
G. Diestel and L. Grafakos

Nagoya Math. J.

Vol. 185 (2007), 151–159

UNBOUNDEDNESS OF THE BALL BILINEAR

MULTIPLIER OPERATOR

GEOFF DIESTEL and LOUKAS GRAFAKOS

Abstract. For all n > 1, the characteristic function of the unit ball in R2n is

not the symbol of a bounded bilinear multiplier operator from Lp(Rn)×Lq(Rn)

to Lr(Rn) when 1/p + 1/q = 1/r and exactly one of p, q, or r′ = r/(r − 1) is

less than 2.

§1. Introduction

We denote the Fourier transform of a function f on Rn by f̂(ξ) =∫
Rn f(t)e−2πit·ξ dt and its inverse Fourier transform by f∨(ξ) = f̂(−ξ). Let

B be the unit ball in Rn and χA the characteristic function of a set A. The

unboundedness of the linear operator

TχB
(f) = (f̂χB)∨

on Lp(Rn) when p 6= 2 and n > 1 was established by Fefferman [2].

In this article we provide a variant of Fefferman’s result in the bi-

linear setting. Our arguments also work for multilinear operators. Let

1 ≤ p1, . . . , pk ≤ ∞ and 0 < p < ∞. We recall that a bounded function

m : (Rn)k 7→ C is called a k-linear multiplier if the k-linear operator

(f1, . . . , fk) −→

∫

Rn

· · ·

∫

Rn

m(ξ1, . . . , ξk)f̂1(ξ1) · · · f̂k(ξk)

× e2πi(ξ1+···+ξk)·x dξ1 · · · dξk

initially defined for Schwartz functions fj on Rn admits a bounded extension

(1.1) Tm : Lp1(Rn) × · · · × Lpk(Rn) 7−→ Lp(Rn).

In this case we call m the symbol of Tm. We will denote by Mp1,p2,...,pk,p(R
n)

the set of all k-linear multipliers m such that the corresponding operator Tm
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satisfies (1.1). The norm of m in Mp1,p2,...,pk,p(R
n) is defined as the norm

of Tm.

Nontrivial examples of functions in Mp1,p2,p(R) are characteristic func-

tions of half-planes (see [7], [8]) when p−1
1 +p−1

2 = p−1 < 3/2 and character-

istic functions of planar ellipses when p−1
1 +p−1

2 = p−1 and 2 ≤ p1, p2, p
′ < ∞

(see [4]). Here p′ = p/(p−1). It is still an open question whether the results

of this paper hold if n = 1. In this work we show that this is not the case

for the characteristic function of the ball in R2n if 1/p + 1/q = 1/r and

exactly one of p, q, or r′ is less than 2. We will construct a counterexample

when n = 2 and r > 2. The general result will follow from duality and a

multilinear version of de Leeuw’s theorem [1].

§2. Bilinearization of Fefferman’s counterexample for Mp,q,r(R
2)

For a rectangle R in R2, let R′ be the union of the two copies of R

adjacent to R in the direction of its longest side. Hence, R∪R′ is a rectangle

three times as long as R with the same center. Key to this argument is the

following geometric lemma whose proof can be found in [9], page 435 or [3],

page 738.

Lemma 1. Let δ > 0 be given. Then there exists a measurable subset

E of R2 and a finite collection of rectangles Rj in R2 such that

(1) The Rj are pairwise disjoint.

(2) We have 1/2 ≤ |E| ≤ 3/2.

(3) We have |E| ≤ δ
∑

j |Rj |.

(4) For all j we have |R′
j ∩ E| ≥ 1

12 |Rj |.

Let δ > 0 and let E and Rj be as in Lemma 1. The proof of Lemma 1

implies that there are 2k rectangles Rj of dimension 2−k×3 log(k+2). Here,

k is chosen so that k + 2 ≥ e1/δ. Let vj be the unit vector in R2 parallel to

the longest side of Rj and in the direction of the set E relative to Rj.

Proposition 1. Let R be a rectangle in R2 and let v be a unit vector

in R2 parallel to the longest side of R. Let R′ be as above. Consider the

half space Hv of R4 defined by

Hv = {(ξ, η) ∈ R2 × R2 : (ξ + η) · v ≥ 0}.
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Then the following estimate is valid for all x ∈ R2:

(2.1)

∣∣∣∣
∫

R2

∫

R2

χHv(ξ, η)χ̂R(ξ)χ̂R(η)e2πix·(ξ+η) dξdη

∣∣∣∣ ≥
1

10
χR′(x).

