SEMILINEAR PROBLEMS ON THE HALF SPACE WITH A HOLE

HWAI-CHIUAN WANG

In this article we prove that there is a positive solution in $H_0^1(\Omega)$ of the equation $-\Delta u + \lambda u = |u|^{p-2} u$ in Ω where Ω is the half space with a hole, $\lambda > 0$ and 2 .

1. INTRODUCTION

In this article we use the following notation:

$$\begin{split} \mathbf{R}^{N} &: \text{the } N \text{-dimensional Euclidean space, } N \geq 3, \\ \mathbf{R}^{N}_{+} &= \left\{ (\boldsymbol{x}', \boldsymbol{x}_{N}) \in \mathbf{R}^{N-1} \times \mathbf{R} \mid 0 < \boldsymbol{x}_{N} < \infty \right\} : \text{ the upper half space,} \\ \mathbf{R}^{N}_{-} &= \left\{ (\boldsymbol{x}', \boldsymbol{x}_{N}) \in \mathbf{R}^{N-1} \times \mathbf{R} \mid -\infty < \boldsymbol{x}_{N} < 0 \right\} : \text{ the lower half space,} \\ \Omega_{r} \text{ an unbounded smooth domain such that } \overline{\Omega}_{r} \subset \mathbf{R}^{N}_{+}, \ a_{r} = (a, r) \notin \overline{\Omega}_{r}, \\ \text{and its complement } \overline{\Omega}^{c}_{r} \text{ is contained in a ball } B_{\rho}(a_{r}) \text{ centred at } a_{r} \text{ with} \\ \text{radius } \rho : \text{ the upper half space with a hole.} \end{split}$$

D: One of $\mathbf{R}^N, \mathbf{R}^N_+$ and Ω_r .

For $\lambda > 0$ and 2 , consider the semilinear elliptic equation:

(1_D)
$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2} u \quad \text{in} \quad D\\ u \in H_0^1(D), \end{cases}$$

 $H_0^1(D)$: the usual Sobolev space on D under the norm

$$\|u\|_D^2 = \int_D \left(|\nabla u|^2 + \lambda u^2\right).$$

For $u \in H_0^1(D)$, define

$$egin{aligned} f_D(u) &= \int_D \left(\left|
abla u
ight|^2 + \lambda u^2
ight), \ M_D &= \left\{ u \in H^1_0(D) \ \Big| \ \int_D \left| u
ight|^p = 1
ight\}, \ lpha_D &= \inf \left\{ f_D(u) \ \mid u \in M_D
ight\}, \ F_D(u) &= rac{1}{2} \int_D \left(\left|
abla u
ight|^2 + \lambda u^2
ight) - rac{1}{p} \int_D \left| u
ight|^p. \end{aligned}$$

Received 1st May, 1995 I would like to express my gratitude to the referee for his valuable suggestions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

Write $\|\cdot\|$, f, M, α , F for $\|\cdot\|_{\mathbf{R}^N}$, $f_{\mathbf{R}^N}$, $M_{\mathbf{R}^N}$, $\alpha_{\mathbf{R}^N}$, $F_{\mathbf{R}^N}$, respectively.

The motivation to study our problem is as follows: by applying the compactness of the embedding $H_r^1(\mathbf{R}^N) \hookrightarrow L^p(\mathbf{R}^N)$, where $H_r^1(\mathbf{R}^N)$ consists of the radially symmetric functions in $H^1(\mathbf{R}^N)$, Berestycki-Lions [4] proved that α is achieved, and hence concluded that there is a positive solution of equation $(1_{\mathbf{R}^N})$. Gidas-Ni-Nirenberg [9] proved that every positive solution u of equation $(1_{\mathbf{R}^N})$ is radially symmetric with respect to some point in \mathbf{R}^N satisfying

(1-1)
$$\begin{cases} u(r)r^{(N-1)/2}e^{\sqrt{\lambda}r} = \gamma + o(1) & \text{as} \quad r \to \infty \\ u'(r)r^{(N-1)/2}e^{\sqrt{\lambda}r} = -\sqrt{\lambda}\gamma + o(1) & \text{as} \quad r \to \infty \end{cases}$$

where $\gamma > 0$ a constant. Kwong [11] proved that the positive solution of $(1_{\mathbf{R}^N})$ is unique up to translations. Throughout this article denote by \overline{u} the unique solution of equation $(1_{\mathbf{R}^N})$ which attains its maximum at 0, $\int_{\mathbf{R}^N} |\overline{u}|^p = 1$, $\|\overline{u}\|^2 = \alpha$, and satisfies (1-1).

