G. Diestel and L. Grafakos Nagoya Math. J. Vol. 185 (2007), 151–159

UNBOUNDEDNESS OF THE BALL BILINEAR MULTIPLIER OPERATOR

GEOFF DIESTEL AND LOUKAS GRAFAKOS

Abstract. For all n > 1, the characteristic function of the unit ball in \mathbb{R}^{2n} is not the symbol of a bounded bilinear multiplier operator from $L^p(\mathbb{R}^n) \times L^q(\mathbb{R}^n)$ to $L^r(\mathbb{R}^n)$ when 1/p + 1/q = 1/r and exactly one of p, q, or r' = r/(r-1) is less than 2.

§1. Introduction

We denote the Fourier transform of a function f on \mathbb{R}^n by $\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(t)e^{-2\pi i t \cdot \xi} dt$ and its inverse Fourier transform by $f^{\vee}(\xi) = \widehat{f}(-\xi)$. Let B be the unit ball in \mathbb{R}^n and χ_A the characteristic function of a set A. The unboundedness of the linear operator

$$T_{\chi_B}(f) = (\widehat{f}\chi_B)^{\vee}$$

on $L^p(\mathbb{R}^n)$ when $p \neq 2$ and n > 1 was established by Fefferman [2].

In this article we provide a variant of Fefferman's result in the bilinear setting. Our arguments also work for multilinear operators. Let $1 \leq p_1, \ldots, p_k \leq \infty$ and $0 . We recall that a bounded function <math>m: (\mathbb{R}^n)^k \mapsto \mathbb{C}$ is called a k-linear multiplier if the k-linear operator

$$(f_1, \dots, f_k) \longrightarrow \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} m(\xi_1, \dots, \xi_k) \widehat{f_1}(\xi_1) \cdots \widehat{f_k}(\xi_k) \\ \times e^{2\pi i (\xi_1 + \dots + \xi_k) \cdot x} d\xi_1 \cdots d\xi_k$$

initially defined for Schwartz functions f_j on \mathbb{R}^n admits a bounded extension

(1.1)
$$T_m: L^{p_1}(\mathbb{R}^n) \times \cdots \times L^{p_k}(\mathbb{R}^n) \longmapsto L^p(\mathbb{R}^n).$$

In this case we call m the symbol of T_m . We will denote by $\mathcal{M}_{p_1,p_2,\ldots,p_k,p}(\mathbb{R}^n)$ the set of all k-linear multipliers m such that the corresponding operator T_m

Received December 13, 2004.

¹⁹⁹¹ Mathematics Subject Classification: Primary 43B20, 42B25; Secondary 46B70, 47B38.

Work of both authors is supported by the NSF.

satisfies (1.1). The norm of m in $\mathcal{M}_{p_1,p_2,\ldots,p_k,p}(\mathbb{R}^n)$ is defined as the norm of T_m .

Nontrivial examples of functions in $\mathcal{M}_{p_1,p_2,p}(\mathbb{R})$ are characteristic functions of half-planes (see [7], [8]) when $p_1^{-1} + p_2^{-1} = p^{-1} < 3/2$ and characteristic functions of planar ellipses when $p_1^{-1} + p_2^{-1} = p^{-1}$ and $2 \leq p_1, p_2, p' < \infty$ (see [4]). Here p' = p/(p-1). It is still an open question whether the results of this paper hold if n = 1. In this work we show that this is not the case for the characteristic function of the ball in \mathbb{R}^{2n} if 1/p + 1/q = 1/r and exactly one of p, q, or r' is less than 2. We will construct a counterexample when n = 2 and r > 2. The general result will follow from duality and a multilinear version of de Leeuw's theorem [1].

§2. Bilinearization of Fefferman's counterexample for $\mathcal{M}_{p,q,r}(\mathbb{R}^2)$

For a rectangle R in \mathbb{R}^2 , let R' be the union of the two copies of R adjacent to R in the direction of its longest side. Hence, $R \cup R'$ is a rectangle three times as long as R with the same center. Key to this argument is the following geometric lemma whose proof can be found in [9], page 435 or [3], page 738.

LEMMA 1. Let $\delta > 0$ be given. Then there exists a measurable subset E of \mathbb{R}^2 and a finite collection of rectangles R_j in \mathbb{R}^2 such that

- (1) The R_j are pairwise disjoint.
- (2) We have $1/2 \le |E| \le 3/2$.
- (3) We have $|E| \leq \delta \sum_{j} |R_j|$.
- (4) For all j we have $|R'_j \cap E| \ge \frac{1}{12} |R_j|$.