Proof. We introduce a rotation (i.e. orthogonal matrix) O of R2 such

that O(v) = (1, 0). Setting ξ = (ξ1, ξ2), η = (η1, η2) we can write the

expression on the left in (2.1) as

∣∣∣∣
∫∫

O−1(ξ+η)·v≥0
χ̂R(O−1ξ)χ̂R(O−1η)e2πix·O−1(ξ+η) dξdη

∣∣∣∣

=

∣∣∣∣
∫∫

ξ1+η1≥0
χ̂O[R](ξ)χ̂O[R](η)e2πiOx·(ξ+η) dξdη

∣∣∣∣.

Now the rectangle O[R] has sides parallel to the axes, say O[R] = I1 × I2.

Assume that |I1| > |I2|, i.e. its longest side is horizontal. Let H be the

classical Hilbert transform on the line. Setting Ox = (y1, y2) we can write

the last displayed expression as

∣∣∣∣χI2(y2)
2

∫

ξ1∈R

χ̂I1(ξ1)e
2πiy1ξ1

∫

η1≥−ξ1

χ̂I1(η1)e
2πiy1η1 dη1dξ1

∣∣∣∣

= χI2(y2)

∣∣∣∣
∫

ξ1∈R

χ̂I1(ξ1)
1

2
(I + iH)

[
χI1( · )e

2πiξ1( · )
]
(y1) dξ1

∣∣∣∣

= χI2(y2)

∣∣∣∣
1

2
(I + iH)(χI1)(y1)

∣∣∣∣ =

∣∣∣∣
[
χξ1≥0 χ̂I1×I2(ξ1, ξ2)

]∨
(y1, y2)

∣∣∣∣.

Using the result from [3] (Proposition 10.1.2) or [9] (estimate (33), page 453)

we deduce that the previous expression is at least

1

10
χ(I1×I2)′(y1, y2) =

1

10
χ(O[R])′(Ox) =

1

10
χR′(x).

This proves the required conclusion.

Next we have the following result concerning bilinear operators on R2

of the form

Tm(f, g)(x) =

∫

R2

∫

R2

m(ξ1, ξ2, η1, η2)f̂(ξ1, ξ2)ĝ(η1, η2)

× e2πix·(ξ1+η1,ξ2+η2) dξ1dξ2dη1dη2.
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Lemma 2. Let v1, v2, . . . , vj , . . . be a sequence of unit vectors in R2.

Define a sequence of half-spaces Hvj
in R4 as in Proposition 1. Let B, B∗1,

B∗2 be the following sets in R4

B = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |η|2 ≤ 1}

B∗1 = {(ξ, η) ∈ R2 × R2 : |ξ + η|2 + |η|2 ≤ 1}

B∗2 = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |ξ + η|2 ≤ 1}.

Assume that one of TχB
, Tχ

B∗1
, Tχ

B∗2
lies in Mp,q,r(R

2) and has norm

C = C(p, q, r). Then we have the following vector-valued inequality

∥∥∥∥
(∑

j

∣∣TχHvj
(fj, gj)

∣∣2
)1/2

∥∥∥∥
r

≤ C

∥∥∥∥
(∑

j

∣∣fj

∣∣2
)1/2

∥∥∥∥
p

∥∥∥∥
(∑

j

∣∣gj

∣∣2
)1/2

∥∥∥∥
q

.

for all functions fj and gj.

Proof. We begin with the assumption that TχB
lies in Mp,q,r(R

2) for

some p, q, r > 0. Set ξ = (ξ1, ξ2) and η = (η1, η2) ∈ R2. For ρ > 0 we define

sets

Bρ = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |η|2 ≤ 2ρ2}

Bj,ρ = {(ξ, η) ∈ R2 × R2 : |ξ − ρvj |
2 + |η − ρvj |

2 ≤ 2ρ2}.

Note that bilinear multiplier norms are translation and dilation invariant.

Easy computations give that

‖χBj,ρ
‖Mp,q,r(R2) ≤ ‖χBρ‖Mp,q,r(R2) = C.

The important observation is that χBj,ρ
→ χHvj

pointwise as ρ → ∞ and

that the multiplier norms of the functions χBj,ρ
are bounded above by C.

Moreover, by the bilinear version of a theorem of Marcinkiewicz and

Zygmund ([5], Section 9), we have the following inequality for all ρ > 0.

∥∥∥∥
(∑

j

∣∣TχBρ
(fj, gj)

∣∣2
)1/2

∥∥∥∥
r

≤ C

∥∥∥∥
(∑

j

∣∣fj

∣∣2
)1/2

∥∥∥∥
p

∥∥∥∥
(∑

j

∣∣gj

∣∣2
)1/2

∥∥∥∥
q

.

