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EXTREME MEASURES 
WITH GIVEN MOMENTS OR MARGINALS 

VALERIE GIRARDIN 

ABSTRACT. We study the generalized moment problem and the marginal constraints 
problem. We connect them when the measures have a finite support. 

The extreme points of the convex set of solutions with a finite support are determined 
in both problems. 

For the moment problem, they are shown to span in the weak topology the set of all 
the solutions. 

RÉSUMÉ. Nous étudions le problème des moments généralisés et le problème des 
constraintes de marginales. Nous les relions lorsque les mesures considérées sont à 
support fini. 

Nous déterminons les points extrémaux du convexe des solutions à support discret 
dans les deux cas. 

Nous montrons pour le problème des moments qu'ils engendrent pour la topologie 
de la convergence étroite toutes les solutions. 

1. Introduction. This paper is devoted to the study of extreme positive measures 
of which moments or marginal measures are fixed. 

MARGINAL CONSTRAINTS PROBLEM. Let d finite measures pj be given on d sets Ij. 
The problem consists in determining positive measures defined on Ylf=\ Ij such that for 
a l l / e l ^ / y ) 

CONDITION 1. 

jm,/(Ay)rfMAi \i) = lAXj)dPj(Xj) j=\,...,d. 

Note that the marginal constraints problem is also known as the problem of doubly 
stochastics measures, see Lindenstrauss [12]. When the given measures have a finite 
support, it is known in statistics as the problem of contingency tables with fixed marginal 
counts. See Lauritzen [11] for details on this matter. 

MOMENT PROBLEM. Let / be a compact subset of a Polish space. 
Let <j>K = (</>k)keK* for À' a finite subset of Hd (or Zd), be a family of linearly independent 

measurable functions defined on /. 
Let 94.^ be the space of measures on / such that 

J (j)k(\) dp(X) < +oo, for keK. 
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Let d>K be the linear functional defined on 9^ by 

We denote by 
M+ the subset of M^ of nonnegative measures on /, 
9tf£ the subset of M? of measures having a discrete support, 
M+ the subset of 9A$ of measures having a finite support, 
S^ the support of any measure /i. 

A sequence c = {ck)h^K £ R'*' being given, the moment problem consists in deter
mining measures belonging to M+ such that 

CONDITION 2. O^/i = c. 

Throughout this paper, c will be supposed such that O^1 (c) n M+ f 0; for conditions 
ensuring it, see Krein and Nudelman [8], Berg and Christensen and Ressel [1], Cassier [2]. 

The moment problem and the marginal constraints problem are studied in mea
sure theory, transportation theory and linear programming theory, see Kemperman [7], 
Dantzig [3]. 

These problems are different in data, functions and a truncated sequence in the former 
case and positive measures in the latter. There always exists a solution in the latter case 
(the product of the given measures) while conditions are required in the former case. If 
conditions of support are added, problems of existence are introduced in the latter case, 
see Shortt [14]. 

On the other hand, for measures having a discrete support, the studies of the extreme 
points of the convex sets of solutions are similar. Moreover, we prove that these problems 
can be connected for measures with a finite support. 

In both cases, algebraic arguments enable us to characterize the discrete extreme 
measures of the general moment problem and of the marginal constraints problem, see 
Section 2.1 and Section 4.1. They are determined uniquely by their supports. 

We prove that the extreme measures of O^1 (c)C\Ml span O^1 (c)nM? by finite convex 
combinations and 0^{(c) H M+ by weak convergence, under suitable assumptions on 
the family (4>k)keNd> s e e Section 2.3. 

Similar results ensue for restrictive moment problems such as the Markov problem, 
see Section 2.2. 

Note that the density results cannot be directly deduced from the classical density 
theorems; see Fuchssteiner and Lusky [4] for further detail about convex sets. 