Esteban-Lions [8] used the infinitesimal $\frac{\partial}{\partial y}$ of the translation operators to derive an important integral identity for the equation $-\Delta u = f(u)$ in an unbounded domain with boundary Γ :

$$\int_{\Gamma} n_i(x) \left|
abla u
ight|^2 ds = 0 \quad ext{ for } \quad 1 \leqslant i \leqslant N.$$

Let $\Omega_1 = \{(x', x_N) \in \mathbb{R}^{N-1} \times \mathbb{R} \mid |x'| < 1, 0 < x_N\}$ be an upper half strip. Two of its consequences are that there does not exist any nontrivial solution neither in $H_0^1(\mathbb{R}^N_+)$ of equation $(1_{\mathbb{R}^N_+})$ nor in $H_0^1(\Omega_1)$ of equation (1_{Ω_1}) . Such a surprising result attracted mathematicians to study the equations on the half space \mathbb{R}^N_+ and on Ω_1 . Ai-Zhu [1] proved that there are positive solutions of the equation

$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2} u & \text{in } \mathbf{R}_{+}^{N} \\ u > 0 & \text{in } \mathbf{R}_{+}^{N} \\ u(x', 0) = f(x') & \text{on } \partial \mathbf{R}_{+}^{N} \end{cases}$$

where $f \ge 0, f \ne 0$ in $H^{1/2}(\mathbb{R}^{N-1}) \cap L^{\infty}(\mathbb{R}^{N-1})$. In 1992, the author gave a talk in the second nonlinear France-Taiwan PDE Conference held in Paris. We proved that if r is large, $\Omega_2 = \Omega_1 \cup B_r(0)$ the upper half strip adding a big ball, then there is a positive solution in $H_0^1(\Omega_2)$ of equation (1_{Ω_2}) (see Lien-Tzeng-Wang [12, Example 5.6, p.1296]). In my talk, Berestycki asked the following problem: is there any positive solution of the equation on the upper half strip with a hole? We have only partial result for the Berestycki problem. However in this article, we try to answer a related problem affirmatively: Semilinear problems

THEOREM A. There is $\rho_0 > 0$ and $r_0 > 0$ such that if $0 < \rho \leq \rho_0$ and $r \geq r_0$ then there is a positive solution of equation (1_{Ω_r}) .

To prove Theorem A we use a higher energy process through a barycentre function. Such a process was first used by Coron [7], then by Benci-Cerami [3], Grossi [10] and many others. In this article we adapt several tools from Benci-Cerami [3] and Grossi [10].

2. EXISTENCE OF SOLUTIONS

For $c \in \mathbf{R}$, a $(PS)_c$ -sequence in $H^1_0(\Omega_r)$ for F is a sequence $\{u_n\}$ such that

$$F(u_n) \longrightarrow c,$$

 $F'(u_n) \longrightarrow 0$ strongly in $H^{-1}(\Omega_r).$

We state a classical and interesting known decomposition theorem for a $(PS)_c$ -sequence. For the convenience of the readers we sketch its proof.

THEOREM 1. Let $\{u_n\}$ be a $(PS)_c$ -sequence in $H_0^1(\Omega_r)$ for F_{Ω_r} . Then there are a nonnegative integer k, k sequences $\{y_n^i\}$ of points of the form $(x'_n, m_n + 1/2)$ for integers m_n , $i = 1, 2, \dots, k$, u^0 in $H_0^1(\Omega_r)$ solving equation (1_{Ω_r}) and nontrivial functions u^1, \dots, u^k in $H^1(\mathbb{R}^N)$ solving equation $(1_{\mathbb{R}^N})$. Moreover there is a subsequence $\{u_n\}$ satisfying

(1) $u_n(x) = u^0(x) + u^1(x - x_n^1) + \dots + u^k(x - x_n^k) + o(1)$ strongly, where $x_n^i = y_n^1 + \dots + y_n^i \to \infty, \ i = 1, 2, \dots, k.$ (2) $\|u_n\|_{\Omega_r}^2 = \|u^0\|_{\Omega_r}^2 + \|u^1\|^2 + \dots + \|u^k\|^2 + o(1),$ (3) $F_{\Omega_r}(u_n) = F_{\Omega_r}(u^0) + F(u^1) + \dots + F(u^k) + o(1).$

If $u_n \ge 0$ for $n = 1, 2, \dots$, then u^1, \dots, u^k can be chosen as positive solutions, and $u^0 \ge 0$.

PROOF: Note that each function in $H_0^1(\Omega_r)$, by extending it to be 0 outside Ω_r , can be considered as a function in $H^1(\mathbb{R}^N)$. Since

$$F_{\Omega_{r}}(u_{n}) = \frac{1}{2} \left\| u_{n} \right\|_{\Omega_{r}}^{2} - \frac{1}{p} \left\| u_{n} \right\|_{L^{p}(\Omega_{r})}^{p} = c + o(1),$$

$$F_{\Omega_{r}}'(u_{n}) = \left\| u_{n} \right\|_{\Omega_{r}}^{2} - \left\| u_{n} \right\|_{L^{p}(\Omega_{r})}^{p} = o\left(\left\| u_{n} \right\|_{\Omega_{r}} \right),$$

