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On Braided and Ribbon Unitary Fusion
Categories

César Galindo

Abstract. We prove that every braiding over a unitary fusion category is unitary and every unitary
braided fusion category admits a unique unitary ribbon structure.

1 Introduction

A unitary braided fusion category (UBFC) is a braided fusion category (BFC) over
the complex numbers, where Hom-spaces have a Hilbert structure compatible with
the tensor product and the braiding (see Subsection 2.1). The unitarity is the key
additional structure for some applications of mathematics and theoretical physics.
For example, in mathematics UBFCs give rise to unitary representations of the Artin
braid group and finite depth subfactors of the hyperfinite II1 von Neumann factor
[18]. In physics a unitary structure is important in order to construct unitary (2+1)-
dimensional TQFT [16, 19] and algebraic models for exotic 2-dimensional physical
(anyonic) systems [11, 14]. These last two applications make unitary modular cate-
gories the mathematical foundation for topological quantum computation [6,10,17].
The above applications have renewed the interest in construction and study of prop-
erties of UBFCs.

Fusion categories are “quantum analogues” of finite groups, mainly because the
prototypical example of a fusion category is RepC(G), the category of finite dimen-
sional complex representation of finite group G. It is also the case because in fusion
categories there are phenomena such as nilpotency [8], solvability [4], and simplic-
ity [5]. However, important differences exist between general fusion categories and
RepC(G), one of which is unitarity. The fusion category RepC(G) admits a canonical
unitary structure, but for example the Yang-Lee category does not [3]. In fact, there
are families of premodular categories that do not admit unitary structures at all [15].
On the other hand, there are at least two infinite families of unitary premodular cat-
egories. One is associated with quantum groups [18] and the other is related to finite
groups [4]. The fusion categories of the latter family always admit a unique unitary
structure [7].

In this note we are interested in the following natural questions. Does a BFC admit
a unitary structure if the underlying fusion category is unitary? If it does, how many
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unitary ribbon structures does it admit? We prove that every braiding over a unitary
fusion category is automatically unitary (see Theorem 3.2)1, and every UBFC admits
a unique unitary ribbon structure (see Theorem 3.5).

2 Preliminaries

In this note, we will use the basic theory of fusion categories and braided fusion
categories. For further details on these topics, we refer the reader to [3]. In this
section we recall some definitions and results on unitary fusion categories. Much of
the material that appears here can be found in [16].

2.1 Unitary Fusion Categories

A C∗-category D is a C-linear abelian category with an involutive antilinear con-
travariant endofunctor ∗ that is the identity on objects, such that the hom-spaces
HomD(X,Y ) are Hilbert spaces and the norms satisfy

‖ f g‖ ≤ ‖ f ‖ ‖g‖, ‖ f ∗ f ‖ = ‖ f ‖2

for all f ∈ HomD(X,Y ), g ∈ HomD(Y,Z), where f ∗ denotes the image of f under ∗.
Let X and Y be objects in a C∗-category. A morphism u : X → Y is unitary if

uu∗ = id Y and u∗u = id X . A morphism a : X → X is self-adjoint if a∗ = a.

Remark 2.1 Every isomorphism in a C∗-category has a polar decomposition, i.e.,
if f : X → Y is an isomorphism, then f = ua, where a : X → X is self-adjoint and
u : X → Y is unitary; see [1, Proposition 8].

A unitary fusion category is a fusion category C, where C is a C∗-category, the
constraints are unitary, and ( f ⊗ g)∗ = f ∗ ⊗ g∗ for every pair of morphisms f , g
in C.

Remark 2.2

(i) A unitary fusion category is a fusion category with an additional structure.
Hence, a fusion category could have more than one unitary structure. All exam-
ples known to the author admit a unique unitary structure. Moreover, in [7, Theo-
rem 5.20] it was proved that every weakly group-theoretical fusion category admits a
unique unitary structure.

(ii) If C is a unitary fusion category, we can find bases such that the F-matrices
(Fi jk

l )n,m = Fi, j,k
l;n,m are unitary, where {Fi, j,k

l;n,m} are the 6 j-symbols (see [17] or [16] for
the definition of 6 j-symbols). Conversely, if for a fusion category C it is possible to
find bases such that the F-matrices (Fi jk

l )n,m = Fi, j,k
l;n,m are unitary, then C is a unitary

fusion category. See [20, Section 4].

1This answers Problem 3.3 in http://aimpl.org/fusioncat/, posted by Zhenghan Wang.
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3 Braiding and Modular Structures over Unitary Fusion Categories
are Unitary

3.1 The Center of a Unitary Fusion Category

We shall recall the definition of the center Z(C) of a monoidal category C; see
[9, Chapter XIII]. The objects of Z(C) are pairs (Y, c−,Y ), where Y ∈ C and
cX,Y : X ⊗ Y → Y ⊗ X are isomorphisms natural in X satisfying

cX⊗Y,Z = (cX,Z ⊗ id Y )(id X ⊗ cY,Z), cI,Y = id Y

for all X,Y,Z ∈ C. A morphism f : (X, c−,X)→ (X, c−,X) is a morphism f : X → Y
in C such that ( f ⊗ id W )cW,X = cW,Y (id W ⊗ f ) for all W ∈ C.

The center is a braided monoidal category with structure given as follows:

• the tensor product is (Y, c−,Y )⊗ (Z, c−,Z) = (Y ⊗ Z, c−,Y⊗Z), where

cX,Y⊗Z = (id Y ⊗ cX,Z)(cX,Y ⊗ id Z) : X ⊗ Y ⊗ Z → Y ⊗ Z ⊗ X,

for all X ∈ C;
• the identity element is (I, c−,I), cZ,I = id Z ;
• the braiding is given by the morphism cX,Y .