Let $\delta > 0$ and let E and R_j be as in Lemma 1. The proof of Lemma 1 implies that there are 2^k rectangles R_j of dimension $2^{-k} \times 3\log(k+2)$. Here, k is chosen so that $k+2 \ge e^{1/\delta}$. Let v_j be the unit vector in \mathbb{R}^2 parallel to the longest side of R_j and in the direction of the set E relative to R_j .

PROPOSITION 1. Let R be a rectangle in \mathbb{R}^2 and let v be a unit vector in \mathbb{R}^2 parallel to the longest side of R. Let R' be as above. Consider the half space \mathcal{H}_v of \mathbb{R}^4 defined by

$$\mathcal{H}_v = \{ (\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : (\xi + \eta) \cdot v \ge 0 \}.$$

Then the following estimate is valid for all $x \in \mathbb{R}^2$:

(2.1)
$$\left| \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \chi_{\mathcal{H}_v}(\xi,\eta) \widehat{\chi_R}(\xi) \widehat{\chi_R}(\eta) e^{2\pi i x \cdot (\xi+\eta)} d\xi d\eta \right| \ge \frac{1}{10} \chi_{R'}(x).$$

Proof. We introduce a rotation (i.e. orthogonal matrix) \mathcal{O} of \mathbb{R}^2 such that $\mathcal{O}(v) = (1,0)$. Setting $\xi = (\xi_1, \xi_2), \ \eta = (\eta_1, \eta_2)$ we can write the expression on the left in (2.1) as

$$\left| \iint_{\mathcal{O}^{-1}(\xi+\eta)\cdot v \ge 0} \widehat{\chi_R}(\mathcal{O}^{-1}\xi)\widehat{\chi_R}(\mathcal{O}^{-1}\eta)e^{2\pi i x \cdot \mathcal{O}^{-1}(\xi+\eta)} d\xi d\eta \right| = \left| \iint_{\xi_1+\eta_1\ge 0} \widehat{\chi_{\mathcal{O}[R]}}(\xi)\widehat{\chi_{\mathcal{O}[R]}}(\eta)e^{2\pi i \mathcal{O}x \cdot (\xi+\eta)} d\xi d\eta \right|.$$

Now the rectangle $\mathcal{O}[R]$ has sides parallel to the axes, say $\mathcal{O}[R] = I_1 \times I_2$. Assume that $|I_1| > |I_2|$, i.e. its longest side is horizontal. Let H be the classical Hilbert transform on the line. Setting $\mathcal{O}x = (y_1, y_2)$ we can write the last displayed expression as

$$\begin{aligned} \left| \chi_{I_2}(y_2)^2 \int_{\xi_1 \in \mathbb{R}} \widehat{\chi_{I_1}}(\xi_1) e^{2\pi i y_1 \xi_1} \int_{\eta_1 \ge -\xi_1} \widehat{\chi_{I_1}}(\eta_1) e^{2\pi i y_1 \eta_1} d\eta_1 d\xi_1 \right| \\ &= \chi_{I_2}(y_2) \left| \int_{\xi_1 \in \mathbb{R}} \widehat{\chi_{I_1}}(\xi_1) \frac{1}{2} (I + iH) \left[\chi_{I_1}(\cdot) e^{2\pi i \xi_1(\cdot)} \right] (y_1) d\xi_1 \right| \\ &= \chi_{I_2}(y_2) \left| \frac{1}{2} (I + iH) (\chi_{I_1}) (y_1) \right| = \left| \left[\chi_{\xi_1 \ge 0} \widehat{\chi_{I_1 \times I_2}}(\xi_1, \xi_2) \right]^{\vee} (y_1, y_2) \right|. \end{aligned}$$

Using the result from [3] (Proposition 10.1.2) or [9] (estimate (33), page 453) we deduce that the previous expression is at least

$$\frac{1}{10}\chi_{(I_1 \times I_2)'}(y_1, y_2) = \frac{1}{10}\chi_{(\mathcal{O}[R])'}(\mathcal{O}x) = \frac{1}{10}\chi_{R'}(x).$$

This proves the required conclusion.