we see that $\{u_n\}$ is bounded in $H_0^1(\Omega_r)$. Take a subsequence $\{u_n\}$ and u^0 in $H_0^1(\Omega_r)$ such that $u_n \rightarrow u^0$ weakly in $H_0^1(\Omega_r)$, almost everywhere in Ω_r , and strongly in $L_{loc}^p(\Omega_r)$. Let $\varphi_n^1 = u_n - u^0$. By the Brezis-Lieb Lemma (see [5]) and the Vitali Lemma, we have

$$-\Delta u^{0} + \lambda u^{0} = |u^{0}|^{p-2} u^{0} \text{ in } \Omega_{r}$$
$$\|\varphi_{n}^{1}\|_{\Omega_{r}}^{2} = \|u_{n}\|_{\Omega_{r}}^{2} - \|u^{0}\|_{\Omega_{r}}^{2} + o(1)$$
$$\|\varphi_{n}^{1}\|_{L^{p}(\Omega_{r})}^{p} = \|u_{n}\|_{L^{p}(\Omega_{r})}^{p} - \|u^{0}\|_{L^{p}(\Omega_{r})}^{p} + o(1).$$
$$F_{\Omega_{r}}(\varphi_{n}^{1}) = F_{\Omega_{r}}(u_{n}) - F_{\Omega_{r}}(u^{0}) + o(1)$$
$$F_{\Omega_{r}}'(\varphi_{n}^{1}) = o(1) \quad \text{strongly.}$$

CASE 1. If $\varphi_n^1 \to 0$ strongly, then

$$u_{n}(x) = u^{0}(x) + o(1) \quad \text{strongly}, \\ \left\| u_{n} \right\|_{\Omega_{r}}^{2} = \left\| u^{0} \right\|_{\Omega_{r}}^{2} + o(1), \\ F_{\Omega_{r}}(u_{n}) = F_{\Omega_{r}}(u^{0}) + o(1).$$

In order to prove the second case, we need the following lemma in which the proof follows from Bahri-Lions [2]:

Decompose \mathbb{R}^{N} into nonoverlapping countable cubes Q_{i} with centres (x', m + 1/2) for integers m and side length 1. Define the concentration function h_{k} of $|u_{k}|^{2}$ by

$$h_k = \sup_{|i|=0,1,2,\cdots} \int_{Q_i} |u_k|^2$$

LEMMA 2. If $\{u_k\}$ is a bounded $(PS)_c$ sequence in $H^1(\mathbb{R}^N)$ such that $h_k \to 0$ as $k \to \infty$, then $u_k \to 0$ strongly in $H^1(\mathbb{R}^N)$.

PROOF: For $2 < q < r < 2^* = 2N/(N-2)$, $q = (1-t) \cdot 2 + tr$, t > 0, $s = tr/2 \ge 1$. Now

$$\begin{split} \int_{R^{N}} |u_{k}|^{q} &= \sum_{i} \int_{Q_{i}} |u_{k}|^{(1-t)\cdot 2} |u_{k}|^{tr} \\ &\leq \sum_{i} \left(\int_{Q_{i}} |u_{k}|^{2} \right)^{(1-t)} \left(\int_{Q_{i}} |u_{k}|^{r} \right)^{t} \\ &\leq (h_{k})^{(1-t)} \sum_{i} \left(\int_{Q_{i}} |u_{k}|^{r} \right)^{t} \\ &\leq c(h_{k})^{(1-t)} \sum_{i} \left(\int_{Q_{i}} |\nabla u_{k}|^{2} + u_{k}^{2} \right)^{tr/2} \\ &\leq c(h_{k})^{1-t} \left[\sum_{i} \int_{Q_{i}} \left(|\nabla u_{k}|^{2} + u_{k}^{2} \right) \right]^{tr/2} \\ &\leq c(h_{k})^{1-t} \left(||u_{k}||_{H^{1}(R^{N})} \right)^{(tr)/2} \\ &\leq c(h_{k})^{1-t} = o(1) \quad \text{as} \quad k \to \infty. \end{split}$$

By the $(PS)_c$ condition, we have

$$||u_k||^2_{H^1(\mathbb{R}^N)} - \int_{\mathbb{R}^N} |u_k|^{p+1} = \varepsilon_k ||u_k||_{H^1(\mathbb{R}^N)} = o(1)$$

where $\varepsilon_k = o(1)$. Since $\int_{\mathbb{R}^N} |u_k|^{k+1} = o(1)$, we have

$$\|u_k\|_{H^1(\mathbb{R}^N)} = o(1), \quad ext{as} \quad k \to \infty,$$

This completes the proof.