As regards the truncated moment problem, these results seem to be the first about 
extreme measures in a general context. Studies have been made for I C R, e.g. by 
Karlin and Shapley [6] for the power moment problem on [0,1]. More precise results 
have been obtained for the Tchebicheff families by Landau [9] and [10], and Krein 
and Nudelman [8]. But these are based on the factorization of polynomials and on the 
properties of their zeros so cannot be extended to higher dimensions or to other sets. 
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As regards the marginal constraints problem, the extreme doubly stochastics mea
sures are characterized by density properties in Lindenstrauss [12]; this yields a support 
characterization for the extreme measures with fixed marginals in the finite symmetric 
case, I\ = • • • = Id and |/i | < oo. No results for the infinite case seem to exist. 

2. Moment problem. 

2.1. Discrete extreme measures. A measure having a discrete support can be written 

Hence the moment problem is reduced to determine positive sequences of reals satisfying 
Condition 2. 

Let us define the following matrix, for any finite subset S of/, 

(1) ^ = (Mh))k
x%. 

THEOREM 2.1. Let ne O^1 (c) n fW?. 

Then JJ, is an extreme point of^l(c) D 9Af if and only if [i has a finite support S^ 
such that \S^\ = Rank[A/J ]. 

Note that 
1) if the cardinal of the support of a discrete measure is greater than the number of 

fixed moments, this measure cannot be an extreme point of O ^ c ) Pi M?. 
2) for the power moment problem over / C R, |5^| = Rank[M^ ] is equivalent to 

I4<I < HI

PROOF. If // G <3>K1(C)
 n **+> t h e n (Vh), for h = 1 , . . . , 1̂ 1 is a solution of the 

following system with |5M| unknowns and \K\ equations 

(2) J2 Mh)mh = ch for k <E K. 

The rank of this system is Rank[M^ ] and the dimension of the affine space of solutions 
ft is \Sn | — Rank[A/f ]. The measure /x is associated to a positive solution. If/x is a convex 
combination of measures belonging to O^^c) D M+, their supports are included in 5^. 
They are associated to nonnegative solutions of System (2). It is not possible if the 
system has only one solution i.e., if Rank[M^] = |5|i|. /z is then an extreme point of 

Conversely, if \5^\ > Rank[iV/f ], System (2) has solutions distinct from (fih). Then 

this point belongs to a line A included in ft. Since (jih) £ R!^ ' , the set A ( 1 ^ ' is not 
reduced to a single point. Hence Uih) can be written as a convex combination of points 
(rjh) and (yh) belonging to A n IR+ and / i a s a convex combination of the associated 
measures ry and v which obviously belong to 0^ !(c) Pi 9^.. So /i is not an extreme point 
of<&xl(c)nM?. 
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If /i G O^(c) H (94? \ iMSf), let us take 5 C ^ such that \K\ < |S| < +00. Set 

E Mh)ah = 0, keK. 

This system has |Â | equations and |5| unknowns. 

Its rank is Rank[Mf ] < |S|, hence it has solutions distinct from 0. 

Let (of/)/=1 |̂ | be one of them. Define a measure on I by 

~ =(M(Xi ifA/G5,and 
aXi 10 if not. 

whereM= [min(/i/// = 1 , . . . , |5|)][max(|c^|// = 1 , . . . , ISl)]"1. 

Then [i — à and \i + a belong to $>~^(c) n 94+, and \i is not an extreme point of 
o ^ ( c ) n ^ . • 

THEOREM 2.2. Létf /i G O ^ ( C ) n 94$. If<j>k G L2(p)for k e K, then /x is aw extreme 
point o/O^1 (c) H f̂ f if and only ifji has a finite support S^ such that |5M | = Rank[Af̂  ]. 

PROOF. Let /1 be an extreme point of O^l (c) n f^. 

Let fy be the subspace of L2(\i) spanned by (<j>k)keK and let n be the orthogonal 
projection on ^>. Let 5 denote the space of step functions on I. 

If J^fL2{ii), then a subspace £ of S exists such that 

dim fy < dim £ < +00. 

Hence n restricted to £ is not an injective function. Let / G £ be orthogonal to fy, and 
set dv = (/J — f) dpi and ûfry = (/1 +/) J/i. Since 1/ and 77 belong to 0^!(c) H f^f, /i is not 
an extreme point of O ^ c ) D 94$. 