IfC is a unitary fusion category the unitary center Z∗(C) is defined as the full tensor
subcategory of Z(C), where (X, c−,X) ∈ Z∗(C) if and only if cW,X : W ⊗ X → X ⊗W
is unitary for all W ∈ C.

Proposition 3.1 Let C be a unitary fusion category then Z∗(C) = Z(C).

Proof Let (X, c−,X) be an object in Z(C). By [7, Proposition 5.24.] or [13, Theo-
rem 6.4], the inclusion functor Z∗(C) ⊆ Z(C) is a tensor equivalence. Therefore,
there is an object (Y, c−,Y ) in Z∗(C) and an isomorphism f : (X, c−,X)→ (Y, c−,Y ) in
Z(C). By Remark 2.1 there exists a unitary arrow u : (X, c−,X) → (Y, c−,Y ). Hence,
for every W ∈ C,

cW,X = (u⊗ id W )∗ ◦ cW,Y (id W ⊗ u),

so cW,X is a unitary arrow and (X, c−,X) ∈ Z∗(C).

A braiding over a unitary fusion category C is called unitary braiding if the mor-
phism cX,Y is unitary for any pair of objects X,Y ∈ C.

Theorem 3.2 Every braiding of a unitary fusion category is unitary.

Proof Let C be a unitary fusion category and let c be a braiding. It is easy to see
that the braiding c defines an inclusion functor C ↪→ Z(C),X 7→ (X, cX,−). Proposi-
tion 3.1 implies that cX,W is unitary for every W ∈ C.

Remark 3.3

(i) Theorem 3.2 implies that if the F-matrices (Fi jk
l )n,m = Fi, j,k

l;n,m are unitary, then
the R-matrices of the braiding are always unitarily diagonalizable.

(ii) A Kac algebra (H,m,∆, ∗) is a semisimple Hopf algebra such that (H, ∗) is a
C∗-algebra and the maps ∆ and ε are C∗-algebra maps. Theorem 3.2 implies
that every R-matrix in a Kac algebra is unitary in the sense that R∗ = R−1.
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3.2 Ribbon Structures on Unitary Fusion Categories

If C is a fusion category, then for every f ∈ HomC(X,Y ) the transpose of f , is defined
by

t f := (id X∗ ⊗ evY )(id X∗ ⊗ f ⊗ id Y∗)(coevX ⊗id Y∗) ∈ HomC(Y ∗,X∗).

A twist on a braided fusion category C is a natural automorphism of the identity
functor θ ∈ Aut(IdC) such that θX⊗Y = (θX ⊗ θY )cY,XcX,Y for all X,Y ∈ C. A twist
is called a ribbon structure if tθX = θX∗ . A fusion category with a ribbon structure is
called a ribbon fusion category. Each ribbon structure θ defines a quantum dimension
function by dimθ(X) = evX cX,X∗(θX ⊗ id X∗) coevX .

We shall denote by Aut⊗(IdC)(+,−) the abelian group of tensor automorphisms γ
of the identity such that γX = ±id X for every simple object X ∈ C.

Proposition 3.4 Let C be a braided fusion category. If the set of ribbon structures is
not empty, it is a torsor under Aut⊗(IdC)(+,−).

Proof Let θ and θ ′ be ribbon structures. It is easy to see that γ := θ−1θ ′ : IdC → IdC

is a tensor automorphism of the identity. For every simple object, we have θX =
θ(X)id X , θ ′X = θ(X) ′id X , γX = γ(X)id X for some γ(X), θ(X), θ(X) ′ ∈ C∗ and
θ(X) ′ = γ(X)θ(X). Since θ ′ is a ribbon structure, for every simple object X ∈ C,
dimθ ′(X) = dimθ ′(X∗). On the other hand, dimθ ′(X) = γ(X) dimθ(X). Therefore,
γ(X) = γ(X∗), and since γ(X∗) = γ(X)−1, we conclude that γ has order two.

Conversely, if γ is an automorphism of the identity such that γX = ±id X for every
simple object, then for every ribbon structure θ, the natural isomorphism θ ′ = θγ is
a new ribbon structure.

If C is a unitary fusion category, a ribbon structure on C is called unitary ribbon
structure if θX is unitary,

(coevX)∗ = evX(cX,X∗)(θX ⊗ id X∗) and (evX)∗ = (id X∗ ⊗ θ−1
X )(cX∗,X)−1 coevX

for all X ∈ C. A unitary fusion category with a unitary ribbon structure is called
a unitary ribbon fusion category or unitary premodular category. In a unitary ribbon
fusion category

dimθ(X) = evX(cX,X∗)(θX ⊗ id X∗) coevX = (coevX)∗ coevX ;

therefore, the quantum dimension of every object is a positive number.

Theorem 3.5 Every braided fusion category with a unitary structure admits a unique
unitary ribbon structure.

Proof By [12, Proposition 2.4] every braided unitary fusion category admits a
canonical unitary ribbon structure. Let θc be the canonical ribbon structure asso-
ciated with c. By Proposition 3.4, if θ ′ is another unitary ribbon structure, then there
is γ ∈ Aut⊗(IdC)(+,−) such that θ ′ = θcγ. If γ is not the identity, there is a simple
object X ∈ C such that γX = −id X , then dimθ ′(X) = − dimθc (X) < 0, but the quan-
tum dimension of every object of any unitary ribbon structure is positive. Therefore
γ is the identity and θc is unique.
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Remark 3.6 It follows from Theorem 3.5 that if a unitary braided fusion category
is non-degenerate (see [2] for a definition), then it admits a unique unitary modular
structure.
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