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UNBOUNDEDNESS OF THE BALL BILINEAR
MULTIPLIER OPERATOR

GEOFF DIESTEL anD LOUKAS GRAFAKOS

Abstract. For all n > 1, the characteristic function of the unit ball in R?" is
not the symbol of a bounded bilinear multiplier operator from L?(R™) x LI(R"™)
to L"(R™) when 1/p + 1/q = 1/r and exactly one of p, q, or ' =r/(r — 1) is
less than 2.

81. Introduction

~

We denote the Fourier transform of a function f on R" by f(§) =
Jgn f(t)e 2™ € dt and its inverse Fourier transform by fV(€§) = f(—é*) Let
B be the unit ball in R™ and x4 the characteristic function of a set A. The
unboundedness of the linear operator

TXB(f) = (]?XB)V

on LP(R™) when p # 2 and n > 1 was established by Fefferman [2].

In this article we provide a variant of Fefferman’s result in the bi-
linear setting. Our arguments also work for multilinear operators. Let
1 <p1,...,pr <ooand 0 < p < oco. We recall that a bounded function
m : (R")* - C is called a k-linear multiplier if the k-linear operator

(Foesdi) — [ oo [ e, €06 - Rt
x e2mi&it ) e, L ge,
initially defined for Schwartz functions f; on R" admits a bounded extension
(1.1) T o LPL(R™) x -+ x LP*(R™) — LP(R"™).

In this case we call m the symbol of T},,. We will denote by My, p,. . e p(R™)
the set of all k-linear multipliers m such that the corresponding operator T,
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satisfies (1.1). The norm of m in My, p, . . »(R™) is defined as the norm
of T},.

Nontrivial examples of functions in My, p, »(R) are characteristic func-
tions of half-planes (see [7], [8]) when p; ' 4+p, ' = p~! < 3/2 and character-
Vand 2 < py,p2,p’ < o0
(see [4]). Here p’ = p/(p—1). Tt is still an open question whether the results

istic functions of planar ellipses when p7 ! 4-p; ! = p~

of this paper hold if n = 1. In this work we show that this is not the case
for the characteristic function of the ball in R*" if 1/p +1/q = 1/r and
exactly one of p, ¢, or r’ is less than 2. We will construct a counterexample
when n = 2 and r > 2. The general result will follow from duality and a
multilinear version of de Leeuw’s theorem [1].

§2. Bilinearization of Fefferman’s counterexample for M, ,,(R?)

For a rectangle R in R2, let R’ be the union of the two copies of R
adjacent to R in the direction of its longest side. Hence, RUR’ is a rectangle
three times as long as R with the same center. Key to this argument is the
following geometric lemma whose proof can be found in [9], page 435 or [3],
page 738.

LEMMA 1. Let § > 0 be given. Then there exists a measurable subset
E of R? and a finite collection of rectangles R; in R* such that

1) The R; are pairwise disjoint.
2) We have 1/2 < |E| < 3/2.
3) We have |[E| <63, |R;|.

4) For all j we have |R; N E| > LIR;.

~~ o~ —~~

Let 6 > 0 and let £ and R; be as in Lemma 1. The proof of Lemma 1
implies that there are 2F rectangles R; of dimension 27% x 3log(k+2). Here,
k is chosen so that k + 2 > e'/9. Let v; be the unit vector in R? parallel to
the longest side of R; and in the direction of the set E relative to R;.

PROPOSITION 1. Let R be a rectangle in R? and let v be a unit vector
in R? parallel to the longest side of R. Let R’ be as above. Consider the
half space H, of R* defined by

Hy = {(&,n) e RZXR?: (€41n)-v >0}
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Then the following estimate is valid for all x € R?:

(2.1) /R 2 /R 04, (& MXR(EXR ()™ 7 dfdn‘ > (@),

Proof. We introduce a rotation (i.e. orthogonal matrix) O of R? such
that O(v) = (1,0). Setting £ = (£1,€2), n = (n1,72) we can write the
expression on the left in (2.1) as

W RO~ TR(Oy)e2mia0 ) dfd”'
O~1(¢+n)v>0
_ ‘ Il Gmeemmenonem d§dn'-
&1+m >0

Now the rectangle O[R] has sides parallel to the axes, say O[R] = I x L.
Assume that |I;| > |[2|, i.e. its longest side is horizontal. Let H be the
classical Hilbert transform on the line. Setting Oz = (y1,y2) we can write
the last displayed expression as

i ()’ / AN / T () 2™ dyde,
&1eR nm>—&1

= X1,(12) / G (60) 5 (7 + ) [xr, ()26 O] ) d
&1€ER
= X1,(y2) %(IJFZ'H)(XIl)(yl) = ‘[X&zox/hx\b(fla@)]v(th) :