If fy = L2(ji), then // has a finite support and Theorem 2.1 yields the result. • 

2.2. Bounded extreme measures. If we add to the moment problem the extra condition 
[i £ 94} i.e., 

CONDITION 3. \i G 94? and /iA < 1 for all A G S^ 

the characterization of the extreme measures ensues from Theorem 2.1. 

COROLLARY 2.1. Let n G 94$. 

/1 is an extreme point of(S>^l(c) n fWJJ* satisfying Condition 3 if and only if one of the 
two following conditions is satisfied: 

a) \x = 1 over S {i. 
b) |4I < +00 and \Sy\ = Rank[Mj ], with Sli = {\e S^/vx f \)andMK

s as defined 
by Relation (1). 
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PROOF. If fi satisfies a), the result is obvious. 

If /i satisfies b) and if 2\i = v + 77, firstly, v = 77 = [i = 1 over S^ \Sfi', secondly, 

(Z/A)AG4
 a n d (r1x)xes, s a t i s f V t h e following system 

Since this system has a unique solution (see the proof of Theorem 2.1 ), we get 1/ = r\ = \i 
over 5^. Thus, /i is an extreme point of O^^c) D fM+. 

Conversely, if/i satisfies neither a) nor b), let 

S = S^ if |5M| < +00 or 

S C 5M with |i^| < \S\ < +00, if not. 

We have \S\ > Rank[A/f ], and the homogeneous system 

xes 

has a solution (i/\) ^ 0. Set 

~ = /MVA , if A <E£ 
^A J O , ifAei^S, 

whereM' = [min^A, 1 - fix)][maxs(\is\\)]-1. 
Both the associated measures /i + z/ and /i — v belong to O^1 (c) Pi ft£^. Thus /i is not 

an extreme point of O^ l (c) D 9rf$. m 

Note that all the extreme measures of the Markov problem can be determined in 
the same way. Their densities are characteristic functions of Borel subsets of /, see 
Girardin [5]. 

The Markov problem is the moment problem restricted to measures absolutely con
tinuous with respect to the Lebesgue measure on R, with a bounded density. See Krein 
and Nudelman [8] for more on the matter. 

2.3. Spanning by extreme measures. If the family </># satisfies suitable hypothesis, the 
extreme measures determined in Section 2.1 span all the measures having the same 
moments, by convex combination for the measures having a finite support, and in the 
weak topology for the others. 

THEOREM 2.3. Let\x £ d>^l(c)r^M+. If(j)o = 1 over I, then [i is a convex combination 
of less than \S^, | + 2 extreme measures o/O^1 (c) D 9rfl, supported within S p. 

PROOF. Let M+* be the subspace of 94+ of measures supported within 5^. 
Since ^l(c) D fM̂M is a bounded convex set in RW, Caratheodory's theorem can be 

applied (see Krein and Nudelman [8]). It yields that /1 is a convex combination of less 
than \S^, I + 2 extreme measures of <&K1(C) D 94%*. 
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If these measures are convex combinations of other measures belonging to 
O^l (c) D f&ff, the latter measures are supported within 5M, hence they belong to O^l (c) Pi 
fWfM too, which is not possible. 

And the result follows. • 

THEOREM 2.4. If{(j)k)k^Hd is a dense subset in C(I), and if<t>o= 1 over I, then the 
extreme measures o/O^1 (c) Pi M+ spanO^1 (c) n M+ in the weak topology. 

PROOF. Let /x G 0^(c) n fWf. 

If/ G £(/) (/.e., continuous on 7), then/ is the limit of a sequence of generalized 
polynomials, PH = EkeHa"<j)k-

Set for every //, 

A = (PdkeKUH, where p* = jf <fo(A) rfjz(A). 

By Lemma 2.1 (see below), there exists a measure nH G ^ ^ ^ ( / i ) Pi f&ft such that 

E Vx<f>kW=Wk forkeKUH. 
xes^ 

Then 

j[/(A) rf/x(A) - / / (A) <//z"(A) = jf(f - PH)(X) rf/i(A) - jf (f - P//)(A) rf^(A) 

and 

|jT/(A) <^(A) - J^(A) dM"(A)| < jf I/" - />„|(A) J/i(A) + jT I/" - P„|(A) </M"(A). 