Since χBj,ρ
→ χHvj

pointwise as ρ → ∞, we can deduce that

lim
ρ→∞

TχBj,ρ
(f, g)(x) = TχHvj

(f, g)(x)
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for all x ∈ R2 and suitable functions f and g. We note that the curvature

of the ball B is used here. By Fatou’s lemma we conclude

(2.2)

∥∥∥∥
(∑

j

∣∣TχHvj
(fj, gj)

∣∣2
)1/2

∥∥∥∥
r

≤ lim inf
ρ→∞

∥∥∥∥
(∑

j

∣∣TχBj,ρ
(fj, gj)

∣∣2
)1/2

∥∥∥∥
r

.

Now, observe the following identity:

TχBj,ρ
(f, g)(x) = e4πiρvj ·xTχBρ

(e−2πiρvj ·( · )f, e−2πiρvj ·( · )g)(x).

Using (2.2) and the previous identity gives
∥∥∥∥
(∑

j

∣∣TχHj
(fj, gj)

∣∣2
)1/2

∥∥∥∥
r

≤ lim inf
ρ→∞

∥∥∥∥
(∑

j

∣∣e4πiρvj ·( · )TχBρ
(e−2πiρvj ·( · )fj, e

−2πiρvj ·( · )gj)
∣∣2

)1/2
∥∥∥∥

r

≤ lim inf
ρ→∞

∥∥χBρ

∥∥
Mp,q,r

×

∥∥∥∥
(∑

j

∣∣e−2πiρvj ·( · )fj

∣∣2
)1/2

∥∥∥∥
p

∥∥∥∥
(∑

j

∣∣e−2πiρvj ·( · )gj

∣∣2
)1/2

∥∥∥∥
q

= C

∥∥∥∥
(∑

j

∣∣fj

∣∣2
)1/2

∥∥∥∥
p

∥∥∥∥
(∑

j

∣∣gj

∣∣2
)1/2

∥∥∥∥
q

,

where the last equality follows from the dilation invariance of bilinear mul-

tiplier norms.

The proof of the analogous statements for TB∗1 and TB∗2 is as follows.

We introduce sets

B∗1
ρ = {(ξ, η) ∈ R2 × R2 : |ξ + η|2 + |η|2 ≤ ρ2}

B∗1
j,ρ = {(ξ, η) ∈ R2 × R2 : |ξ − ρvj + η|2 + |η|2 ≤ ρ2}

B∗2
ρ = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |ξ + η|2 ≤ ρ2}

B∗2
j,ρ = {(ξ, η) ∈ R2 × R2 : |ξ|2 + |ξ + η − ρvj |

2 ≤ ρ2}.

Note that both B∗1
j,ρ and B∗2

j,ρ converge to Hvj
as ρ → ∞. Using the identities

Tχ
B∗1

j,ρ

(f, g)(x) = e2πiρvj ·xTχ
B∗1

ρ
(e−2πiρvj ·( · )f, g)(x)

Tχ
B∗2

j,ρ

(f, g)(x) = e2πiρvj ·xTχ
B∗2

ρ
(f, e−2πiρvj ·( · )g)(x),

we obtain a similar conclusion for the bilinear operators Tχ
B∗1

and Tχ
B∗2

.
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The next ingredient that we will need is a multilinear version of de

Leeuw’s theorem. For 1 ≤ j ≤ k we will consider ξj ∈ Rn, ηj ∈ Rm. Then

the pairs (ξj, ηj) ∈ Rn+m. Also for a function f on Rn and g on Rm we

introduce another function f⊗g on Rn+m by setting (f⊗g)(ξ, η) = f(ξ)g(η).

Proposition 2. Suppose that

m(ξ1, η1, ξ2, η2, . . . , ξk, ηk) ∈ Mp1,p2,...,pk,p(R
n+m)

for some 1 < p < ∞. Then for almost every (ξ1, . . . , ξk) ∈ (Rn)k the

function m(ξ1, · , ξ2, · , . . . , ξk, · ) lies in Mp1,p2,...,pk,p(R
m), with norm

‖m(ξ1, · , ξ2, · , . . . , ξk, · )‖Mp1 ,p2,...,pk,p(Rm) ≤ ‖m‖Mp1,p2,...,pk,p(Rn+m).

Proof. In the proof that follows for simplicity we take k = 2. The

case of a general k does not present any complications, only notational

changes. We also assume that m is continuous. This assumption may

be easily removed by considering convolutions of m in each variable with

smooth approximate identities.

Fix f1, g1, h1 ∈ S(Rn) and f2, g2, h2 ∈ S(Rm) with ‖f2‖p1
= ‖g2‖p2

=

‖h2‖p′ = 1. Let

M(ξ1, ξ2) =

∫

Rm

∫

Rm

∫

Rm

m(ξ1, η1, ξ2, η2)f̂2(η1)ĝ2(η2)

× e2πi(η1+η2)·x2 dη1dη2 h2(x2) dx2.