Next we have the following result concerning bilinear operators on \mathbb{R}^2 of the form

$$T_m(f,g)(x) = \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} m(\xi_1,\xi_2,\eta_1,\eta_2) \widehat{f}(\xi_1,\xi_2) \widehat{g}(\eta_1,\eta_2) \\ \times e^{2\pi i x \cdot (\xi_1+\eta_1,\xi_2+\eta_2)} d\xi_1 d\xi_2 d\eta_1 d\eta_2.$$

https://doi.org/10.1017/S0027763000025794 Published online by Cambridge University Press

LEMMA 2. Let $v_1, v_2, \ldots, v_j, \ldots$ be a sequence of unit vectors in \mathbb{R}^2 . Define a sequence of half-spaces \mathcal{H}_{v_j} in \mathbb{R}^4 as in Proposition 1. Let B, B^{*1} , B^{*2} be the following sets in \mathbb{R}^4

$$B = \{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi|^2 + |\eta|^2 \le 1\}$$

$$B^{*1} = \{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi + \eta|^2 + |\eta|^2 \le 1\}$$

$$B^{*2} = \{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi|^2 + |\xi + \eta|^2 \le 1\}.$$

Assume that one of T_{χ_B} , $T_{\chi_{B^{*1}}}$, $T_{\chi_{B^{*2}}}$ lies in $\mathcal{M}_{p,q,r}(\mathbb{R}^2)$ and has norm C = C(p,q,r). Then we have the following vector-valued inequality

$$\left\| \left(\sum_{j} \left| T_{\chi_{\mathcal{H}_{v_j}}}(f_j, g_j) \right|^2 \right)^{1/2} \right\|_r \le C \left\| \left(\sum_{j} \left| f_j \right|^2 \right)^{1/2} \right\|_p \left\| \left(\sum_{j} \left| g_j \right|^2 \right)^{1/2} \right\|_q.$$

for all functions f_j and g_j .

Proof. We begin with the assumption that T_{χ_B} lies in $\mathcal{M}_{p,q,r}(\mathbb{R}^2)$ for some p, q, r > 0. Set $\xi = (\xi_1, \xi_2)$ and $\eta = (\eta_1, \eta_2) \in \mathbb{R}^2$. For $\rho > 0$ we define sets

$$B_{\rho} = \{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi|^2 + |\eta|^2 \le 2\rho^2\}$$

$$B_{j,\rho} = \{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi - \rho v_j|^2 + |\eta - \rho v_j|^2 \le 2\rho^2\}.$$

Note that bilinear multiplier norms are translation and dilation invariant. Easy computations give that

$$\|\chi_{B_{j,\rho}}\|_{\mathcal{M}_{p,q,r}(\mathbb{R}^2)} \le \|\chi_{B_{\rho}}\|_{\mathcal{M}_{p,q,r}(\mathbb{R}^2)} = C.$$

The important observation is that $\chi_{B_{j,\rho}} \to \chi_{\mathcal{H}_{v_j}}$ pointwise as $\rho \to \infty$ and that the multiplier norms of the functions $\chi_{B_{j,\rho}}$ are bounded above by C.

Moreover, by the bilinear version of a theorem of Marcinkiewicz and Zygmund ([5], Section 9), we have the following inequality for all $\rho > 0$.

$$\left\| \left(\sum_{j} \left| T_{\chi_{B_{\rho}}}(f_{j}, g_{j}) \right|^{2} \right)^{1/2} \right\|_{r} \leq C \left\| \left(\sum_{j} \left| f_{j} \right|^{2} \right)^{1/2} \right\|_{p} \left\| \left(\sum_{j} \left| g_{j} \right|^{2} \right)^{1/2} \right\|_{q}.$$

Since $\chi_{B_{j,\rho}} \to \chi_{\mathcal{H}_{v_j}}$ pointwise as $\rho \to \infty$, we can deduce that

$$\lim_{\rho \to \infty} T_{\chi_{B_{j,\rho}}}(f,g)(x) = T_{\chi_{\mathcal{H}_{v_j}}}(f,g)(x)$$

for all $x \in \mathbb{R}^2$ and suitable functions f and g. We note that the curvature of the ball B is used here. By Fatou's lemma we conclude

(2.2)
$$\left\| \left(\sum_{j} \left| T_{\chi_{\mathcal{H}_{v_j}}}(f_j, g_j) \right|^2 \right)^{1/2} \right\|_r \le \liminf_{\rho \to \infty} \left\| \left(\sum_{j} \left| T_{\chi_{B_{j,\rho}}}(f_j, g_j) \right|^2 \right)^{1/2} \right\|_r$$