Hence 

|jf/(A) V ( A ) - j(/(A)<//x(A)| - 0, 

and the result ensues by Theorem 2.3. • 

To achieve Theorem 2.4 proof, we shall describe Q>K{M$) by use of convex analysis. 
Note that it also gives a necessary and sufficient condition of existence of solutions for 
the moment problem. It holds true for any family <J>K of measurable functions, even if 
they are not continuous. 

LEMMA 2.1. Ifcj)o = 1 over I then ®K(Mf) = <M^+)-

PROOF. Obviously, 

(3) **(*£) = { f e pA&(A)) € RW IPX > 0,5 C /, \S\ < +oo), 

i.e., ®#(^+) is the hull cone of the set 

We shall prove that if c G O^(f^) then c G ®A:(#*+), separately for interior and 
border points. 
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(a) OK(04) C <bK(Mt) C ÔK(*4), 
where Q>K(9^l) denotes the closure of <bK{Ml) in RW. We have 

®K(M£)= {ceRw/\/(ak)keKeRW, if X > < f o > 0 o n / , then £>*<;*> o) . 

If c G O A : ( ^ ) , and if/i G O^fc) H ^ , then 

L Z ak<l>k(X) dii{\) = Y, akCk, 
J1 K K 

and if (ak)keK is such that E/c ak<t>k is nonnegative on /, then 

tefl^(A)rfM(A)>0. 
J/ K 

Hence c G Ô^(fA^). 

(b) QK(M?)ndOK(*4) CQK(*4). 
We shall prove it by induction on the number of moments. 

If \K\ = \, or if \K\ > 1 and Q>K(M() = R w , the result is obvious. 

If c G O K ( ^ ) n ô < M ^ ) > and if O* (sw£ ) f Rw , then c belongs to a hyperplane of 
support 9{ for <&K(M[). 

We shall prove that 

(4) <&K(M?) C\ï( C. <$>K{?4) H # , for any # , 

by two steps. 
(I) <bK{Mt)n^cC^, where C*. is the hull cone of U^ n # . 

The equation of #" is 

(5) £**** = <>, 

with EA: /*! = 1 and EA: hk(j)k nonnegative on /. 
If c G &K(M?) H #" and if /I G O^1 (C) H fW?, then 

[Xhk<t>kWd^)=y£hkck = 0. 
J l v v 

Thus E/c M*(A) = 0, on / \ £, where /x(£) = 0. Set 

^=\<t>k onI\E 
Yk \0 onE. 

Then ck = J} $!(A) d[i(\), forkeK and EA: &̂</>£ = 0 on /. There exists y G K such that 
hj ^ 0; we have 

(6) ^ = E T T ^ a n d cJ = Y,TCk' 
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SofaO*\{/} e d>*K\V}(M?l and by induction, ( Q ) A { / } G O^.^fMf), i.e., by Relation (3), 

C* = E P A « ( A ) , for*G*\{/}. 

Finally, Relations (6) imply 

Hence fe)^ G O ^ ^ ) H # . 
We prove in (II) that 

0K(<j4)nrt = C+n so that 0 ^ w ( ! ^ ) n t f = C*\ 

Since obviously C^ C C^, it yields Relation (4). 
(ii) c*( = <s>K(<j4)n9{. 

Obviously, C^ C <&K(MI) H # . 
Conversely, if c G 0^(fA/+) H # , then by Relations (3) and (5), 

Ck = J2 PxfaW, Px>0 and J ] hkck = 0, 
S K 

thus 
X > A £ M * ( A ) = 0, for all A G S, 

and since EA: /*£</>* is nonnegative on / and p\ is positive for all À G S 

Z>*<MA) = 0, for all A G 5. 

Hence (</>AT(A)V G #" for all A G S, and the result follows. • 

Note that if ^ G £2(/i) for all k G K, (e.g. if functions <j>k are bounded functions) then 
Theorem 2.2 yields a shorter proof of this lemma: if c is an extreme point of O^(f^) , 
any extreme measure of O ^ c ) n ^ f has a finite support. Hence c G O^(fA^) and 
Lemma 2.1 ensues since <3>K(Mf) and O^(f^) are compact convex sets. 