CASE 2. If φ_n^1 does not converge to 0 strongly, then by Lemma 2 there is a subsequence $\{\varphi_n^1\}$ and $\delta > 0$ such that

$$\sup_{|i|=0,1,2,\cdots}\int_{Q_i}|u_k|^2 \ge \delta \text{ for } n=1,2,\cdots.$$

where $\{Q_i\}$ are as in Lemma 2. For each n, find a Q_n^1 with centre y_n^1 of the form $(x'_n, m_n + 1/2)$ such that

$$\left\|\varphi_n^1\right\|_{L^2(Q_n^1)}^2 \geq \frac{\delta}{2}.$$

Take u^1 in $H^1(\mathbf{R}^N)$ and a subsequence $\{\varphi_n^1(x+y_n^1)\}$ satisfying $\varphi_n^1(x+y_n^1) \rightarrow u^1(x)$ weakly in $H^1(\mathbf{R}^N)$, almost everywhere in \mathbf{R}^N and strongly in $L^p_{loc}(\mathbf{R}^N)$. Since

$$\|u^1\|_{L^2(Q)}^2 = \lim_{n \to \infty} \|\varphi_n^1(x+y_n^1)\|_{L^2(Q)}^2 \ge \frac{\delta}{2},$$

where $Q = \{(x', x_N) \in \mathbb{R}^{N-1} \times \mathbb{R} \mid |x'| < 1/2, -1/2 < x_N < 1/2\}$, we have $u^1 \neq 0$.

Let $\varphi_n^2(x) = \varphi_n^1(x+y_n^1) - u^1(x)$. Then $\varphi_n^2 \to 0$ weakly in $H^1(\mathbf{R}^N)$, almost everywhere in \mathbf{R}^N and strongly in $L^p_{loc}(\mathbf{R}^N)$. We obtain that u^1 solves $(1_{\mathbf{R}^N})$ and satisfies

$$\|u^1\|^2 \ge \alpha^{p/(p-2)}$$

and similar equalities as in Case 1 above. Continuing this process, by (2-1), we have to stop after a finite number of steps. This completes the proof.

Let $\{u_n\} \subset M_{\Omega_r}$ satisfy $f_{\Omega_r}(u_n) = c + o(1)$. Set $v_n = c^{1/(p-2)}u_n$ for $n = 1, 2, \cdots$. Then we have

$$F_{\Omega_r}(v_n) = \left(\frac{1}{2} - \frac{1}{p}\right) c^{p/(p-2)} + o(1),$$

$$F'_{\Omega_r}(v_n) = o(1) \quad \text{strongly.}$$

Π

COROLLARY 3. Let $\{u_n\} \subset M_{\Omega_r}$ satisfy $u_n \ge 0$, $f_{\Omega_r}(u_n) = c + o(1)$ and $\alpha < c < 2^{(p-2)/p}\alpha$. Then $\{u_n\}$ contains a strongly convergent subsequence.

PROOF: Set $v_n = c^{1/(p-2)}u_n$ for $n = 1, 2, \cdots$. Then

(2-2)
$$F_{\Omega_r}(v_n) = \left(\frac{1}{2} - \frac{1}{p}\right) c^{p/(p-2)} + o(1)$$
$$F'_{\Omega_r}(v_n) = o(1) \quad \text{strongly.}$$

By applying Theorem 1 we obtain solutions v^0 of equation (1_{Ω_r}) and positive solutions, v^1, \dots, v^k of equation $(1_{\mathbb{R}^N})$ and $\{x_n^i\}_{n=1}^{\infty}$ of the form $(x'_n, m_n + 1/2), m_n$ integers, $i = 1, \dots, n$ such that

(2-3)
$$v_{n}(x) = v^{0}(x) + v^{1}(x - x_{n}^{1}) + \dots + v^{k}(x - x_{n}^{k}) + o(1) \text{ strongly}$$
$$\|v_{n}\|_{\Omega_{r}}^{2} = \|v^{0}\|_{\Omega_{r}}^{2} + \|v^{1}\|^{2} + \dots + \|v^{k}\|^{2} + o(1)$$
$$F_{\Omega_{r}}(v_{n}) = F_{\Omega_{r}}(v^{0}) + F(v^{1}) + \dots + F(v^{k}) + o(1).$$

Note that if $v^i \ge 0$, $v^i \ne 0$, $i = 1, 2, \dots, k$, then we can take $v^i > 0$, v^i is unique up to a translation and $F(v^i) = (1/2 - 1/p) \alpha^{p/(p-2)}$ for $i = 1, 2, \dots, k$. Therefore, by (2-2) and (2-3),

$$\left(\frac{1}{2} - \frac{1}{p}\right) c^{p/(p-2)} = F_{\Omega_r}\left(v^0\right) + k\left(\frac{1}{2} - \frac{1}{p}\right) \alpha^{p/(p-2)} + o(1)$$