If we can show that M ∈ Mp1,p2,p(R
n), then by Proposition 4 (vi) in [6],

we can deduce that ‖M‖∞ ≤ ‖M‖Mp1 ,p2,p . Then, by duality, it will follow

that ‖Tm(f2, g2)‖p ≤ ‖M‖∞ ≤ ‖M‖Mp1,p2,p . We have

∣∣〈TM (f1, g1), h1

〉∣∣

=

∫

Rn

∫

Rn

∫

Rn

M(ξ1, ξ2)f̂1(ξ1)ĝ1(ξ2)e
2πi(ξ1+ξ2)·x1 dξ1dξ2 h1(x1) dx1

=

∫

Rn

∫

Rn

∫

Rn

∫

Rm

∫

Rm

∫

Rm

m(ξ1, η1, ξ2, η2)f̂2(η1)ĝ2(η2)e
2πi(η1+η2)·x2

× dη1dη2 h2(x2) dx2 f̂1(ξ1)ĝ1(ξ2)e
2πi(ξ1+ξ2)·x1 dξ1dξ2 h1(x1) dx1

=

∫

Rn+m

∫

Rn+m

∫

Rn+m

m(ξ1, η1, ξ2, η2)f̂1(ξ1)f̂2(η1)ĝ1(ξ2)ĝ2(η2)

× e2πi((ξ1 ,η1)+(ξ2 ,η2))·(x1 ,x2) d(ξ1, η1)d(ξ2, η2)h1(x1)h2(x2) d(x1, x2)
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=
∣∣〈Tm(f1 ⊗ f2, g1 ⊗ g2), h1 ⊗ h2

〉∣∣
≤ ‖m‖Mp1,p2,p(Rn+m)‖f1 ⊗ f2‖p1

‖g1 ⊗ g2‖p2
‖h1 ⊗ h2‖p′

= ‖m‖Mp1,p2,p(Rn+m)‖f1‖p1
‖f2‖p1

‖g1‖p2
‖g2‖p2

‖h1‖p‖h2‖p′

= ‖m‖Mp1,p2,p(Rn+m)‖f1‖p1
‖g1‖p2

‖h1‖p′ ,

where the inequality follows from the boundedness of Tm.

The following is the main result of this article.

Theorem 1. Let n > 1 and 1/p + 1/q = 1/r with exactly one of p, q,

or r′ less than 2. Let B be the unit ball in R2n. Then χB /∈ Mp,q,r(R
n).

Proof. Using Proposition 2 and considering the two dual operators

Tχ
B∗1

and Tχ
B∗2

of TχB
, it suffices to show that all of these operators are

not in Mp,q,r(R
2) for p, q, r > 2. Therefore, we fix n = 2 and p, q, r

satisfying p−1 + q−1 = r−1 < 1/2. We suppose that χB is in Mp,q,r(R
2)

with norm C.

Suppose that δ > 0 is given. Let E and Rj be as in Lemma 1. Let vj

be the the unit vector parallel to the longest side of Rj and pointing in the

direction of the set E relative to Rj . In the spirit of Fefferman’s argument,

we estimate
∑

j

∫
E

∣∣Tj(χRj
, χRj

)(x)
∣∣2 dx from above and below and arrive

to a contradiction. We have

∑

j

∫

E

∣∣THvj
(χRj

, χRj
)(x)

∣∣2 dx

≤ |E|
r−2

r

∥∥∥∥
(∑

j

∣∣THvj
(χRj

, χRj
)
∣∣2

)1/2
∥∥∥∥

2

r

(Hölder’s inequality with r > 2)

≤ C |E|
r−2

r

∥∥∥∥
(∑

j

∣∣χRj

∣∣2
)1/2

∥∥∥∥
2

p

∥∥∥∥
(∑

j

∣∣χRj

∣∣2
)1/2

∥∥∥∥
2

q

(by Lemma 2)

= C |E|
r−2

r

(∑

j

|Rj|
)2/r

(by the disjointness of the Rjs)

≤ C δ
r−2

r

∑

j

∣∣Rj

∣∣ (Lemma 1).
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For the reverse inequality we argue as follows:

∑

j

∫

E

∣∣THvj
(χRj

, χRj
)(x)

∣∣2 dx

≥
∑

j

∫

E

(
1
10χR′

j
(x)

)2
dx (Proposition 1)

= 1
100

∑

j

∣∣E ∩ R′
j

∣∣

≥ 1
1200

∑

j

∣∣Rj

∣∣ (Lemma 1).

Putting these two estimates together, we obtain that

1
1200

∑

j

|Rj| ≤ C δ
r−2

r

∑

j

|Rj |

and therefore
1

1200 ≤ C δ
r−2

r

for any δ > 0. This is a contradiction since r > 2.

The authors would like to thank Maria Carmen Reguera-Rodŕıguez for

pointing out an oversight in an earlier version of this manuscript.
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