Now, observe the following identity:

$$T_{\chi_{B_{j,\rho}}}(f,g)(x) = e^{4\pi i\rho v_j \cdot x} T_{\chi_{B_{\rho}}}(e^{-2\pi i\rho v_j \cdot (\cdot)}f, e^{-2\pi i\rho v_j \cdot (\cdot)}g)(x).$$

Using (2.2) and the previous identity gives

$$\begin{split} \left\| \left(\sum_{j} |T_{\chi_{\mathcal{H}_{j}}}(f_{j},g_{j})|^{2} \right)^{1/2} \right\|_{r} \\ &\leq \liminf_{\rho \to \infty} \left\| \left(\sum_{j} |e^{4\pi i \rho v_{j} \cdot (\cdot)} T_{\chi_{B\rho}}(e^{-2\pi i \rho v_{j} \cdot (\cdot)} f_{j}, e^{-2\pi i \rho v_{j} \cdot (\cdot)} g_{j})|^{2} \right)^{1/2} \right\|_{r} \\ &\leq \liminf_{\rho \to \infty} \left\| \chi_{B_{\rho}} \right\|_{\mathcal{M}_{p,q,r}} \\ &\qquad \times \left\| \left(\sum_{j} |e^{-2\pi i \rho v_{j} \cdot (\cdot)} f_{j}|^{2} \right)^{1/2} \right\|_{p} \right\| \left(\sum_{j} |e^{-2\pi i \rho v_{j} \cdot (\cdot)} g_{j}|^{2} \right)^{1/2} \right\|_{q} \\ &= C \left\| \left(\sum_{j} |f_{j}|^{2} \right)^{1/2} \right\|_{p} \left\| \left(\sum_{j} |g_{j}|^{2} \right)^{1/2} \right\|_{q}, \end{split}$$

where the last equality follows from the dilation invariance of bilinear multiplier norms.

The proof of the analogous statements for $T_{B^{\ast 1}}$ and $T_{B^{\ast 2}}$ is as follows. We introduce sets

$$B_{\rho}^{*1} = \{(\xi,\eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi+\eta|^2 + |\eta|^2 \le \rho^2\}$$

$$B_{j,\rho}^{*1} = \{(\xi,\eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi-\rho v_j+\eta|^2 + |\eta|^2 \le \rho^2\}$$

$$B_{\rho}^{*2} = \{(\xi,\eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi|^2 + |\xi+\eta|^2 \le \rho^2\}$$

$$B_{j,\rho}^{*2} = \{(\xi,\eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi|^2 + |\xi+\eta-\rho v_j|^2 \le \rho^2\}.$$

Note that both $B_{j,\rho}^{*1}$ and $B_{j,\rho}^{*2}$ converge to \mathcal{H}_{v_j} as $\rho \to \infty$. Using the identities

$$\begin{split} T_{\chi_{B_{j,\rho}^{*1}}}(f,g)(x) &= e^{2\pi i\rho v_j \cdot x} T_{\chi_{B_{\rho}^{*1}}}(e^{-2\pi i\rho v_j \cdot (\,\cdot\,\,)}f,g)(x) \\ T_{\chi_{B_{j,\rho}^{*2}}}(f,g)(x) &= e^{2\pi i\rho v_j \cdot x} T_{\chi_{B_{\rho}^{*2}}}(f,e^{-2\pi i\rho v_j \cdot (\,\cdot\,\,)}g)(x), \end{split}$$

we obtain a similar conclusion for the bilinear operators $T_{\chi_{B^{*1}}}$ and $T_{\chi_{B^{*2}}}.$

The next ingredient that we will need is a multilinear version of de Leeuw's theorem. For $1 \leq j \leq k$ we will consider $\xi_j \in \mathbb{R}^n$, $\eta_j \in \mathbb{R}^m$. Then the pairs $(\xi_j, \eta_j) \in \mathbb{R}^{n+m}$. Also for a function f on \mathbb{R}^n and g on \mathbb{R}^m we introduce another function $f \otimes g$ on \mathbb{R}^{n+m} by setting $(f \otimes g)(\xi, \eta) = f(\xi)g(\eta)$.