If $v^0 \neq 0$, then $v^0 > 0$ and $F_{\Omega}(v^0) > (1/2 - \frac{1}{p}) \alpha^{p/(p-1)}$ by Proposition 5 below. If $\alpha < c < 2^{(p-2)/p} \alpha$, then $k = 0, v^0 > 0$ and

$$v_n(x) = v^0(x) + o(1)$$

or

$$u_n(x) = u^0(x) + o(1)$$

where $u^0 = c^{-1/(p-2)}v^0$. Therefore $\{u_n\}$ contains a strongly convergent subsequence. Take $\xi \in C^{\infty}(\mathbf{R}^+, \mathbf{R}), \ \eta \in C^{\infty}(\mathbf{R}, \mathbf{R})$ such that

$$\begin{split} \xi(t) &= \begin{cases} 0 & 0 \leqslant t \leqslant \rho \\ 1 & t \geqslant 2\rho \\ \eta(t) &= \begin{cases} 0 & t \leqslant 0 \\ 1 & t \geqslant 1 \\ 0 \leqslant \xi \leqslant 1, & 0 \leqslant \eta \leqslant 1 \\ f_y(x) &= \xi(|x - a_r|)\eta(x_N)\overline{u}(x - y) \\ \varphi_y(x) &= \frac{f_y(x)}{\|f_y\|_{L^p(\mathbf{R}^N)}} = c_y f_y(x) \quad \text{where} \ c_y &= \frac{1}{\|f_y\|_{L^p(\mathbf{R}^N)}}. \end{split}$$

[6]

Then $\varphi_y \in H^1_0(\Omega_r)$ and $\int_{\Omega_r} |\varphi_r|^p = 1$. Furthermore we have

LEMMA 4. Let $y = (y', y_N)$, then

- (1) $||f_y \overline{u}(\cdot y)||_{L^p(\mathbf{R}^N)} = o(1)$ as $|y a_r| \to \infty$ and $y_N \to \infty$, or $\rho \to 0$ and $y_N \to \infty$
- (2) $||f_y \overline{u}(\cdot y)|| = o(1)$ as $|y a_r| \to \infty$ and $y_N \to \infty$ or $\rho \to 0$ and $y_N \to \infty$

$$\begin{split} \|f_{y}(x) - \overline{u}(x-y)\|_{L^{p}(\mathbf{R}^{N})}^{p} \\ &= \int_{\mathbf{R}^{N}} |\xi(|x-a_{r}|)\eta(x_{N}) - 1|^{p} |\overline{u}(x-y)|^{p} dx \\ &\leqslant 2^{p} \int_{B_{2\rho}(a_{r}) \cup \{x_{N} \leqslant 1\}} |\overline{u}(x-y)|^{p} dx \\ &= o(1) \quad \text{as} \quad |y-a_{r}| \to \infty \quad \text{and} \quad y_{N} \to \infty, \quad \text{or} \quad \rho \to 0 \quad \text{and} \quad y_{N} \to \infty. \end{split}$$

$$\begin{split} \|f_y(x) - \overline{u}(x-y)\|^2 \\ &= \|(\xi(|x-x_r|)\eta(x_N) - 1)\overline{u}(x-y)\|^2 \\ &\leqslant \frac{c}{\rho} \int_{B_{2\rho}(a_r) \cup \{x_N \leqslant 1\}} \left(|\nabla \overline{u}(x-y)|^2 + |\overline{u}(x-y)|^2 \right) \\ &= o(1) \quad \text{as} \quad |y-a_r| \to \infty \quad \text{and} \quad y_N \to \infty, \quad \text{or} \quad \rho \to 0 \quad \text{and} \quad y_N \to \infty. \end{split}$$

= o(1) as $|y - a_r| \to \infty$ and $y_N \to \infty$, or $\rho \to 0$ and $y_N \to \infty$. **PROPOSITION 5.** Equation (1_{Ω_r}) does not have any ground state solution.

PROOF: Note that $\alpha_{\Omega_r} \ge \alpha$ since each function in $H_0^1(\Omega)$ can be extended by 0 outside Ω_r . Take a sequence $\{y^n\}$ in Ω_r such that

$$|y^n - a_r| \to \infty$$
 and $y^n_N \to \infty$ as $n \to \infty$.

Then, by Lemma 4,

$$\begin{aligned} \left\|f_{y^n} - \overline{u}\left(\cdot - y^n\right)\right\|_{L^p\left(\mathbf{R}^N\right)} &= o(1) \quad \text{as} \quad n \to \infty\\ \left\|f_{y^n} - \overline{u}\left(\cdot - y^n\right)\right\| &= o(1) \quad \text{as} \quad n \to \infty. \end{aligned}$$

Thus $\{\varphi_{y^n}\} \subset H^1_0(\Omega)$ is such that

$$\int_{\Omega_r} |\varphi_{y^n}|^p = 1 \quad \text{for } n = 1, 2, \cdots$$
$$\|\varphi_{y^n}\|^2 \longrightarrow \alpha,$$

or $\alpha_{\Omega_r} \leq \alpha$. We then conclude that $\alpha_{\Omega_r} = \alpha$. By the maximum principle, there does not exist any ground state solution of equation (1_{Ω_r}) . In other words, if u is a solution of equation (1_{Ω_r}) satisfying $\int_{\Omega_r} |u|^p = 1$, then $||u||^2_{\Omega_r} > \alpha$.

