Both the proof in [4] and its simplification by Karrass and Solitar [13, Theorem 2] use
the famous induction method that was devised by Magnus in 1930 to study one-relator
groups.

Howie [8, 9, 11] developed a powerful induction technique that amounts to the
following: being given certain information about a locally indicable group; choosing an
appropriate finitely generated subgroup that contains the given information; choosing
an appropriate normal subgroup of the finitely generated subgroup for which the
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quotient group is infinite and cyclic; translating the given information into information
about the normal subgroup; repeating this cycle as often as possible. This simple
procedure has many applications. Magnus induction has a formally similar format but
requires a free-generating set and more careful choices at each step. We shall give a
self-contained review of a Bass–Serre theoretical form of Howie induction.

In [6, Theorem 1.1], Edjvet and Howie used the original Cohen–Lyndon theorem
and Karrass–Solitar reduction to prove the following result.

The Edjvet–Howie theorem. If A and B are locally indicable groups, then each
cyclically reduced element of A∗B that does not lie in A∪B is Cohen–Lyndon aspherical
in A∗B. �

In many situations, Howie induction has proved to be more powerful and more
direct than Magnus induction; see, for example, Corollary 4.5. We found it unnatural
that there remained two contexts where Howie induction failed to achieve the same
results as Magnus induction, and the purpose of this paper is to remedy this situation.
We shall use Howie induction and some of the arguments given by Edjvet and Howie [6],
but neither Magnus induction nor the original Cohen–Lyndon theorem, to prove the
following result. The examples immediately following the statement will show that
this result is a common generalisation of the original Cohen–Lyndon theorem and
the Edjvet–Howie theorem. (Experts will realise that, conversely, this result can be
deduced from the original Cohen–Lyndon theorem and the Edjvet–Howie theorem by
standard arguments.)

The local-indicability Cohen–Lyndon theorem. If F is a locally indicable group and T
is an F-tree with trivial edge stabilisers, then each element of F that fixes no vertex of T
is Cohen–Lyndon aspherical in F. �

EXAMPLE 1.2. Let X be a set and let F = 〈 X | 〉.
Let T be the F-graph with vertex set F and edge set F×X such that each edge

(f, x) ∈ F×X has initial vertex f and terminal vertex f x. In a natural way, F acts
on T . The stabilisers are trivial. It is well known that T is a tree; see, for example [5,
Theorem I.7.6].

Thus, the original Cohen–Lyndon theorem is the case of the local-indicability
Cohen–Lyndon theorem where F acts freely on T .

EXAMPLE 1.3. Let A and B be locally indicable groups and let F = A∗B.
Let T be the F-graph with vertex set (F/A) ∨ (F/B) and edge set F such that

each edge f ∈ F has initial vertex f A and terminal vertex f B. In a natural way F acts
on T . The edge stabilisers are trivial and the elements of F that fix vertices of T are
the F-conjugates of the elements of A∪B. It can be shown that T is a tree; see, for
example [5, Theorem I.7.6].

Thus, the Edjvet–Howie theorem is the case of the local-indicability Cohen–
Lyndon theorem where T has only one edge F-orbit and two vertex F-orbits.

In Section 2 we introduce definitions concerning staggerable subsets, strongly
staggerable subsets and other concepts that we shall be using.

In Section 3 we describe the finite descending chain of subgroups of F used in
Howie induction. We then see that the staggerable conditions can be moved all the way
down the chain.
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In Section 4 we find that at the bottom of any of the chains of Section 3 the
conditions of staggerability and local indicability interact to produce Whitehead
subsets. This section reproduces parts of Appendix A of [1] with some modifications
to suit the current applications.

In Section 5 we recall some technical results of Cohen and Lyndon, Karrass and
Solitar and Edjvet and Howie. These results then allow us to take information that
was spontaneously generated at the bottom of the chain and move it all the way back
up the chain; the local-indicability Cohen–Lyndon theorem then follows.

Corollary 2.2 of [4] gives a sufficient condition for a subset of a free group F to
be Cohen–Lyndon aspherical in F . In Section 6 we find that the preceding machinery
implies the more general result that, for any locally indicable group F and any subset R
of F , if there exists some F-tree T with trivial edge stabilisers such that R is strongly T-
staggerable modulo F , then R is Cohen–Lyndon aspherical in F . Standard arguments
then yield consequences concerning the quotient group G := F/〈|R|〉; for example, one
obtains information about the torsion subgroups of G and the higher homology groups
of G.

2. Staggerability. In this section we introduce definitions concerning
staggerability and other concepts that we shall be using. Recall that F is a multiplicative
group.

NOTATION 2.1. For any set X , we let |X | denote the cardinal of X .
By an ordering of a set X , we shall mean a binary relation that totally orders X .
We will find it useful to have a notation for intervals in � that is different from

the notation for intervals in �. Let i, j ∈ �. We write [i↑j] := {k ∈ � | k � i and k � j},
and ]−∞↑j] := {k ∈ � | k � j}, and [i↑∞[ := {k ∈ � | k � i}.

We shall define families of subscripted symbols by using the following convention.
Let v be a symbol. For each k ∈ �, we let vk denote the ordered pair (v, k), and, for
each subset I of �, we let vI := (vk | k ∈ I).

For two subsets Y and Z of a set X , the complement of Y ∩ Z in Y will be denoted
by Y − Z (and not by Y \ Z since we let F\Z denote the set of F-orbits of a left F-set
Z).

For any subset Y of a left F-set X , we write glue(F, Y ) := {f ∈ F | f Y ∩ Y 
= ∅}.
We write F ′ := 〈 {[x, y] | x, y ∈ F} 〉 � F and Fab := F/F ′, the abelianization of F .

DEFINITION 2.2. Let r be an element of F .
We say that r has a unique root in F if r = 1 or r lies in a unique maximal infinite

cyclic subgroup of F .
If r 
= 1 and r lies in a unique maximal infinite cyclic subgroup C of F , we define

the unique root of r in F , denoted by F
√

r, to be the unique generator of C of which r is
a positive power. We say that 1 is the unique root of 1, and we define F

√
1 := 1.

If r 
= 1 and CF (r) is infinite and cyclic, then r has a unique root in F and 〈 F
√

r 〉 =
CF (r).

We say that a subset R of F has unique roots in F if every element of R has a unique
root in F , in which case we let F

√
R denote the set of these unique roots in F .

We now define the staggerability concepts that we need. We shall use [5] as our
reference for Bass–Serre theory.
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DEFINITION 2.3. Let T = (T, VT, ET, ι, τ ) be an F-tree and suppose ET is F-free.

(i) Let r be an element of F that fixes no vertex of T .
There exists a unique minimal 〈 r 〉-subtree of T , which is denoted by axis(r) and

has the form of a real line shifted by r; see, for example [5, Proposition I.4.11]. In
particular, 〈 r 〉\ axis(r) is a finite cyclic graph, and F\(F(axis(r))) is a quotient thereof.
We write Eaxis(r) := E(axis(r)), and we shall be particularly interested in the finite set
F\(F(Eaxis(r))) := {Fe | e ∈ Eaxis(r)} ⊆ F\ET.

For all f ∈ F , axis(f r) = f axis(r) and F\(F(Eaxis(f r))) = F\(F(Eaxis(r))).
For all n ∈ � − {0} , axis(rn) = axis(r).
As F acts freely on ET , it can be shown that CF (r) acts freely on axis(r), and,

by Bass–Serre theory, CF (r) is infinite and cyclic. Here r has a unique root in F and
〈 r 〉 ⊆ 〈 F

√
r 〉 = CF (r) ⊆ glue(F, Eaxis(r)); notice that if glue(F, Eaxis(r)) = 〈 r 〉, then

F
√

r = r.

(ii) If < is some (total) ordering of ET and R is some subset of F , we say that R is
(T,<)-staggered modulo F if the following three conditions hold.