Using the result from [3] (Proposition 10.1.2) or [9] (estimate (33), page 453)
we deduce that the previous expression is at least

1

1 1
1_0X(11><12)/(y17y2) = TOX(O[R])/(OZ') = EXR'(x)-

This proves the required conclusion. 0

Next we have the following result concerning bilinear operators on R?

of the form

~

Tn(f,9)(x) = /R? /R? m(&1, &2, m1,m2) f(&1,€2)9(n1,m2)
% e2miz-(E14+m €241m2) d&rdadm dny.
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LEMMA 2. Let v1,v2,...,vj,... be a sequence of unit vectors in R2.
Define a sequence of half-spaces H,; in R* as in Proposition 1. Let B, B*!,
B*2 be the following sets in R*

B={(&n) e R*xR*: [¢* + [n]* < 1}
B ={(&n) eR*xR*: | +n)* + n* <1}
B2 ={(&n) eR? xR [ + ¢+ 7> <1}

Assume that one of Typ, Ty .., Tx,., lies in My or(R%) and has norm

C =C(p,q,7). Then we have the following vector-valued inequality

(S, )], = o (1) ()

1/2

for all functions f; and g;.

Proof. We begin with the assumption that T, lies in M, ,,(R?) for
some p,q,r > 0. Set £ = (£1,&2) and i = (n1,72) € R2. For p > 0 we define
sets

B, ={(&n) e R xR : [¢* + [n]* < 2p°}
Bj,={(&m) € R* x R?: [¢ = puj|* + [n — pv|* < 2p%}.
Note that bilinear multiplier norms are translation and dilation invariant.
Easy computations give that

1XB; , | Mp.q.r®2) < IXB, I M,.q.®2) = C-

The important observation is that xp; , — XHo, pointwise as p — oo and

that the multiplier norms of the functions x p; , are bounded above by C.
Moreover, by the bilinear version of a theorem of Marcinkiewicz and

Zygmund ([5], Section 9), we have the following inequality for all p > 0.

2\ 1/2 1/2
H (X1, 9] H > lail*)
j r a
Since xp;, — XHo, pointwise as p — oo, we can deduce that

lim Ty, (£,9)(@) =Ty, (f9)()

p—00

/2

SCH<;‘JCJ|
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for all € R? and suitable functions f and g. We note that the curvature
of the ball B is used here. By Fatou’s lemma we conclude

22| (St 0) | (Sl )]

Now, observe the following identity:

Ty, (f.9)(x) = TP, (e72mPer ) f em2mibe ) g) (),

< liminf
p—00

Using (2.2) and the previous identity gives

(Z{ fng )1/2 .

(Z|e47rzpvj (- ) \s, (e—Zﬂ'ipvj'( . )fj’ e—ZWiPUj'( . )gj) ‘2)

1/2
< liminf
p—00

T

< hgngXBp HMp,q,r

(Sl 15) )"
1/2 1/2
= ()] | (i)

where the last equahty follows from the dilation invariance of bilinear mul-

Jime ]

tiplier norms.
The proof of the analogous statements for T'g«1 and Tz« is as follows.
We introduce sets

Bl ={(&,m) e R2x R : ¢ + 72 + [n|* < p*}
B, ={(&mn) e R* x R*: |¢ — pu; + 0> + In|* < p°}
B = {(&n) € R* xR ¢ + ¢ + > < p?}
B2 = {(6,1) € RZ x R?: [¢[ + |¢ + 1 — pv;|? < p?).

Note that both B]*}p and B;’F,%) converge to H,; as p — oo. Using the identities
Ty (Fo)@) = 7T (e 27050 £ g) )
1P
Ty (1:0)(x) = 20T (f,0720 g ),

we obtain a similar conclusion for the bilinear operators 7, ., and T}, _,
B* B*
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The next ingredient that we will need is a multilinear version of de
Leeuw’s theorem. For 1 < j < k we will consider §; € R", n; € R™. Then
the pairs (§5,7;) € R"™™™. Also for a function f on R" and g on R™ we
introduce another function f®g on R"™™ by setting (f®g)(&,n) = f(£)g(n).