Π

0

REMARK 6. By Lemma 4(1), there is $r_1 > 0$ such that

(2-4)
$$\frac{1}{2} \leq \|f_y\|_{L^p(\Omega_r)} \leq \frac{3}{2}$$

where $r \ge r_1$ and $|y - a_r| \ge r/2$ and $y_N \ge r/2$. Set

$$\chi(t) = \begin{cases} 1 & \text{if } 0 \leq t \leq 1 \\ \frac{1}{t} & \text{if } 1 \leq t < \infty \end{cases}$$

and define $\beta: H^1(\mathbf{R}^N) \to \mathbf{R}^N$ by

$$\beta(u) = \int_{\mathbf{R}^N} u^2(x) \chi(|x|) x dx$$

For $r \ge r_1$, let

$$V_{r} = \left\{ u \in H_{0}^{1}(\Omega_{r}) \mid \int_{\Omega_{r}} \left| u \right|^{p} = 1, \ \beta(u) = a_{r} \right\},$$
$$c_{r} = \inf_{u \in V_{r}} \left\| u \right\|_{\Omega_{r}}^{2}.$$

Then we have:

Lemma 7. $c_r > \alpha$.

PROOF: It is easy to see that $c_r \ge \alpha$. Suppose $c_r = \alpha$. Take a sequence $\{v_m\} \subset H_0^1(\Omega_r)$ such that

$$\|v_m\|_{L^p(\Omega_r)} = 1, \ \beta(v_m) = a_r \quad \text{for} \quad m = 1, 2, \cdots,$$

 $\|v_m\|_{\Omega_r}^2 = \alpha + o(1).$

Let $u_m = \alpha^{1/(p-2)} v_m$ for $m = 1, 2, \cdots$. Then

$$F_{\Omega_r}(u_m) = \left(\frac{1}{2} - \frac{1}{p}\right) \alpha^{p/(p-2)} + o(1)$$

$$F'_{\Omega_r}(u_m) = o(1) \quad \text{strongly.}$$

By the maximum principle, $\{u_m\}$ does not contain any convergent subsequence. By Theorem 1, there is a sequence $\{x_m\}$ of the form $(x'_m, m + \frac{1}{2})$ for integers m such that

$$|x_m| \longrightarrow \infty$$

 $u_m(x) = \overline{u}(x - x_m) + o(1)$ strongly.

[8]

Since \overline{u} is radially symmetric, we may take m to be positive. We may assume that $|x_m| \ge 4$ from $m = 1, 2, \cdots$. Now

$$egin{aligned} &\langleeta\left(\overline{u}\left(x-x_{m}
ight)
ight),x_{m}
ight
angle &=\int_{\mathbf{R}^{N}}\overline{u}^{2}\left(x-x_{m}
ight)\chi(|x|)\langle x,x_{m}
angle dx \ &=\int_{\mathbf{R}^{N}_{+}}\overline{u}^{2}\left(x-x_{m}
ight)\chi(|x|)\langle x,x_{m}
angle dx \ &+\int_{\left(\mathbf{R}^{N}_{-}
ight)}\overline{u}^{2}\left(x-x_{m}
ight)\chi(|x|)\langle x,x_{m}
angle dx \ &
&\geqslant\int_{B_{1}(x_{m})}\overline{u}^{2}\left(x-x_{m}
ight)\chi(|x|)\langle x,x_{m}
angle dx \ &+\int_{\mathbf{R}^{N}_{-}}\overline{u}^{2}(x-x_{m})\chi(|x|)\langle x,x_{m}
angle dx. \end{aligned}$$

Note that there are $c_1 > 0$, $c_2 > 0$ such that for $x \in B_1(x_m)$, we have

$$egin{aligned} \overline{u}^2\left(x-x_m
ight) &\geqslant c_1, \ &\langle x,x_m
angle &\geqslant c_2 \left|x
ight| \left|x_m
ight| & ext{for} \quad m=1,2,\cdots. \end{aligned}$$

Thus

$$\int_{B_1(x_m)}\overline{u}^2\left(x-x_m
ight)\chi(|x|)\langle x,x_m
angle dx \geqslant c_1c_2\int_{B_1(x_m)}\chi(|x|)\left|x
ight|\left|x_m
ight|dx \ \geqslant c_3\left|x_m
ight|^{N+1}, \qquad c_3>0 \quad ext{a constant.}$$

Next, for $0 \leq s < \infty$, by (1-1),

$$\overline{u}(s)s^{(N-1)/2}e^{\sqrt{\lambda}s}\leqslant c_4$$
 for $c_4>0.$

Now

$$\begin{split} \int_{\mathbf{R}_{-}^{N}}\overline{u}^{2}(x-x_{m})\chi(|x|)\langle x,x_{m}\rangle dx &\leq c_{4}^{2}\int_{\mathbf{R}_{-}^{N}}\frac{\chi(|x|)|x||x_{m}|}{|x-x_{m}|^{(N-1)}e^{2\sqrt{\lambda}|x-x_{m}|}} \\ &\leq \frac{c_{5}}{e^{\sqrt{\lambda}|x_{m}|}}, \quad c_{5}>0 \quad \text{a constant.} \end{split}$$