(S1) Each F-orbit in ET is an interval in (ET,<); there then exists a unique
ordering of F\ET , again denoted by <, with the property that for all
e, e′ ∈ ET , Fe < Fe′ if and only if e < e′ and Fe 
= Fe′.

(S2) Each element of R fixes no vertex of T .
(S3) For each (r1, r2) ∈ R×R, exactly one of the following three conditions

holds.
(a) Fr1 = Fr2.
(b) In (F\ET,<),

min(F\(F(Eaxis(r1)))) < min(F\(F(Eaxis(r2)))) and
max(F\(F(Eaxis(r1)))) < max(F\(F(Eaxis(r2)))).

(c) In (F\ET,<),
min(F\(F(Eaxis(r2)))) < min(F\(F(Eaxis(r1)))) and
max(F\(F(Eaxis(r2)))) < max(F\(F(Eaxis(r1)))).

We say that R is strongly (T,<)-staggered modulo F if, moreover, the following
four conditions hold.

(S4) No two distinct elements of R are F-conjugate.
(S5) F\T has a unique maximal subtree.
(S6) (F\ET,<) is order isomorphic to an interval in �.
(S7) Any two <-consecutive edges in (F\ET,<) have a vertex in common

in F\T .
We have two types of examples in mind satisfying (S5), (S6) and (S7): cases where

F\T has only one vertex and cases where F\T has the form of the real line.

(iii) A subset R of F is said to be T-staggerable modulo F if there exists some ordering
< of ET such that R is (T,<)-staggered modulo F .

By observations made in Definitions 2.3(i), we see that if R is T-staggerable
modulo F , then R has unique roots in F .

Notice that if |R| = 1, then R is T-staggerable modulo F if and only if the unique
element of R fixes no vertex of T .

A subset R of F is said to be strongly T-staggerable modulo F if there exists some
ordering < of ET such that R is strongly (T,<)-staggered modulo F .

REMARK 2.4. In the case where F is free, the concept of a staggered subset appeared
in Howie’s paper [11, p. 642] and was a generalisation, from the case where |F\VT | = 1
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and F is free, of a definition of a staggered presentation that is given in Lyndon
and Schupp’s book [15, p. 152]. In the case where |F\VT | = 1 and F is free, the
above concept of a strongly staggered subset corresponds to a definition that is given
in [15, p. 104] of what could reasonably be called a strongly staggered presentation
but is somewhat confusingly again called a ‘staggered presentation’; such strongly
staggered presentations arise unnamed in the hypotheses of Lyndon’s (non-simple)
identity theorem [14, Section 7] and Cohen and Lyndon’s result [4, Corollary 2.2].

In Corollary 6.2, we show that, for any locally indicable group F and any subset
R of F , if there exists some F-tree T with trivial edge stabilisers such that R is
strongly T-staggerable modulo F , then R is Cohen–Lyndon aspherical in F . The case of
Corollary 6.2 where |F\VT | = 1 and F is free is precisely the Cohen–Lyndon result for
strongly staggered presentations [4, Corollary 2.2]; see also [15, Proposition III.11.1].

Howie and Pride [12, p. 72] consider what they call a staggered quotient F/〈|R|〉 of
a free product F , and this can be related to concepts considered here as follows. They
express F as the fundamental group of a graph of groups [12, p. 73] and the resulting
Bass–Serre tree T has an ordering < on ET such that their R is (T,<)-staggered
modulo F . However, this is only a small part of their requirements for a staggered
quotient.

We shall be using the following well-known observation.

REMARK 2.5. Let X be a generating set of F , let T be an F-tree, and let Y be a
subtree of T such that, for some vertex v of T , Y ⊇ {v} ∪ Xv, or, more generally, such
that X ⊆ glue(F, Y ).

Consider the F-subforest FY of T , and let T ′ denote the component of FY that
contains Y . The set {f ∈ F | f Y ⊆ T ′} is closed under right multiplication by elements
of X ∪ X−1 and contains 1, hence it is all of F . Thus, FY = T ′. Hence, FY is an
F-subtree of T . Moreover, the map Y → F\T ′, y �→ Fy is surjective.

3. Moving information down a chain. In this section, without mentioning local
indicability, we shall see how to move a staggerable subset S down a finite chain of
subgroups to a finitely generated group whose abelianization is virtually generated by
S. The finite descending chain of subgroups is essentially the same chain of subgroups
that was considered by Howie in his tower arguments in [9] and [10].

We shall often consider the following situation.

SETTING 3.1. Let S and � be finite subsets of F such that 〈 S∪� 〉/〈|S |〉 has no
infinite, cyclic quotients.

Let T be an F-tree with trivial edge stabilisers.
Choose an arbitrary vertex v of T . Let Y be the smallest subtree of T that contains

{v} ∪ Sv ∪ �v. Then Y is finite. Since F acts freely on ET , glue(F, EY ) is finite.
We set S+ := S ∪ � ∪ glue(F, EY ). Then S+ is a finite subset of glue(F, Y ). We set
ν := ∣∣S+∣∣ + 1. For each subgroup H of F , we set H† := 〈 S+ ∩ H 〉. Notice that if H
contains S ∪ �, then H† also contains S ∪ �.

We set F0 := F . Suppose that, for some n ∈ [0↑(ν−1)], we have a subgroup Fn

of F containing S. If F †
n/〈|S |〉 has no infinite, cyclic quotients, we choose Fn+1 := F †

n ;
otherwise, we choose Fn+1 to be an arbitrary normal subgroup of F †

n that contains S
such that F †

n/Fn+1 is infinite and cyclic. After ν such steps, we would have recursively
chosen a finite, monotonically decreasing sequence F[0↑ν] of subgroups of F that
contain S.
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PROPOSITION 3.2. In Setting 3.1, the following hold.
(i) Fν = 〈 S+ ∩ Fν 〉; S ∪ � ⊆ Fν; and, Fν/〈|S |〉 has no infinite, cyclic quotients.

(ii) If S is T-staggerable modulo F, then S is T-staggerable modulo Fν .

Proof. (i) If n ∈ [0↑(ν−1)] and S ∪ � ⊆ Fn, then S ∪ � ⊆ F †
n and, since 〈 S ∪

� 〉/〈|S |〉 has no infinite, cyclic quotients, S ∪ � ⊆ Fn+1. By induction, S ∪ � ⊆ Fν .
Consider any n ∈ [0↑(ν−1)]. If Fn+1 < F †

n (= 〈 S+ ∩ Fn 〉 � Fn), then Fn+1 
⊇ S+ ∩
Fn, and, hence, S+ ∩ Fn+1 ⊂ S+ ∩ Fn; notice that the number of those n for which the
latter happens is at most

∣∣S+∣∣ = ν−1. It follows that there exists some μ ∈ [0↑(ν−1)]
such that Fμ+1 = F †

μ. Then F †
μ/〈|S |〉 has no infinite, cyclic quotients, and

F †
μ = 〈 S+ ∩ Fμ 〉 = 〈 S+ ∩ F †

μ 〉 = 〈 S+ ∩ Fμ+1 〉 = F †
μ+1.

It then follows that the sequence F †
[μ↑ν] is constant, and (i) follows.

(ii) By hypothesis, S is T-staggerable modulo F0 (= F).
Let n be an element of [0↑(ν−1)] such that S is T-staggerable modulo Fn. By

induction, it suffices to show that S is T-staggerable modulo Fn+1.
There exists some ordering < of ET such that S is (T,<)-staggered modulo Fn.