3. Connection between moments and marginals. Here we show the connection 
between the moment problem and the marginals constraints problem for measures having 
a finite support. 

THEOREM3.1. Let A = (x/)/G/ and B = (y,)/e/, where I = {0 , . . . ,«} aw/ 
y = { 0 , . . . , m } . 

Let (4>k)k(Ei and (^/)/GJ be families of functions defined respectively on A and on B, 
such that 

• <t>o = V^o = 1 
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• the ranks of the matrices MJ
E and MJ

F (as defined by Relation (1)) are maximal for 
allECÂandFcB. 

Let (O, XF)/̂ / denote the linear functional associated to the family of functions 

((<£*)*€/, (V>/)/G/)-
Let p and r be two positive measures on A and B. 
Let rk denote the ^-moment of order kfor p and let ti denote the \jj-moment of order I 

forr. 
Let c=(chi){k,i)ax J be such that c*o = r^for k G / and CQI = t\for l G J. 
Then (*, V)y) (c) PI fWf = M^(7, J). 

Note that this theorem holds true for power moments. It holds true too for the functions 
<t>k(xi) = 1/=*, i/Ji(yj) = ly=/, which give a canonical map of the marginal constraints 
problem onto moment problems. 

PROOF. For k G I and / G J, 

(7) rk = Y,Pi<l>k(xi) a n d ti^YjTrffoj)' 

So, if p G Mpr(I,J), then obviously p belongs to (O, ̂ )y}{c) D flff. 
Conversely, if/i G (<I>, Y)/}1 (c) Pi f̂ f, then p vérifies, for k G / and / G J, 

YJ VijMxd = n and X) V<yi>i(yj) = th 
(irfelxj VJ)elxJ 

Set for the marginal values of p respectively on A and on B, 

bi = H^ij a n d dj = Y,^ij' 

Then {(6,)/<=/, (4')y&/} *s a solution of the following system with n + m + 2 unknowns, 

£/ <l>k(Xi)bi = rk, kel 
Ej^i(yj)dj = th le J. 

By Relations (7), the family {(pj)ieIl (TJ)JEJ} is the unique solution of this Cramer system. 
Thus bi = pi for / G /, and dj = 7} for y G ./, which means that p belongs to M^-(7, J). • 

4. Marginal constraints problem. 

4.1. Discrete extreme measures. In order to simplify notation, we shall study the prob
lem for d = 2. Hence, two sequences of reals are given, 

P = (Px,-)*,-̂  = (pdiei, and r = ( r^ -e* = (?)-)ye/, 

for / and J subsets of N, such that 

0 < Pi, for all / G /, and 0 < -ry, for ally G J, 

and YlPi < +°°? YTj < +°°-
/ J 

The measures can be identified with the tables of their values (pij\ij)eixj which satisfy 
the following condition 

CONDITION 4. J2jej Ptj = Pi for all / G / and £/<=/ /z,y = ry for ally G J. 
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NOTATION. Let Af^(7, J) denote the set of measures satisfying Condition 4. 
Let niij = min(p/, Ty), for all (ij) G / x J. 
We call a table [£, /], either the values of/z,y for k index / and / indexy, or the associated 

index set 4 x J\. 
Let /„ = [ 1 , . . . ,/i] and/^ = [1, . . . ,«] x [1 , . . . ,«] for any « G N. 

r^ [0 if not, J 10 if not. 

For any /i G M^fJ), set /x?. = I (^ . f '*y n and let //" be the associated 

measure defined on 1%. 

THEOREM 4.1. Let I CM, J CM. Let\i G M^(/, J), ji is an extreme point of M^{1, J) 
if and only if for every table [k, l\inlx J, \{(ij) G [k, fj/fiy f 0}| < k+1. 

EXAMPLE. 
1 2 

+ o o + + o + + 
o + + o o + o o 
o o + + o o + + 

+ represents /z,y ^ 0, and o represents \iy - 0. 
The measure is extreme in the first case only. 
Note that when the sets are finite and equal, Lindenstrauss [12] deduced this theorem 

from results on doubly stochastic measures, proving it by induction on the cardinal of 
the set of indexes. 