Therefore

$$\left\langle eta(\overline{u}(x-x_m)),x_m
ight
angle \geqslant c_3\left|x_m
ight|^{N+1}-rac{c_5}{e^{\sqrt{\lambda}|x_m|}},$$

or

$$\langle \beta(\overline{u}(x-x_m)), \frac{x_m}{|x_m|} \rangle \geq c_3 |x_m|^N - \frac{c_5}{|x_m| e^{\sqrt{\lambda}|x_m|}}.$$

We conclude that

$$\begin{split} \alpha^{1/(p-2)} |a_r| &\ge \langle \beta(u_m), \frac{x_m}{|x_m|} \rangle \\ &= \langle \beta\left(\overline{u}(x-x_m)\right), \frac{x_m}{|x_m|} \rangle + o(1) \\ &\ge c_3 |x_m|^N + o(1), \end{split}$$

a contradiction. Thus $c_r > \alpha$.

REMARK 8. By Lemma 4 (2), there is $r_2 \ge r_1$ such that

(2-5)
$$\alpha < \left\|\varphi_{y}\right\|^{2} < \frac{c_{r} + \alpha}{2}$$

where $r \ge r_2$ and $|y - a_r| \ge r/2$ and $y_N \ge r/2$.

LEMMA 9. There is $r_3 \ge r_2$ such that if $r \ge r_3$, then

$$\langle eta(arphi_y), y
angle > 0 \quad ext{for} \quad y \in \partial \left(B_{r/2} \left(a_r
ight)
ight).$$

PROOF: By (2-4), $2/3 \leqslant c_y \leqslant 2$. For $r \geqslant r_2$, let

$$egin{aligned} A_{((3/8)r,(5/8)r)} &= \left\{ x \in \mathbf{R}^N \ \Big| \ rac{3}{8}r \leqslant |x-a_r| \leqslant rac{5}{8}r
ight\}, \ \mathbf{R}^N_+(y) &= \left\{ x \in \mathbf{R}^N \mid \langle x,y
angle > 0
ight\}, \ \mathbf{R}^N_-(y) &= \left\{ x \in \mathbf{R}^N \mid \langle x,y
angle < 0
ight\}. \end{aligned}$$

$$\begin{split} \langle \beta(\varphi_y), y \rangle &= c_y \left[\int_{\mathbf{R}^N_+(y)} \xi^2 \left(|x - a_r| \right) \eta^2(x_N) \overline{u}^2(x - y) \chi(|x|) \langle x, y \rangle dx \right. \\ &+ \int_{\mathbf{R}^N_-(y)} \xi^2 (|x - a_r|) \eta^2(x_N) \overline{u}^2(x - y) \chi(|x|) \langle x, y \rangle dx \right] \\ &\geqslant \frac{2}{3} \left[\int_{A((3/8)r, (5/8)r)} \overline{u}^2(x - y) \chi(|x|) \langle x, y \rangle dx \right. \\ &+ \int_{\mathbf{R}^N_-(y)} \overline{u}^2(x - y) \chi(|x|) \langle x, y \rangle dx \, . \end{split}$$

0

[10]

Now

$$\begin{split} \int_{A((3/8)r,(5/8)r)} \overline{u}^2(x-y)\chi(|x|)\langle x,y\rangle dx &\geq c_6 \int_{A((3/8)r,(5/8)r)} \chi(|x|) |x| |y| dx \quad \text{for } c_6 > 0 \\ &\geq c_6 |y| \left[\left(\frac{5}{8}r \right)^N - \left(\frac{3}{8}r \right)^N \right] \\ &\geq c_7 r^{N+1} \quad \text{for } c_7 > 0. \\ &\int_{\mathbf{R}^N_-(y)} \overline{u}^2(x-y)\chi(|x|)\langle x,y\rangle dx \leqslant c_8 \int_{\mathbf{R}^N_-(y)} \frac{|y|}{|x-y|^{(N-1)} e^{2\sqrt{\lambda}|x-y|}} dx \quad \text{for } c_8 > 0 \\ &\leqslant c_9 \frac{1}{e^{\sqrt{\lambda}r}} \quad \text{for } c_9 > 0. \end{split}$$

Therefore, there is $r_3 \geqslant r_2$, such that if $r \geqslant r_3$, $|y - a_r| = r/2$

$$\langle eta(arphi_y), y
angle \geqslant c_7 r^{N+1} - c_8 rac{1}{e\sqrt{\lambda}r} > 0.$$

This completes the proof.

By Lemma 4 and Lemma 9, fix $\rho_0 > 0$, $r_0 \ge r_3$ such that if $0 < \rho \le \rho_0$, $r \ge r_0$, then $\|\varphi_y\|_{\Omega_r}^2 < 2^{(p-2)/p} \alpha$ for $y \in \overline{B_{r/2}}(a_r)$. From now on, fix ρ_0, r_0 , for $r \ge r_0$. Let

$$B = \left\{ \varphi_y \mid |y - a_r| \leq \frac{r}{2} \right\},$$

$$\Gamma = \left\{ h \in C(V_r, V_r) \mid h(u) = u \quad \text{if} \quad ||u||_{\Omega_r}^2 < \frac{c_r + \alpha}{2} \right\}$$

LEMMA 10. $h(B) \cap V_r \neq \emptyset$ for each $h \in \Gamma$.