By altering the ordering < of ET within each Fn-orbit, we can arrange that every F †
n -

orbit is an interval with respect to <. We claim that S is now (T,<)-staggered modulo
F †

n . It suffices to show that if two elements of S are Fn-conjugate, then they are F †
n -

conjugate. Suppose we have f ∈ Fn and r, f r ∈ S ⊆ F †
n . Now axis(r) ⊆ 〈 r 〉(Y ) ⊆ F †

n (Y )
and f axis(r) = axis(f r) ⊆ 〈 f r 〉(Y ) ⊆ F †

n (Y ). Hence, f ∈ glue(Fn, F †
n (EY )). Thus, F †

n f F †
n

meets

glue(Fn, EY ) ⊆ S+ ∩ Fn ⊆ 〈 S+ ∩ Fn 〉 = F †
n .

Hence, f ∈ F †
n . Thus, S is (T,<)-staggered modulo F †

n .
If Fn+1 = F †

n , then S is (T,<)-staggered modulo Fn+1 as desired. Thus, we may
assume that F †

n/Fn+1 is infinite and cyclic. There exists some z ∈ F †
n such that zFn+1

generates F †
n/Fn+1. Then F †

n = 〈 z 〉Fn+1. Since F †
n/Fn+1 is infinite, 〈 z 〉 ∩ Fn+1 = {1}.

Within each F †
n -orbit in ET , the Fn+1-orbits are permuted by z and form a single

〈 z 〉-orbit. By altering the ordering < of ET within each F †
n -orbit, we can arrange that

every Fn+1-orbit is an interval with respect to < such that z moves each Fn+1-orbit to
the next <-largest orbit. It suffices to examine two elements of S that are F †

n -conjugate.
Suppose we have f ∈ Fn+1 and i ∈ � and r ∈ S such that zif r ∈ S. If i = 0, then r and
zif r are Fn+1-conjugate, which is one of the desired possibilities. We now assume that
i > 0; the case where i < 0 is similar. Now

Fn+1\(Fn+1(Eaxis(zif r))) = Fn+1\(Fn+1(zif Eaxis(r))) = zi(Fn+1\(Fn+1(Eaxis(r)))).

Thus,

min(Fn+1\(Fn+1(Eaxis(zif r)))) = zi min(Fn+1\(Fn+1(Eaxis(r))))

> min(Fn+1\(Fn+1(Eaxis(r)))),

max(Fn+1\(Fn+1(Eaxis(zif r)))) = zi max(Fn+1\(Fn+1(Eaxis(r))))

> max(Fn+1\(Fn+1(Eaxis(r)))).

Hence, S is (T,<)-staggered modulo Fn+1, as desired. �
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4. New information generated at the bottom of a chain. In this section we review,
with some changes, the main results of [1, Appendix A]. The following is a minor
extension of [1, Lemma A.2.1].

LEMMA 4.1. Let F be a finitely generated, locally indicable group, let T be an F-tree
with trivial edge stabilisers, and let S be a subset of F such that S is T-staggerable modulo
F and F

√
S = S. Then the following hold.

(i) F/〈|S |〉 is indicable.
(ii) If F/〈|S |〉 is trivial, then, for each r ∈ S, glue(F, Eaxis(r)) = 〈 r 〉, and F acts

freely on T and FS is a Whitehead subset of F.

Proof. Recall from Definitions 2.3 that S has unique roots in F .
Without loss of generality, we may replace S with FS, and we then have FS = S.
By hypothesis, there exists some ordering < of ET such that S is (T,<)-staggered

modulo F .
Let X be a finite generating set of F , let v be a vertex of T , let Y be the smallest

subtree of T containing {v} ∪ Xv and let T ′ := FY . By Remark 2.5, T ′ is an F-subtree
of T and F\T ′ is finite. Consider any r ∈ S. Then T ′ is an 〈 r 〉-subtree of T . Since axis(r)
is the unique smallest 〈 r 〉-subtree of T , we see that T ′ contains axis(r). It follows that
S is (T ′,<)-staggered modulo F . It now suffices to prove the result with T ′ in place of
T . Thus, we may assume that F\T is finite.

By induction, we may assume that the result holds for all smaller values of |F\ET |.
Since F is a finitely generated, locally indicable group, F is indicable, and it can be

seen that (i) and (ii) hold when S is empty. Thus, we may assume that S is non-empty.
It then follows from Definition 2.3 that |F\ET | � 1. In particular, there exists some
emax ∈ ⋃

r∈S
Eaxis(r) such that in (F\ET,<),

Femax = max{Fe | e ∈ ⋃
r∈S

Eaxis(r)}.

There then exists some rmax ∈ S such that emax ∈ Eaxis(rmax), and, by the definition
of (T,<)-staggered modulo F , Femax does not meet the axis of any element of S −
F(rmax). Thus, there exists some pair (r, e), for example (r, e) = (rmax, emax), such that
the following hold.

r ∈ S, e ∈ Eaxis(r) and Fe does not meet the axis of any element of S − Fr. (1)

If glue(F, Eaxis(r)) 
= 〈 r 〉, then (r, e) = (rmax, emax). (2)

We consider the F-forest T − Fe. Let Tι denote the component of T − Fe
containing ιe, and let Tτ denote the component of T − Fe containing τe. Let Fι

denote the F-stabiliser of {Tι}, and let Fτ denote the F-stabiliser of {Tτ }, where we are
using set brackets to emphasise that we want to consider each component of T − Fe as
a single element. Let Sι := S ∩ Fι and Sτ := S ∩ Fτ . By (1), for each r′ ∈ S − Fr, axis(r′)
lies in T − Fe and hence lies in a component of T − Fe. It follows that FSι ∪ FSτ ∪ Fr
is all of S. Notice that if F{Tι} = F{Tτ }, then FSι = FSτ .

By applying the Bass–Serre structure theorem to the F-tree whose vertices are the
components of T − Fe and whose edge set is Fe, with f e joining f Tι to f Tτ (f ∈ F),
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we find that

F =
{

Fι∗Fτ if F{Tι} 
= F{Tτ },
Fι∗〈 f | 〉 if f ∈ F and f Tι = Tτ .

(3)

Hence,

F/〈|S − Fr|〉 =
{

(Fι/〈|Sι |〉)∗(Fτ /〈|Sτ |〉) if F{Tι} 
= F{Tτ },
(Fι/〈|Sι |〉)∗〈 f | 〉 if f ∈ F and f Tι = Tτ .

(4)

Case 1. Both Fι/〈|Sι |〉 and Fτ /〈|Sτ |〉 have infinite, cyclic quotients.
By (4), F/〈|S − Fr|〉 has a rank-two, free-abelian quotient. On incorporating r into

the normal subgroup being quotiented out, we see that F/〈|S |〉 has an infinite, cyclic
quotient, and, hence (i) and (ii) hold in this case.

Case 2. One of Fι/〈|Sι |〉, Fτ /〈|Sτ |〉 does not have an infinite, cyclic quotient.
By reversing the orientation of every edge of T , if necessary, we may assume that

Fι/〈|Sι |〉 does not have an infinite, cyclic quotient.
By the induction hypothesis applied to (Fι, Tι, Sι), we see that Fι/〈|Sι |〉 is trivial,

Fι acts freely on Tι, and some transversal for the Fι-action on Sι by conjugation is a
(finite) free-generating set of Fι, and for each rι ∈ Sι, glue(Fι, Eaxis(rι)) = 〈 rι 〉 and,
hence, glue(F, Eaxis(rι)) = 〈 rι 〉.

By inverting every element of S, if necessary, we may assume the following.

There exists some segment of axis(r) of the form e, p, re. (5)

Consider the case where F{Tι} 
= F{Tτ }. By (5), we have a path rp in axis(r) from
rτe ∈ rTτ 
= Tι to ιe ∈ Tι. Now rp necessarily enters Tι through an oriented edge of
the form ge−1 for some g ∈ Fι, and g then lies in glue(Fι, Eaxis(r)) − 〈 r 〉. This proves
the following.