PROPOSITION 2. Suppose that

$$m(\xi_1, \eta_1, \xi_2, \eta_2, \dots, \xi_k, \eta_k) \in \mathcal{M}_{p_1, p_2, \dots, p_k, p}(\mathbb{R}^{n+m})$$

for some $1 . Then for almost every <math>(\xi_1, \ldots, \xi_k) \in (\mathbb{R}^n)^k$ the function $m(\xi_1, \cdot, \xi_2, \cdot, \ldots, \xi_k, \cdot)$ lies in $\mathcal{M}_{p_1, p_2, \ldots, p_k, p}(\mathbb{R}^m)$, with norm

$$\|m(\xi_1, \cdot, \xi_2, \cdot, \dots, \xi_k, \cdot)\|_{\mathcal{M}_{p_1, p_2, \dots, p_k, p}(\mathbb{R}^m)} \le \|m\|_{\mathcal{M}_{p_1, p_2, \dots, p_k, p}(\mathbb{R}^{n+m})}.$$

Proof. In the proof that follows for simplicity we take k = 2. The case of a general k does not present any complications, only notational changes. We also assume that m is continuous. This assumption may be easily removed by considering convolutions of m in each variable with smooth approximate identities.

Fix $f_1, g_1, h_1 \in \mathcal{S}(\mathbb{R}^n)$ and $f_2, g_2, h_2 \in \mathcal{S}(\mathbb{R}^m)$ with $||f_2||_{p_1} = ||g_2||_{p_2} = ||h_2||_{p'} = 1$. Let

$$M(\xi_1,\xi_2) = \int_{\mathbb{R}^m} \int_{\mathbb{R}^m} \int_{\mathbb{R}^m} m(\xi_1,\eta_1,\xi_2,\eta_2) \widehat{f}_2(\eta_1) \widehat{g}_2(\eta_2) \\ \times e^{2\pi i (\eta_1 + \eta_2) \cdot x_2} \, d\eta_1 d\eta_2 \, h_2(x_2) \, dx_2.$$

If we can show that $M \in \mathcal{M}_{p_1,p_2,p}(\mathbb{R}^n)$, then by Proposition 4 (vi) in [6], we can deduce that $\|M\|_{\infty} \leq \|M\|_{\mathcal{M}_{p_1,p_2,p}}$. Then, by duality, it will follow that $\|T_m(f_2,g_2)\|_p \leq \|M\|_{\infty} \leq \|M\|_{\mathcal{M}_{p_1,p_2,p}}$. We have

$$\begin{split} \left| \left\langle T_{M}(f_{1},g_{1}),h_{1} \right\rangle \right| \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} M(\xi_{1},\xi_{2}) \widehat{f}_{1}(\xi_{1}) \widehat{g}_{1}(\xi_{2}) e^{2\pi i (\xi_{1}+\xi_{2})\cdot x_{1}} d\xi_{1} d\xi_{2} h_{1}(x_{1}) dx_{1} \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{m}} m(\xi_{1},\eta_{1},\xi_{2},\eta_{2}) \widehat{f}_{2}(\eta_{1}) \widehat{g}_{2}(\eta_{2}) e^{2\pi i (\eta_{1}+\eta_{2})\cdot x_{2}} \\ &\times d\eta_{1} d\eta_{2} h_{2}(x_{2}) dx_{2} \widehat{f}_{1}(\xi_{1}) \widehat{g}_{1}(\xi_{2}) e^{2\pi i (\xi_{1}+\xi_{2})\cdot x_{1}} d\xi_{1} d\xi_{2} h_{1}(x_{1}) dx_{1} \\ &= \int_{\mathbb{R}^{n+m}} \int_{\mathbb{R}^{n+m}} \int_{\mathbb{R}^{n+m}} m(\xi_{1},\eta_{1},\xi_{2},\eta_{2}) \widehat{f}_{1}(\xi_{1}) \widehat{f}_{2}(\eta_{1}) \widehat{g}_{1}(\xi_{2}) \widehat{g}_{2}(\eta_{2}) \\ &\times e^{2\pi i ((\xi_{1},\eta_{1})+(\xi_{2},\eta_{2}))\cdot (x_{1},x_{2})} d(\xi_{1},\eta_{1}) d(\xi_{2},\eta_{2}) h_{1}(x_{1}) h_{2}(x_{2}) d(x_{1},x_{2}) \end{split}$$

$$= \left| \left\langle T_m(f_1 \otimes f_2, g_1 \otimes g_2), h_1 \otimes h_2 \right\rangle \right| \\\leq \left\| m \right\|_{\mathcal{M}_{p_1, p_2, p}(\mathbb{R}^{n+m})} \left\| f_1 \otimes f_2 \right\|_{p_1} \left\| g_1 \otimes g_2 \right\|_{p_2} \left\| h_1 \otimes h_2 \right\|_{p'} \\= \left\| m \right\|_{\mathcal{M}_{p_1, p_2, p}(\mathbb{R}^{n+m})} \left\| f_1 \right\|_{p_1} \left\| f_2 \right\|_{p_1} \left\| g_1 \right\|_{p_2} \left\| g_2 \right\|_{p_2} \left\| h_1 \right\|_{p} \left\| h_2 \right\|_{p'} \\= \left\| m \right\|_{\mathcal{M}_{p_1, p_2, p}(\mathbb{R}^{n+m})} \left\| f_1 \right\|_{p_1} \left\| g_1 \right\|_{p_2} \left\| h_1 \right\|_{p'},$$

where the inequality follows from the boundedness of T_m .