PROOF: Let $h \in \Gamma$ and $H(x) = \beta \circ h \circ \varphi_x : \mathbb{R}^N \to \mathbb{R}^N$. Consider the homotopy, for $0 \leq t \leq 1$,

$$F(t,x) = (1-t)H(x) + tI(x)$$
 for $x \in \mathbb{R}^N$.

If $x \in \partial(B_{r/2}(a_r))$, then, by Remark 8 and Lemma 9,

$$egin{aligned} &\langleeta\left(arphi_{x}
ight),x
ight
angle>0,\ &lpha<\left\Vertarphi_{x}
ight\Vert^{2}<rac{c_{r}+lpha}{2}. \end{aligned}$$

Then

$$egin{aligned} \langle F(t,x),x
angle &= \langle (1-t)H(x),x
angle + \langle tx,x
angle \ &= (1-t)\langle eta(arphi_x),x
angle + t\langle x,x
angle \ &> 0. \end{aligned}$$

Π

Thus $F(t, x) \neq 0$ for $x \in \partial(B_{r/2}(a_r))$. By the homotopic invariance of the degree

$$dig(H(x),B_{r/2}(a_r),a_rig)=dig(I,B_{r/2}(a_r),a_rig)=1$$

There is $x \in B_{r/2}(a_r)$ such that

$$a_r = H(x) = eta(h \circ arphi_x)$$

Thus $h(B) \cap V_r \neq \emptyset$ for each $h \in \Gamma$.

Now we are in the position to prove Theorem A: Consider the class of mappings

$$F = \left\{ h \in C\left(\overline{B_{r/2}(a_r)}\right), H^1(R_N) : h|_{\partial B_{r/2}(a_r)} = \varphi_y \right\}$$

and set

$$c = \inf_{h \in F} \sup_{y \in \overline{B_{r/2}(a_r)}} \|h(y)\|_{\Omega_r}^2$$

It follows from Lemmas 4-10, with the appropriate choice of r that

$$\alpha < c_r = \inf_{u \in V_{\gamma}} \left\| u \right\|_{\Omega_r}^2 \leqslant c < 2^{(p-2)/p} \alpha$$

and

$$\max_{\partial B_{r/2}(a_r)} \|h(y)\|_{\Omega_r}^2 < \max_{B_{r/2}(a_r)} \|h(y)\|_{\Omega_r}^2.$$

Theorem A then follows by applying the version of the mountain pass theorem from Brezis-Nirenberg [6].

References

- [1] J. Ai and X.P. Zhu, 'Positive solutions of inhomogeneous elliptic boundary value problems in the half space', *Comm. Partial Differential Equations* 15 (1990), 1421-1446.
- [2] A. Bahri and P.L. Lions, 'On the existence of a positive solution of semilinear elliptic equations in unbounded domains', (preprint).
- [3] V. Benci and G. Cerami, 'Positive solutions of some nonlinear elliptic problems in exterior domains', Arch. Rational Mech. Anal. 99 (1987), 283-300.
- [4] H. Berestycki and P.L. Lions, 'Nonlinear scalar field equations, I., existence of ground state', Arch. Rational Mech. Anal. 82 (1983), 313-345.
- [5] H. Brezis and E. Lieb, 'A relation between pointwise convergence of functions and convergence of functionals', Proc. Amer. Math. Soc. 88 (1983), 486-490.
- [6] H. Brezis and L. Nirenberg, 'Remarks on finding critical points', Comm. Pure Appl. Maths. 44 (1991), 939-963.

- [7] J.M. Coron, 'Topologie et cas limite des injections de Sobolev', C. R. Acad. Sci. Paris Ser. I 299 (1984), 55-64.
- [8] M.J. Esteban and P.L. Lions, 'Existence and non-existence results for semilinear elliptic problems in unbounded domains', Proc. Royal Soc. Edinburgh Sect. A 93 (1982), 1-14.
- [9] B. Gidas, W.M. Ni and L. Nirenberg, 'Symmetry of positive solutions of nonlinear elliptic equations in R^N', Adv. Math. 7 (1981), 369-402.
- [10] M. Grossi, 'Multiplicity results for semilinear equations with lack of compactness', Differential Integral Equations 6 (1993), 807-823.
- [11] M.K. Kwong, 'Uniqueness of positive solutions of $\triangle u u + u^p = 0$ in \mathbb{R}^N ', Arch. Rational Mech. Anal. 105 (1989), 243-666.
- [12] W.C. Lien, S.Y. Tzeng and H.C. Wang, 'Existence of solutions of semilinear elliptic problems on unbounded domains', *Differential Integral Equations* 6 (1993), 1281-1298.

Department of Mathematics National Tsing Hua University Hsinchu Taiwan e-mail: hwang@math.nthu.edu.tw

[13]