If glue(Fι, Eaxis(r)) ⊆ 〈 r 〉 then F{Tι} = F{Tτ }. (6)

Consider the case where Sι is empty. Here Fι =Fι/〈|Sι |〉={1}. By (6),
F{Tι} = F{Tτ }, and by (3), there exists some t ∈ F such that F = 〈 t | 〉. Now
{t, t} = F

√
F − {1} ⊇ S = {r}. Hence, F = 〈 r | 〉, and glue(F, Eaxis(r)) = 〈 r 〉. This

proves the following.

If glue(F, Eaxis(r)) 
= 〈 r 〉, then Sι is non-empty. (7)

Case 2.1. glue(F, Eaxis(r)) = 〈 r 〉.
Here, by (6), F{Tι} = F{Tτ }. Hence, F(VTι) = VT and S = FSι ∪ Fr. Consider any

v ∈ VT . We wish to show that Fv = 1, and we may assume that v ∈ VTι. Here Fv � Fι,
and since Fι acts freely on Tι, Fv = 1, as desired. Thus, F acts freely on T . In (5), the
path p from τe to rιe in axis(r) does not meet Fe since glue(F, Eaxis(r)) = 〈 r 〉, and,
hence, p stays within Tτ , and rιe ∈ Tτ . Thus, rTι = Tτ , and, by (3), F = Fι∗〈 r | 〉. Since
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Fι/〈|Sι |〉 is trivial, we see that F/〈|S |〉 is trivial, and hence F/〈|S |〉 is indicable. Here all
the required conclusions hold.

Case 2.2. glue(F, Eaxis(r)) 
= 〈 r 〉.
By (7), Sι is non-empty, and hence there exists some eι ∈ ⋃

rι∈Sι

Eaxis(rι) such that

Feι = min{Fe | e ∈
⋃
rι∈Sι

Eaxis(rι)}.

There then exists some rι ∈ Sι such that eι ∈ Eaxis(rι), and we then know that
glue(F, Eaxis(rι))=〈 rι 〉. By (2), (r, e)= (rmax, emax). Using the definition of (T,<)-
staggered modulo F , one can show that Feι does not meet the axis of any element of
Fr, and similarly Feι does not meet the axis of any element of FSι − Frι. It is clear that
if FSτ 
= FSι, then Feι does not meet the axis of any element of FSτ . Hence, Feι does
not meet the axis of any element of S − Frι. We now replace (r, e) with (rι, eι) in (1) and
(2) and find that the same argument as before now terminates in Case 1 or Case 2.1.
Hence, all the desired conclusions hold.

This completes the proof. �
COROLLARY 4.2. In Setting 3.1, suppose that the following hold: F is locally indicable;

S is T-staggerable modulo F and F
√

S = S. Then the following hold: S ∪ � ⊆ Fν; Fν acts
freely on T; and FνS is a Whitehead subset of Fν .

Proof. Recall from Definitions 2.3 that S has unique roots in F .
By Proposition 3.2(i), Fν is finitely generated and S ∪ � ⊆ Fν and Fν/〈|S |〉 has

no infinite, cyclic quotients. By Proposition 3.2(ii), S is T-staggerable modulo Fν .
By Lemma 4.1(i), Fν/〈|S |〉 is indicable, and hence trivial. Now the result holds by
Lemma 4.1(ii). �

The next result is repeated from Corollary A.2.3 of [1]; Section A.3 of [1] describes
related results of Magnus, Brodskiı̆, Howie, Short and others.

THEOREM 4.3. Let F be a locally indicable group and let T be an F-tree with trivial
edge stabilisers and let R be a subset of F that is T-staggerable modulo F.

Then the following hold.
(i) (The local-indicability Freiheitssatz) 〈 FR 〉 acts freely on T, and hence 〈 FR 〉 is

a free group and the F-stabiliser of each vertex of T embeds in F/〈|R|〉 under the
natural map.

(ii) F/〈|F
√

R|〉 is locally indicable.

Proof. Since 〈 FR 〉 � 〈 F( F
√

R) 〉, we may replace R with F
√

R; then we have F
√

R = R.
(i) Let S be an arbitrary finite subset of FR and let � be the empty set. We may then

assume that we are in Setting 3.1. By Corollary 4.2, 〈 S 〉 � Fν and Fν acts freely on T .
Hence, 〈 S 〉 acts freely on T , and since S is an arbitrary finite subset of FR, we see that
〈 FR 〉 acts freely on T , that is, the F-stabiliser of each vertex of T embeds in F/〈|R|〉
under the natural map. By Reidemeister’s theorem, or by Bass–Serre theory, 〈 FR 〉 is a
free group.

(ii) Let H be an arbitrary finitely generated subgroup of F/〈 FR 〉. It suffices to show
that H is indicable. We may assume that H has no infinite, cyclic quotients. Then
Hab is finite. Let d denote the exponent of Hab. There exists some finite subset �

of F such that H = (〈� 〉 〈 FR 〉)/〈 FR 〉. Now H ′ = (〈� 〉′ 〈 FR 〉)/〈 FR 〉 and we see that
�d ⊆ 〈� 〉′ 〈 FR 〉. Hence, there exists some finite subset S of FR such that the finite set
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�d lies in 〈� 〉′〈 S 〉. Then the abelian group (〈� ∪ S 〉/〈|S |〉)ab has exponent at most d,
and hence 〈� ∪ S 〉/〈|S |〉 has no infinite, cyclic quotients. We may then assume that we
are in Setting 3.1. By Corollary 4.2, � ⊆ Fν = 〈 FνS 〉 � 〈 FR 〉, and hence H is trivial as
desired. �

COROLLARY 4.4 (Brodskiı̆–Howie–Short). Suppose that A and B are locally
indicable groups and that r is an element of A∗B. If no A∗B-conjugate of r lies in
A, then the natural map embeds A in (A∗B)/〈|r|〉.

COROLLARY 4.5 (Magnus’ Freiheitssatz). Suppose that A and B are free groups and
that r is an element of A∗B. If no A∗B-conjugate of r lies in A, then the natural map
embeds A in (A∗B)/〈|r|〉.

5. Moving the new information back up the chain. In this section we recover the
local-indicability Cohen–Lyndon theorem.

We begin by recording some general results about Whitehead subsets.

LEMMA 5.1. Let Y be a non-empty subset of F.
Then Y is a Whitehead subset of F if and only if all of the following hold: each y ∈ Y

freely generates CF (y); Y generates F; Y is closed under the F-conjugation action; and
Y with the F-conjugation action is the vertex set of an F-tree with trivial edge stabilisers.

Proof. Suppose that Y is a Whitehead subset of F , and let X be a free-generating set
of F such that Y = FX . Then Y generates F , Y is closed under the F-conjugation action
and each y ∈ Y generates a non-trivial free factor of F and, hence, freely generates
CF (y). We can express F as the fundamental group of a tree of groups in which the
edge groups are trivial and the family of vertex groups is (〈 x | 〉 | x ∈ X). Let T denote
the corresponding Bass–Serre tree. Thus, VT = ∨

x∈X
F/〈 x 〉 � ∨

x∈X

Fx = FX = Y, and
ET is some free F-set.

Conversely, suppose Y generates F and each y ∈ Y freely generates CF (y), and
Y is closed under the F-conjugation action, and Y with the F-conjugation action is
the vertex set of an F-tree T with trivial edge stabilisers. By the Bass–Serre structure
theorem, there exists some graph of groups (F , T) and some maximal subtree T0 of T
such that F is the fundamental group of (F , T, T0). By the centraliser condition, the
family of vertex groups can be expressed as (〈 x | 〉 | x ∈ X) for some transversal X for
the F-conjugation action on Y. Since F is generated by the F-conjugates of vertex
groups, it follows that T = T0. Hence, F is the free product of the family of vertex
groups. Thus, X is a free-generating set of F and Y = FX , as desired. �

This yields the following result, which we shall use in the proof of Theorem 5.3.