The proof of Theorem 4.1 ensues from Theorem 4.2 and Lemmas 4.1 and 4.2. 

THEOREM 4.2. Let I Ç N, J Ç N. Let [i G A/^(7, J). Then \x is an extreme point of 
M^fJ) if and only if \in is an extreme point of M^(1%) for all 1% C I x J. 

PROOF. Let us take / = J = N. Let \i G Af̂ -(N, N). 
If n exists such that /iw is not an extreme point of M^^tf), then we have 

\in = (yn + rf) /2, where vn G M^itf) and rfn G M^Atf)- Set 

^ j / i / , if not, a n Q ^ \/xiy if not. 

v and r/ belong to A/^-(N, N) so // is not an extreme point of M^(N, N). 
Conversely, suppose that \in is an extreme point of MpnTn(I") for all 1% C / x J. 
Let £ > 0. Let (/ojo) G N x N with /i/Q/0 7̂  0. It exists n > max(/0j*o) such that 

E ^ ^ 9 -

Set e,y = l{(/y)} and let % be the space spanned by (eij\ij)eq. 
Applying Theorem 2.2 for </>K = (1{/}X/Wk/W U (l/wX{/})yG/n and / = % yields 

% = £ 2 (AO- Hence 
n n 

e/Q/o = E ^ W x / , +E*/1/„x{/}, M" a.e. 
1=1 /=i 
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We have 
iak+bh = \ 

\ at + bj = 0 if (/ J) G ln
n and ^ f 0, 

so we can choose (#/)/<=/„ a n d (bj)jein belonging to {—1,0,1}. Set then 

/=1 /=1 

We have 
< 2 max (H,|6y|) 

iei„jei„ 

and 

= L>Wo-/l^<ll/1loo E M</<*-

Hence the space ^ spanned by <J>K is dense in Lx (/i). 
Suppose /x = (i/ + r/)/2, with i/ G M ^ N , N) and 7] G M^(N, N). 
By the Radon-Nikodym theorem, dv = gd\i and dr\ = hdp, with g G Z^Oi) and 

h G /^(/x). ^> is dense in Lx{p) so h = g and /i is not an extreme point of M/7r(N, N). • 

LEMMA 4.1. Let p e M^il.J). 

If there exists a table [£, f] in I x J such that \{(ij) G [£, / ] / / % - ^ 0}| > k + I then [i 
is not an extreme point ofM(n(l^ J). 

PROOF. Let \i G M^(7, J). 

Let 4 x Ji be the [&, /] table in which \i is non zero for at least k + / points. 
If (I'OJ'O) is such that /x/Q/0 = miQj0, we have either p/0 < 7}0 or T/0 < pyo. Let us suppose 

the former is true. Then /i/Q/0 = pio and /i/Q/- = 0 for y ^y'o. Hence /1 is not zero in 
(h \ {io}) x J 1 for at least k + / — 2 points (/,/). Continuing this way, we may suppose 
jiij ̂  my for all (ij) G Ik x Jh 

Set the following system with (vij\ij)akxj, as unknowns, where 1/y = 0 if /i^ = 0, 

f TjejlVij = V>i.', i€h 
\ E/G/* îy = My, 7 € 4 

where /i.7- = E/e/* M// a n d /*/. = Eye// /%> a n d Se/ , M/. = Eye/* My-
This system has k + / equations and k + / or more unknowns with a constraint. 
So the dimension of the set of its solutions is 1 or more and the dimension of the set 

of solutions of the homogeneous associated system is 1 or more, too. Let (^Ooy^xj, be 
a solution of the homogeneous associated system and set 

if (z,y) eIxJ\IkxJh 

if/% = 0, 
if not, 
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where 

M* = [min(wiy - ^ ^ [ m a x C l i / J I ) ] " 1 . 

If v is the associated measure onlxJ, then both (/J — v) and (/i + v) belong to A/^/ , J). 
Thus /J is not an extreme point of M^(7, J). • 

LEMMA 4.2. le* |7| < +00 and \J\ < +00. Let [i e M^I.J). 