PROPOSITION 2. Suppose that

m(§17 7717{27 2, .. 7€k7 Uk) € Mplvp%---vpkyP(Rner)

for some 1 < p < oo. Then for almost every (&1,...,&) € (R™MF the
function m(§17 : 7€27 IR 7§k7 ) lies in Mplyp%---vpkvp(Rm)? with norm

M€, - €2, - &k M Moy o®™) S MMy e p @+

AAAAAAAAAA

Proof. In the proof that follows for simplicity we take k = 2. The
case of a general k does not present any complications, only notational
changes. We also assume that m is continuous. This assumption may
be easily removed by considering convolutions of m in each variable with
smooth approximate identities.

Fix fi,91,h1 € S(R") and f2,g2,he € S(R™) with || follp, = [lg2llp, =
HhQHp’ =1. Let

M(&1,&) = /m/m /mm(§1,771,§2,772)f2(771)§2(772)

% 627ri(771+772)'332 d?’]ldT]Q h2 (1’2) d.%'z-

If we can show that M € M, ,, »(R™), then by Proposition 4 (vi) in [6],
we can deduce that || M| < [[M|rm,, ,,,- Then, by duality, it will follow
that [ T(f2,92) lp < M 10 < [M[Laty, sy We have

‘<TM(f17gl)7hl>‘
= /n/n - M (€1,€2) f1(£1) 1 (€2) €™ EHE) w1 de dey by (1) day

B /n/n/n/m /m /mm(fl,771,52,772)1?2(771)§2(772)62m(m+n2)-x2

X d771d772 hg (1‘2) dl‘g ﬁ({l)‘é\l(fg)€2m(§l+§2)'xl dfld§2 hl (1‘1) d.%'l
— [ L im0
Rn+m Rn+m Rn+m
x 2milELm)r(&2m)) (w22) () ny)d(E,m0) ha (21)ha(22) d(z1, 22)
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= (Ton(f1 © f2,01 ® go), I @ ha)|
= HmHMPLm,p(R"er)Hfl ® f2”p1Hgl ®92Hp2Hh1 ® thpf
= ||m||Mp1,P27P(Rn+m)Hf1||p1||f2||p1Hgl||p2H92||p2Hh1Hp||h2Hp/

= [1mllaty, o @ty Lf1 o 92 1o 1P [l
1:P2

where the inequality follows from the boundedness of T,,. 0
The following is the main result of this article.

THEOREM 1. Letn > 1 and 1/p+1/q = 1/r with exactly one of p, q,
or 1’ less than 2. Let B be the unit ball in R*". Then xp & Myp.q-(R™).

Proof. Using Proposition 2 and considering the two dual operators
Ty,., and T\, of T\,
not in ./\/lp,q,T(R2) for p,q,r > 2. Therefore, we fix n = 2 and p, ¢, 7
satisfying p~1 4+ ¢~ = r=! < 1/2. We suppose that xp is in M, ,,(R?)

with norm C.

it suffices to show that all of these operators are

Suppose that § > 0 is given. Let I/ and R; be as in Lemma 1. Let v;
be the the unit vector parallel to the longest side of ?; and pointing in the
direction of the set E relative to R;. In the spirit of Fefferman’s argument,
we estimate fE‘E(XRﬁXRj)(Hf)PdﬂU from above and below and arrive
to a contradiction. We have

Z /E|THUJ. (XRj,XRj)(x)|2 dx

2

(Z{THUJ. (XR;> XR;) {2> v

J

r—2

< B[

(Holder’s inequality with r > 2)
2 2
(Z‘X&'E) pH(Z|XRj‘2)
J j

. 2/r
=C|E| - (Z |Rj|) (by the disjointness of the R;s)

_— 1/2 1/2

< C|B|'F

(by Lemma 2)

q

r—

<Cdr

) Z|Rj| (Lemma 1).
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For the reverse inequality we argue as follows:
2
Z/ ‘TH’UJ' (XR]',XRJ')(:L')‘ dx
—~ JE
j
> Z/E(%OXR; (m))2 dx (Proposition 1)
J
_ 1
= 105 2_|EN Rjl
J
> 555 Z‘Rj‘ (Lemma 1).
J

Putting these two estimates together, we obtain that

r—2
o DRI < Co > IRy
j j

and therefore

r—2
r

1
1200 <Co

for any § > 0. This is a contradiction since r > 2. 0

The authors would like to thank Maria Carmen Reguera-Rodriguez for
pointing out an oversight in an earlier version of this manuscript.
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