COROLLARY 5.2. Let R be a non-empty subset of F.
Then R is Cohen–Lyndon aspherical in F if and only if all of the following hold:

no two distinct elements of R are F-conjugate; each r ∈ R freely generates C〈 FR 〉(r); and
FR with the 〈 FR 〉-conjugation action is the vertex set of an 〈 FR 〉-tree with trivial edge
stabilisers.

We now give a generalisation of results of Cohen and Lyndon [4, Lemma 2.1] and
Karrass and Solitar [13, Theorem 1] that is similar to results of Chiswell, Collins and
Huebschmann [3, Theorem 4.6].
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THEOREM 5.3. Let (F , Y ) be a graph of groups with family of groups (F(y) | y ∈ Y )
and family of edge maps (te : F(e) → F(τY e) | e ∈ EY ), let Y0 be a maximal subtree
of Y and let F be the fundamental group of (F , Y, Y0).

Let R := (rv | v ∈ VY ) be a family of elements of F with the property that,
for each v ∈ VY, all of the following hold: rv ∈ F(v); for each e ∈ ι−1

Y ({v}),
〈 F(v)rv 〉 ∩ F(e) = {1}; and for each e ∈ τ−1

Y ({v}), 〈 F(v)rv 〉 ∩ teF(e) = {1}.
Then for each v ∈ VY, 〈 FR 〉 ∩ F(v) = 〈 F(v)rv 〉.
Let U := {v ∈ VY | rv 
= 1}. Then {ru | u ∈ U} is Cohen–Lyndon aspherical in F if

and only if, for each u ∈ U, ru is Cohen–Lyndon aspherical in F(u).

Proof. For each v ∈ VY , let F(v) := F(v)/〈|rv |〉, and for each e ∈ EY , let
F(e) := F(e). By the hypotheses on R, the edge maps for F then induce injective
maps that give a graph of groups (F, Y ) with family of groups (F(y) | y ∈ Y ). Let
F denote the fundamental group of (F , Y, Y0). Using the definition of fundamental
groups, we then construct a natural group homomorphism F → F , which is surjective
and has kernel 〈 FR 〉. In particular, for each v ∈ VY , 〈 FR 〉 ∩ F(v) = 〈 F(v)rv 〉.

Let T denote the Bass–Serre tree for (F , Y, Y0), and let T denote the Bass–Serre
tree for (F, Y, Y0). Using the definition of Bass–Serre trees, we construct a natural
identification 〈 FR 〉\T = T . Using the Bass–Serre structure theorem for 〈 FR 〉 acting on
T , we see that 〈 FR 〉 is the fundamental group of a tree of groups over T , with trivial edge
groups, and with family of vertex groups of the form (〈 FR 〉 ∩ zF(v) | v ∈ VY, z ∈ Zv),
where, for each v ∈ VY , Zv is some transversal for the 〈 FR 〉F(v)-action on F by
multiplication on the right. Thus, 〈 FR 〉 = ∗

v∈VY
∗

z∈Zv

〈 zF(v)rv 〉 = ∗
u∈U

∗
z∈Zu

〈 zF(u)ru 〉.
We claim that for each u ∈ U , CF (ru) = CF(u)(ru). If f ∈ CF (ru), then ru fixes the

path in T from 1F(u) to fF(u), and, by the hypotheses, ru fixes no edges of T . Hence,
the path under consideration is trivial, and hence f ∈ F(u), as claimed.

Suppose that, for each u ∈ U , ru is Cohen–Lyndon aspherical in F(u), and let Yu

be a transversal for the 〈 F(u)ru 〉CF(u)(ru)-action on F(u) by multiplication on the right
such that Yuru is a free-generating set of 〈 F(u)ru 〉. Then ZuYu is a transversal for the
〈 FR 〉CF (ru)-action on F by multiplication on the right and

∨
u∈U

ZuYuru is a free-generating

set of 〈 FR 〉. Thus, R is Cohen–Lyndon aspherical in F .
Conversely, suppose R is Cohen–Lyndon aspherical in F and u is an element of U .

By Corollary 5.2, each r ∈ R freely generates C〈 FR 〉(r), no two distinct elements of R
are F-conjugate and there exists some 〈 FR 〉-tree T ′ with vertex set FR and with trivial
edge stabilisers. By Corollary 5.2, it remains to show that F(u)ru is the vertex set of
some 〈 F(u)ru 〉-tree with trivial edge stabilisers. The subgroup 〈 F(u)ru 〉 of 〈 FR 〉 acts on
T ′ and for each vertex of T ′, say f ru′ with f ∈ F and u′ ∈ U , the 〈 F(u)ru 〉-stabiliser is
〈 F(u)ru 〉 ∩ f (CF(u′)(ru′)). The latter intersection fixes the path in T from 1F(u) to fF(u′),
and hence is trivial unless u′ = u and f ∈ F(u). Thus, the set of vertices of T ′ with non-
trivial 〈 F(u)ru 〉-stabiliser is the subset F(u)ru of FR (= VT ′). Since the vertex stabilisers
then generate 〈 F(u)ru 〉, we see that 〈 F(u)ru 〉\T ′ is a tree. Hence, successively 〈 F(u)ru 〉-
equivariantly contracting suitable edges of T ′ produces a 〈 F(u)ru 〉-tree with vertex set
F(u)ru and trivial edge stabilisers, as desired. �

REMARK 5.4. If A and B are groups and r is an element of A, it follows from
Theorem 5.3 that r is Cohen–Lyndon aspherical in A if and only if r is Cohen–Lyndon
aspherical in A∗B.
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COROLLARY 5.5. Suppose A and B are groups and A1 is a subgroup of A and B1 is
a subgroup of B and r is an element of A1∗B1 and the natural maps embed A1 and B1 in
(A1∗B1)/〈|r|〉.

If r is Cohen–Lyndon aspherical in A1∗B1, then r is Cohen–Lyndon aspherical in
A∗B.

Proof. By applying Theorem 5.3 to (A1∗B1)∗B1 B (= A1∗B), we see that r is
Cohen–Lyndon aspherical in A1∗B and also the natural map embeds (A1∗B1)/〈|r|〉
in (A1∗B)/〈|r|〉. Hence, the natural map embeds A1 in (A1∗B)/〈|r|〉.

By applying Theorem 5.3 to (A1∗B)∗A1 A (= A∗B), we see that r is Cohen–Lyndon
aspherical in A∗B. �

COROLLARY 5.6. Suppose F is locally indicable and T is an F-tree with trivial edge
stabilisers and r is an element of F that fixes no vertex of T.

Let H be a subgroup of F such that H ⊇ glue(F, Eaxis(r)) and H =
〈 glue(H, axis(r)) 〉. If r is Cohen–Lyndon aspherical in H, then r is Cohen–Lyndon
aspherical in F.

Proof. Let e be an edge in axis(r). Let T denote the F-tree obtained from T
by collapsing all edges in ET − Fe. Then ET = Fe and r shifts e and EaxisT (r) =
Fe ∩ EaxisT (r) and glue(H, axisT (r)) ⊆ glue(H, axisT (r)). It follows that we can replace
T with T and assume that ET = Fe.

Let T ′ = H(axis(r)). By Remark 2.5, T ′ is an H-subtree of T .
For each e′ ∈ Eaxis(r), there exists some f ∈ F such that f e = e′, whence

f ∈ glue(F, Eaxis(r)) ⊆ H and e′ = f e ∈ He. Hence, Eaxis(r) ⊆ He. Hence, ET ′ =
H(Eaxis(r)) ⊆ He. In summary, ET = Fe and ET ′ = He.