If for every table [&, I] in Ix J, \{(ij) G [&, /]//%• f 0}| <k + l, then \i is an extreme 
point of M^{1, J). 

PROOF. Let 77 G M^(7, J) be supported within the support of \i. We shall prove that 
77 = / i . 

Let us take / = { 1 , . . . , n} and J={ 1 , . . . , m} with n>m. 

There exists i0 G / such that \iioj = 0 for (m — 1) indexy of J (ory0 G J as such), since 
otherwise /x,y 7̂  0 for 2« > n + m points, which is contrary to the lemma hypothesis. 

Hence r? is different from zero for less than (n + m) points (ij) oïl xj. 

Lety'0 G J be such that /I/Q/-O ^ 0. Then rji(jo = /x,-̂  = p/o is determined uniquely, and 
necessarily pio < rjo. 

There remains (n + m — 2) points for which /x,y ^ 0, comprised in a [n — 1, w] table, 
(7 \{ io})xJ . 

For this table, set 

Using the same argument again, we get a second point (i\J\) such that 77 ,̂ = /x/L/1 

( = < • • ) • 

In every table [k1 /], for A: < n, I < m, there are less than (k +1) points (ij) such that 
\iij ̂  0. Using the above argument again (n + m— 1) times yields r//, = //// for all (/,/) in 
IxJ. 

Thus /J is an extreme point of M^I, J). • 

4.2. Spanning by extreme measures. A result similar to Theorem 2.3 is obviously true 
here. 

LEMMA 4.3. Lef // G M^I.J), with \I\ < +00 owd |J| < +00. 

Then [i is a convex combination of less than \Sy\ +2 extreme measures ofMpr(I,J), 

supported within S p. 

On the other hand, discrete and non-discrete measures cannot have the same marginal 
measures, so results such as Theorem 2.4 cannot be proved here. 

The author wishes to thank the referee for his helpful suggestions and remarks. 

https://doi.org/10.4153/CJM-1995-049-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-049-7


958 VALERIE GIRARDIN 

REFERENCES 

1. C. Berg, J. Christensen and P. Ressel, Harmonie analysis on semi-groups Springer-Verlag, 1984. 
2. G. Cassier, Problème des moments sur un compact de R" et représentation de polynômes à plusieurs 

variables, J. Funct. Anal. 58(1984). 
3. G. Dantzig, Linear programming and extensions, Princeton, 1963. 
4. B. Fuchssteiner and W. Lusky, Convex cones, North-Holland, 1981. 
5. V. Girardin, Problème des moments et entropie. Application en probabilités, Thèse Univ. Paris-Sud, 

1991. 
6. S. Karlin and L. Shapley, Geometry of moment spaces, Mem. Amer. Math. Soc. 12(1953). 
7. J. Kemperman, Geometry of the moment problem, Proc. Sympos. Appl. Math. 1987. 
8. M. Krein and A. Nudelman, The Markov moment problem and extremal problems, Amer. Math. Soc, 

1977. 
9. H. Landau, The classical moment problem: Hilbertian proofs, J. Funct. Anal. 38(1980). 

10. , Maximum entropy and the moment problem, Bull. Amer. Math. Soc. 16(1987). 
11. S. Lauritzen, Lectures on contingency tables, Aalborg Univ. Press, 1989. 
12. J. Lindenstrauss, A remark on extreme doubly stochastics measures, Amer. Math. Monthly 72(1965). 
13. W. Rogosinsky, Moments of nonnegative mass, Proc. Roy. Soc. London Ser. A 245(1958). 
14. R. Shortt, Strassen s marginal problem in two or more dimensions, Z. Wahrsch. Verw. Gebiete 64( 1983). 

Laboratoire de Statistique Bat. 425 

Université Paris-Sud 91405 Orsay Cedex 

France 
e-mail: GIRARDIN@stats.matups.fr 

https://doi.org/10.4153/CJM-1995-049-7 Published online by Cambridge University Press

mailto:GIRARDIN@stats.matups.fr
https://doi.org/10.4153/CJM-1995-049-7