157

The following is the main result of this article.

THEOREM 1. Let n > 1 and 1/p + 1/q = 1/r with exactly one of p, q, or r' less than 2. Let B be the unit ball in \mathbb{R}^{2n} . Then $\chi_B \notin \mathcal{M}_{p,q,r}(\mathbb{R}^n)$.

Proof. Using Proposition 2 and considering the two dual operators $T_{\chi_{B^{*1}}}$ and $T_{\chi_{B^{*2}}}$ of T_{χ_B} , it suffices to show that all of these operators are not in $\mathcal{M}_{p,q,r}(\mathbb{R}^2)$ for p,q,r > 2. Therefore, we fix n = 2 and p, q, r satisfying $p^{-1} + q^{-1} = r^{-1} < 1/2$. We suppose that χ_B is in $\mathcal{M}_{p,q,r}(\mathbb{R}^2)$ with norm C.

Suppose that $\delta > 0$ is given. Let E and R_j be as in Lemma 1. Let v_j be the unit vector parallel to the longest side of R_j and pointing in the direction of the set E relative to R_j . In the spirit of Fefferman's argument, we estimate $\sum_j \int_E |T_j(\chi_{R_j}, \chi_{R_j})(x)|^2 dx$ from above and below and arrive to a contradiction. We have

https://doi.org/10.1017/S0027763000025794 Published online by Cambridge University Press

For the reverse inequality we argue as follows:

$$\sum_{j} \int_{E} \left| T_{\mathcal{H}_{v_{j}}}(\chi_{R_{j}},\chi_{R_{j}})(x) \right|^{2} dx$$

$$\geq \sum_{j} \int_{E} \left(\frac{1}{10} \chi_{R_{j}'}(x) \right)^{2} dx \qquad \text{(Proposition 1)}$$

$$= \frac{1}{100} \sum_{j} \left| E \cap R_{j}' \right|$$

$$\geq \frac{1}{1200} \sum_{j} \left| R_{j} \right| \qquad \text{(Lemma 1).}$$

Putting these two estimates together, we obtain that

$$\frac{1}{1200} \sum_{j} |R_{j}| \le C \,\delta^{\frac{r-2}{r}} \sum_{j} |R_{j}|$$

and therefore

$$\frac{1}{1200} \le C \,\delta^{\frac{r-2}{r}}$$

Π

for any $\delta > 0$. This is a contradiction since r > 2.

The authors would like to thank Maria Carmen Reguera-Rodríguez for pointing out an oversight in an earlier version of this manuscript.

References

- [1] K. de Leeuw, On L_p multipliers, Ann. of Math., 81 (1965), 364–379.
- [2] C. Fefferman, The multiplier problem for the ball, Ann. of Math., 94 (1971), 330–336.
- [3] L. Grafakos, Classical and Modern Fourier Analysis, Prentice Hall, Upper Saddle River, NJ, 2003.
- [4] L. Grafakos and X. Li, The disc as a bilinear multiplier, Amer. J. Math., 128 (2006), 91–119.
- [5] L. Grafakos and J. M. Martell, Extrapolation of weighted norm inequalities for multivariable operators, J. of Geom. Anal., 14 (2004), 19–46.
- [6] L. Grafakos and R. Torres, Multilinear Calderoón-Zygmund theory, Adv. in Math. J., 165 (2002), 124–164.
- M. T. Lacey and C. M. Thiele, L^p bounds for the bilinear Hilbert transform, p > 2, Ann. of Math., 146 (1997), 693–724.
- [8] M. Lacey and C. Thiele, On Calderón's conjecture, Ann. of Math., 149 (1999), 475–496.
- [9] E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

Geoff Diestel Department of Mathematics University of South Carolina Columbia, SC 29208 USA

diestelg@math.sc.edu

Loukas Grafakos Department of Mathematics University of Missouri Columbia, MO 65211 USA

loukas@math.missouri.edu