Case 1. |F\(VT)| = 2.
Here, we can write F = A∗B and no F-conjugate of r lies in A∪B and H = A1∗B1

for some A1 � A and some B1 � B. By Corollaries 4.4 and 5.5, r is Cohen–Lyndon
aspherical in A∗B (= F).

Case 2. |F\(VT)| = 1.
Here we can write F = A ∗ (b : {1} → {1}) and no F-conjugate of r lies in A.

Case 2.1. |H\(VT ′)| = 2.
Here H = A1∗ bA2 for some A1 � A and some A2 � A.
Then r is Cohen–Lyndon aspherical in A∗ bA by Corollaries 4.4 and 5.5.
Now r is Cohen–Lyndon aspherical in (A∗ bA) ∗ (b : A → bA) (= A∗〈 b | 〉 = F),

by Corollary 4.4 and Theorem 5.3.

Case 2.2. |H\(VT ′)| = 1.
Here H = A1∗(ba : {1} → {1}) for some A1 � A and some a ∈ A.
If no F-conjugate of r lies in 〈 ba | 〉, then r is Cohen–Lyndon aspherical in

A∗〈 ba | 〉 (= A∗〈 b | 〉 = F) by Corollaries 4.4 and 5.5.
Thus, we may assume that r itself lies in 〈 ba | 〉 and is then clearly Cohen–

Lyndon aspherical in 〈 ba | 〉. Hence, by Remark 5.4, r is Cohen–Lyndon aspherical
in A∗〈 ba | 〉 (= A∗〈 b | 〉 = F).

Hence, in all cases, r is Cohen–Lyndon aspherical in F . �
NOTATION 5.7. If a and b are elements of F , we shall let 〈 a| 〉b := (ai

b | i ∈ �). For
any subset J of �, we let aJ

b := (aj
b | j ∈ J) ⊆ 〈 a| 〉b.
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The following will be useful for simplifying calculations.

LEMMA 5.8. Suppose that f is an element of F and that N is a normal subgroup of
F such that F/N = 〈 f N | 〉. Let z be a symbol, let F̃ := F∗〈 z | 〉 and let Ñ denote the
smallest normal subgroup of F̃ containing N ∪ {f z}. Then F̃/Ñ = 〈 f Ñ | 〉 = 〈 zÑ | 〉 and
N is a free factor of Ñ.

Proof. It is easy to see that F = 〈 f | 〉 � N and F̃/Ñ = 〈 f Ñ | 〉 = 〈 zÑ | 〉. It
is not difficult to use generators and relations to check that F̃ = F∗〈 z | 〉 =
〈 f | 〉 � (N∗〈 〈 f | 〉(f z) | 〉), and hence Ñ = N∗〈 〈 f | 〉(f z) | 〉. �

The following is proved but not stated in [6]; here, we give an argument with a
different rewriting procedure to provide some variety.

LEMMA 5.9. (Edjvet–Howie) Suppose that A and B are locally indicable groups, and
that r is an element of A∗B such that no A∗B-conjugate of r lies in A∪B.

Let N be a normal subgroup of A∗B such that r ∈ N and (A∗B)/N is infinite and
cyclic. If r is Cohen–Lyndon aspherical in N, then r is Cohen–Lyndon aspherical in A∗B.

Proof. Let F = A∗B.
It follows from Lemma 5.8 and Remark 5.4 that by adjoining an infinite, cyclic

free factor to A, if necessary, we may assume that there exists some a ∈ A such that
F/N = 〈 aN | 〉.

Similarly, by adjoining an infinite, cyclic free factor to B, if necessary, we may
further assume that there exists some b ∈ B such that F/N = 〈 aN | 〉 = 〈 bN | 〉.

Let NA := A ∩ N and let NB := B ∩ N. Notice that aNA = NA and aNB =
abNB. It is not difficult to use generators and relations to check that F = 〈 a | 〉
� (NA∗NB∗〈 〈 a| 〉(ab) | 〉), and hence N = NA∗NB∗〈 〈 a| 〉(ab) | 〉.

We may replace r with any F-conjugate of r, since any automorphism of N respects
Cohen–Lyndon asphericity.

Let j ∈ �. Conjugation by aj induces an automorphism of N and we obtain the free-
product decomposition N = NA ∗ aj

NB ∗ 〈 〈 a| 〉(ab) | 〉; here we consider the resulting
cyclically reduced expression for r, and we see that there exists some finite subset Jj

in � such that this cyclically reduced expression lies in NA∗ aj
NB∗ 〈 aJj(ab) | 〉. We may

assume that Jj is minimal and r itself lies in this free factor of N. If Jj is empty, then
by replacing r with aj

r, we may assume that r ∈ NA∗NB, and then, by Remark 5.4, r is
Cohen–Lyndon aspherical in NA∗NB. By Corollaries 4.4 and 5.5, r is Cohen–Lyndon
aspherical in A∗B (= F).

Thus, we may assume that, for each j ∈ �, Jj is non-empty.

Let j ∈ �. Then aj+1
NB = (aj

(ab))(aj
NB), and we find that Jj ⊆ Jj+1 ∪ {j}. Similarly,

Jj+1 ⊆ Jj ∪ {j}, and hence Jj ∪ {j} = Jj+1 ∪ {j}.
It follows that {j ∈ � | min Jj < j} = {j ∈ � | min Jj+1 = min Jj < j} = {j ∈ � |

min Jj+1 < j}. It is not difficult to see that this set cannot be all of �. Let K :=
{j ∈ � | min Jj � j}. Then K = {j ∈ � | min Jj+1 � j} and K 
= ∅. Let us choose
k ∈ K to minimise the pair ( |Jk| , (min Jk) − k). If k+1 ∈ K , then min Jk+1 �
k+1, k 
∈ Jk+1, Jk+1 ⊆ Jk and by the minimality property of k, Jk+1 = Jk and
(min Jk+1) − (k+1) � (min Jk) − k, which is a contradiction. Thus, k+1 ∈ � − K . It
follows that min Jk+1 = k.

https://doi.org/10.1017/S0017089511000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000231


THE LOCAL-INDICABILITY COHEN–LYNDON THEOREM 651

By replacing r with ak
r, we may assume that k = 0, and hence min J1 = 0. Let

ν := max J1. Then ν � 0 and

r ∈ NA∗ aNB∗ 〈 a[0↑ν]
(ab) | 〉 = NA∗ abNB∗ 〈 a[0↑ν]

(ab) | 〉 = NA∗ NB∗ 〈 a[0↑ν]
(ab) | 〉.

Since min J1 = 0, no N-conjugate of r lies in NA∗ aNB∗ 〈 a[1↑ν]
(ab) | 〉 =

NA∗ abNB∗ 〈 a[1↑ν]
(ab) | 〉.

We claim that no N-conjugate of r lies in NA∗NB∗ 〈 a[0↑(ν−1)]
(ab) | 〉. The case of the

claim where ν = 0 holds because J0 is non-empty. The case of the claim where ν � 1
holds because max J1 = ν and hence no N-conjugate of r lies in

NA∗ aNB∗ 〈 a[0↑(ν−1)]
(ab) | 〉 = NA∗ abNB∗ 〈 a[0↑(ν−1)]

(ab) | 〉 = NA∗NB∗ 〈 a[0↑(ν−1)]
(ab) | 〉.

This proves the claim.
By Remark 5.4, r is Cohen–Lyndon aspherical in NA∗NB∗ 〈 a[0↑ν]

(ab) | 〉. By
Corollary 4.4 and Theorem 5.3, r is Cohen–Lyndon aspherical in the HNN extension

(NA∗NB∗ 〈 a[0↑ν]
(ab) | 〉) ∗ (a : (NA∗NB∗ 〈 a[0↑(ν−1)]

(ab) | 〉) → (NA∗ abNB∗ 〈 a[1↑ν]
(ab) | 〉)),

which is 〈 a | 〉 � (NA∗NB∗〈 〈 a| 〉(ab) | 〉) (= F). �
COROLLARY 5.10. Suppose F is locally indicable and T is an F-tree with trivial edge

stabilisers and r is an element of F that fixes no vertex of T.
Let N be a normal subgroup of F such that r ∈ N and F/N is infinite and cyclic. If r

is Cohen–Lyndon aspherical in N, then r is Cohen–Lyndon aspherical in F.

Proof. The argument is similar to the proof of Corollary 5.6. Let e be an edge in
axis(r). Let T denote the F-tree obtained from T by contracting all edges in ET − Fe.
Then ET = Fe and r shifts e. Hence, r fixes no vertex of T . Thus, we may replace T
with T and assume that ET = Fe.

Case 1. |F\(VT)| = 2.
Here we can write F = A∗B and no F-conjugate of r lies in A∪B. Then r is

Cohen–Lyndon aspherical in F by Lemma 5.9.

Case 2. |F\(VT)| = 1.
Here we can write F = A∗(b : {1} → {1}) and no F-conjugate of r lies in A.
If no F-conjugate of r lies in 〈 b | 〉, then r is Cohen–Lyndon aspherical in A∗〈 b | 〉

(= F) by Lemma 5.9.
Thus, we may assume that r itself lies in 〈 b | 〉 and is clearly Cohen–Lyndon

aspherical in 〈 b | 〉. Hence, r is Cohen–Lyndon aspherical in A∗〈 b | 〉 (= F) by
Remark 5.4.

Thus, in all cases, r is Cohen–Lyndon aspherical in F . �
5.11. The local-indicability Cohen–Lyndon theorem. Suppose that F is a locally indicable
group and T is an F-tree with trivial edge stabilisers. If r is an element of F that fixes no
vertex of T, then CF (r) is infinite and cyclic, and r is Cohen–Lyndon aspherical in F.

Proof. Recall from Definitions 2.3 that r has a unique root in F and CF (r) = 〈 F
√

r 〉.
Let S := { F

√
r } and � := ∅. We may then assume that we are in Setting 3.1, and

that v is a vertex in axis(F
√

r). Then 〈 S 〉Y = axis(F
√

r) = axis(r). We shall use decreasing
induction to show that, for each n ∈ [0↑ν], r is Cohen–Lyndon aspherical in Fn.
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By Corollary 4.2, FνS is a Whitehead subset of Fν . Since |S| = 1, Fν is cyclic, and
hence FνS = S. Thus, Fν = 〈 F

√
r | 〉. It is then clear that r is Cohen–Lyndon aspherical

in Fν .
Now suppose that n ∈ [0↑(ν−1)] and r is Cohen–Lyndon aspherical in Fn+1.
First, we wish to show that r is Cohen–Lyndon aspherical in F †

n . This is trivial if
F †

n = Fn+1, and we consider only the case where F †
n/Fn+1 is infinite and cyclic. Here r

is Cohen–Lyndon aspherical in F †
n by Corollary 5.10.

We next want to show that r is Cohen–Lyndon aspherical in Fn.
Recall that F †

n is generated by glue(F †
n , Y ) and that glue(Fn, EY ) ⊆ F †

n . Now

glue(F †
n , Y ) ⊆ glue(F †

n , axis(r))

and

glue(Fn, Eaxis(r)) = glue(Fn, 〈 S 〉(EY )) ⊆ 〈 S 〉 glue(Fn, EY )〈 S 〉 ⊆ F †
n .

Here r is Cohen–Lyndon aspherical in Fn by Corollary 5.6.
By descending induction, r is Cohen–Lyndon aspherical in F0 (= F). �

6. Applications. We now obtain a sufficient condition for a subset of F to be
Cohen–Lyndon aspherical in F .

THEOREM 6.1. Let (F , Y ) be a graph of groups with family of groups (F(y) | y ∈ Y )
and family of edge maps (te : F(e) → F(τY e) | e ∈ EY ), let Y0 be a maximal subtree
of Y and let F be the fundamental group of (F , Y, Y0).

Let U be a subset of VY and let (rv | v ∈ U) be a family of elements of F with the
property that for each v ∈ U the following hold.

(a) rv ∈ F(v) and F(v) is locally indicable and F(v) acts on some tree with
trivial edge stabilisers and no vertex fixed by rv.

(b) For each e ∈ ι−1
Y ({v}), F(e) is a free factor of F(v) that contains no F(v)-

conjugate of rv.
(c) For each e ∈ τ−1

Y ({v}), teF(e) is a free factor of F(v) that contains no F(v)-
conjugate of rv.

Then (rv | v ∈ U) is Cohen–Lyndon aspherical in F.

Proof. This follows from Theorems 5.3 and 5.11. Notice that by Corollary 4.4 the
edge groups are not affected by passing to the quotient. �

We shall consider only the case that corresponds to the strongly staggered
conditions.

COROLLARY 6.2. Suppose that F is a locally indicable group and R is a subset
of F. If there exists some F-tree T with trivial edge stabilisers such that R is strongly
T-staggerable modulo F, then R is Cohen–Lyndon aspherical in F.

Cohen and Lyndon [4, Corollary 2.2] proved the case of this result where F is free
and |F\VT | = 1.

Proof of Corollary 6.2. Applied to F acting on T , the Bass–Serre structure theorem
presents F as the fundamental group of a certain graph of groups (F , Y, Y0). Let
< be an ordering of ET such that R is strongly (T,<)-staggered modulo F . Here
EY = F\ET and, by the staggered conditions, the ordering < of ET induces an
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ordering, again denoted by <, of EY . By the strongly staggered conditions, (EY,<)
is order isomorphic to an interval in �. Let us consider only the case where (EY,<) is
order isomorphic to �; the case where (EY,<) is order isomorphic to a proper interval
in � is handled in a similar way. By choosing an order isomorphism we get an indexing
e� of the elements of EY .

For any interval I in �, eI is an interval in e�, and we let YI denote the subgraph of
Y with edge set eI together with the vertices of Y that are incident to these edges. By
the strongly staggered conditions, YI is connected and Y0 ∩ YI is the unique maximal
subtree of YI . Then the graph of groups obtained by restricting F to YI has a well-
defined fundamental group, which we denote by FI . It can be seen that FI is a free
factor of F .

By the staggered conditions, the ordering < of EY induces an ordering, again
denoted by <, of R. Let us consider only the case where R is order isomorphic to �;
the case where R is order isomorphic to a proper interval in � is handled in a similar
way. By choosing an order isomorphism we get an indexing r� of the elements of R.
For each n ∈ �, we set μn := min(F\(F(Eaxis(rn)))) and νn := max(F\(F(Eaxis(rn)))).
Clearly μn � νn. The staggered conditions imply that μn < μn+1 and νn < νn+1.

We can then express F as the fundamental group of a second graph of groups
whose family of vertex groups is (F[μn↑νn] | n ∈ �) and whose family of edge groups
is (F[μn↑νn] ∩ F[μn+1↑νn+1] | n ∈ �), with the edge maps being those suggested by the
intersection notation. Here the underlying graph has the form of the real line.

For each n ∈ �, some F-conjugate of rn lies in F[μn↑νn] and we may assume that rn

itself lies in the vertex group F[μn↑νn]. By the definition of μn and νn and the staggered
conditions, no F-conjugate of rn lies in either of the two incident-edge groups.

By Theorem 6.1, R is Cohen–Lyndon aspherical in F . �

Cohen–Lyndon asphericity has many applications, and we conclude by mentioning
two of them.

SETTING 6.3. Suppose that F is locally indicable and T is an F-tree with trivial
edge stabilisers and R0 is a subset of F that is strongly T-staggerable modulo F .

By Definition 2.3, R0 has unique roots in F and F
√

R0 is strongly T-staggerable
modulo F . For each r ∈ R0, we have CF (r) = 〈 F

√
r 〉.

By Corollary 6.2, R0 and F
√

R0 are Cohen–Lyndon aspherical in F , and we can
write the following.

Let G := F/〈|R0 |〉. For each r ∈ R0, let Gr := CF (r)/〈 r 〉 = 〈 F
√

r | r 〉, a finite, cyclic
subgroup of G.

Let ( Yr | r ∈ R0) be a family of subsets of F with the properties that for each
r ∈ R0, Yr is a transversal for the 〈 F( F

√
R0) 〉-action on F by multiplication on the left

(or right) and
⋃

r∈R0

( Yr( F
√

r)) is a free-generating set of 〈 F( F
√

R0) 〉.
Let (Xr | r ∈ R0) be a family of subsets of F with the properties that for each

r ∈ R0, Xr is a transversal for the (〈 FR 〉〈 F
√

r 〉)-action on F by multiplication on the
right and

⋃
r∈R0

(Xr r) is a free-generating set of 〈 FR0 〉. For each element v in the G-graph

〈 FR0 〉\T , let Gv denote the G-stabiliser of v. Also, let E0, resp. V0, be a transversal for
the natural G-action on 〈 FR0 〉\ET , resp. 〈 FR0 〉\VT . Here F is a free product of a free
group and ∗

v∈V0

Gv.

We first discuss torsion.
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COROLLARY 6.4. In Setting 6.3, let N denote the (normal ) subgroup of G generated
by the elements of G of finite order. Then the following hold.

(i) For each r ∈ R0, Yr may be viewed as a transversal for the N-action on G by
multiplication on the left, and N = ∗

r∈R0

∗
y∈Yr

yGr, and hence N is a free product of
finite, cyclic groups.

(ii) G/N is locally indicable, and every torsion-free subgroup of G is locally indicable.
(iii) Each non-trivial, torsion subgroup of G lies in exactly one of the (finite, cyclic )

subgroups of G of the form gGr, r ∈ R0, g ∈ G, and then r is unique and the coset
gGr ∈ G/Gr is unique.

In the case where F acts freely on T , and |R| = 1, (iii) can be attributed to Magnus
and Lyndon [14], (i) is due to Fischer, Karrass and Solitar [7] and (ii) can be attributed
to Brodskiı̆ [2].

In the case where F\T has one edge and two vertices, and |R| = 1, these results
can be attributed to Edjvet and Howie [6].

Proof of Corollary 6.4. Let G := F/〈| F
√

R0 |〉.
By Theorem 4.3(ii), G is locally indicable and, in particular, G is torsion free.
Let N1 := 〈 F( F

√
R0) 〉/〈 FR0 〉. Then N1 � G and G/N1 = G. Since G is torsion free,

every element of G of finite order lies in N1, that is, N � N1. Also, for each r ∈ R0, the
(faithful) image of Yr in G is a transversal for the N1-action on G by multiplication on
the left.

Since
⋃

r∈R0

((〈 F( F√R0) 〉Yr)r) = ⋃
r∈R0

(Fr) = FR0, it follows that

N1 =〈 F( F
√

R0 ) 〉/〈 FR0 〉=〈 ∨
r∈R0

(Yr( F
√

r)) | ∨
r∈R0

(Yrr) 〉= ∗
r∈R0

∗
y∈Yr

y〈 F
√

r | r 〉= ∗
r∈R0

∗
y∈Yr

yGr.

Thus, N1 is a free product of finite, cyclic groups. In particular, N1 is generated by some
set of elements of finite order in G, that is, N1 � N. Hence, N1 = N and (i) holds. Also,
every torsion-free subgroup of N is free. Hence, (ii) holds.

Any non-trivial, torsion subgroup H of G lies in N, and by well-known properties
of free products there exists some n ∈ N such that H � nyGr for a unique r ∈ R0 and a
unique y ∈ Yr, and here the coset n yGr ∈ N/ yGr is unique. Since the (faithful) image
of Yr in G is a transversal for the N-action on G by multiplication on the left, we see
that (iii) holds. �

We now consider exact sequences and homology groups. For any set X , we let �X
and �[X ] denote the �-module that is free on X ; if X is a G-set, this is a �G-module in
a natural way.

COROLLARY 6.5. In Setting 6.3, the following hold.
(i) The left F-action on 〈 FR0 〉 by conjugation induces a left G-action on 〈 FR0 〉ab, and

〈 FR0 〉ab is then a left �G-module that is naturally isomorphic to
⊕

r∈R0

�[G/Gr].

(ii) There exist natural exact sequences of left �G-modules that have the form

0 → ⊕
r∈R0

�[G/Gr] → ⊕
e∈E0

�[G] → ⊕
v∈V0

�[G/Gv] → � → 0, (8)

0 → ⊕
r∈R0

�[G] → ⊕
e∈R0∨E0

�[G] → ⊕
v∈R0∨V0

�[G/Gv] → � → 0. (9)
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(iii) For each n ∈ [3↑∞[ , the change-of-groups natural transformation⊕
v∈R0∨V0

Hn(Gv,−) → Hn(G,−), between functors from the category of right

�G-modules to the category of abelian groups, is an isomorphism of functors, and
the change-of-groups natural transformation Hn(G,−) → ∏

v∈R0∨V0

Hn(Gv,−),

between functors from the category of left �G-modules to the category of abelian
groups, is an isomorphism of functors.

In the case where F is free and |F\VT | = 1, (i) is Lyndon’s identity theorem
[14, Section 7]; in the case where F acts freely and |R0| = 1, (i) is Lyndon’s simple
identity theorem [14, Section 7]. In the case where |R0| = 1, and F\T has one edge
and two vertices, (i) is Howie’s simple identity theorem [10, Theorem 11]. The results
(ii) and (iii) are straightforward consequences of (i); see [14, Theorem 11.1] and [10,
Theorem 3].

Proof of Corollary 6.5. For each r ∈ R0, we have bijective correspondences

Xr � F/(〈 FR0 〉〈 F
√

r 〉) � G/〈 F
√

r〈 FR0 〉 〉 � G/Gr.

Since 〈 FR0 〉 = 〈 ∨
r∈R0

(Xrr) | 〉, we then have isomorphisms of abelian groups

〈 FR0 〉ab � �[
∨

r∈R0

(Xrr) ] � �[
∨

r∈R0

(Xr) ] � �[
∨

r∈R0

(G/Gr)] � ⊕
r∈R0

�[G/Gr].

The composite isomorphism of abelian groups 〈 FR0 〉ab � ⊕
r∈R0

�[G/Gr] is compatible
with the G-actions, and we find that (i) holds.

By Theorem 4.3(i), 〈 FR0 〉 acts freely on T . By [5, Definitions I.8.1], the
fundamental group of 〈 FR0 〉\T can be identified with 〈 FR0 〉. Then (i) and [5, Theorem
I.9.2] give a sequence as given in (8). We leave it as an exercise to construct a sequence
as in (9), which maps onto the above-constructed sequence in (8) with kernel a short
exact sequence. Alternatively, one can arrange for the sequences in (8) and (9) to be the
augmented cellular chain complexes of acyclic, simply connected, hence contractible,
CW-complexes on which G acts by permuting the cells. Here the second CW-complex
is obtained from the first CW-complex by G-equivariantly drawing on each two-cell a
point and a finite set of edges joining the new point to old points. This second CW-
complex has the property that every non-trivial finite subgroup of G fixes exactly one
point of the space and the fixed point is a zero-cell.

For the short exact sequence

0 → ker ε → ⊕
v∈R0∨V0

�[G/Gv]
ε−→ � → 0

of left �G-modules, where ε is the corresponding augmentation map, we see from (9)
that ker ε has a free �G-resolution of length at most two. The resulting long exact
sequences in homology then show that (iii) holds. �
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