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Domains of Injective Holomorphy

This paper is dedicated to Professor Wolfgang Luh on the occasion of his retirement.

P. M. Gauthier and V. Nestoridis

Abstract. A domain Ω is called a domain of injective holomorphy if there exists an injective holo-

morphic function f : Ω → C that is non-extendable. We give examples of domains that are domains

of injective holomorphy and others that are not. In particular, every regular domain (Ω
o
= Ω) is a

domain of injective holomorphy, and every simply connected domain is a domain of injective holo-

morphy as well.

1 Introduction

A holomorphic function f defined on a domain Ω in the complex plane C is called

(holomorphically) extendable over C if there exist two discs D1 and D2, where D2

intersects both Ω and its complement, D1 is contained in D2 and in Ω, and there

exists a holomorphic function F on D2, so that F = f on D1. The function f is

then non-extendable (over C) if its Riemann surface (over C) has only one sheet and

its projection to C is exactly Ω. Equivalently, f is non-extendable if and only if for

every p ∈ Ω the radius of convergence Rp( f ) of the Taylor series of f with center

p is exactly Rp( f ) = dist(p, ∂Ω) ([5]). It is well known that every domain Ω ⊂ C

supports a non-extendable holomorphic function f ; that is, every domain Ω ⊂ C is

a domain of holomorphy [7]. Moreover, such non-extendable functions may have

a certain boundary regularity ([3–5]). In this paper, we consider a similar question,

but f should be injective in Ω.

Definition A domain Ω ⊂ C is called a domain of injective holomorphy if there

exists an injective holomorphic function f : Ω → C that is non-extendable; that is,

Rp( f ) = dist(p, ∂Ω) for every p ∈ Ω. In order to cover the case where Ω = C, we

shall agree that dist(p,∅) = +∞.

It is not true that every domain in C is a domain of injective holomorphy. For

instance, if Ω ′ ⊂ C is any domain and a, b ∈ Ω
′, a 6= b, we shall see that Ω =

Ω
′ \ {a, b} is not a domain of injective holomorphy. This can be generalized for

domains, where we remove a closed set of analytic capacity zero containing at least

two points. See Proposition 2.1.

There are also plenty of domains that are domains of injective holomorphy. A

central result in this paper, which is a generic result, implies that every domain Ω ⊂ C
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that is regular (Ω
o
= Ω) is a domain of injective holomorphy. There are also examples

of domains of injective holomorphy that are not regular, i.e., Ω = {z : |z| < 1}\{z ∈
R : z ∈ [0, 1)}.

We shall show that every simply connected domain is a domain of injective holo-

morphy. We also give a complete answer in the case of finitely connected domains

in C. Finally we give an example of a domain in C that is not regular, is of infinite

connectivity, and is a domain of injective holomorphy.

2 First Examples

The complex plane C is obviously a domain of injective holomorphy, because it sup-

ports the function f (z) = z. The domain C \ {0} supports the function f (z) = 1/z;

therefore, it is a domain of injective holomorphy.

The unit disc D is a domain of holomorphy. In [6] we find a holomorphic function

g(z) =
∑

∞

n=2 anzn ∈ H(D), that is non-extendable; that is, g has the unit circle as

natural boundary. Moreover, an ∈ {0, 1}. Thus, integrating three times, we can

find a non-extendable function w(z) =
∑

∞

n=2 bnzn ∈ H(D) with
∑

∞

n=2 n|bn| < +∞.
We consider c >

∑

∞

n=2 n|bn|. Then the function f (z) = cz + w(z) is injective and

non-extendable; that is, D is a domain of injective holomorphy.

The domain D \ {0} is also a domain of injective holomorphy. To see this, let

f (z) = c/z +
∑

∞

n=2 bnzn, where
∑

∞

n=2 bnzn is the series we considered in the previous

paragraph, when treating the case of the unit disc D and c >
∑

∞

n=2 n|bn|. We shall

show that f is injective in D \ {0}. Suppose we have z,w ∈ D \ {0}, z 6= w such that

f (z) = f (w). Then

c
( 1

z
−

1

w

)

=

∞
∑

n=2

bn(wn − zn).

It follows that

(w − z)c = (w − z)wz

∞
∑

n=2

bn(wn−1 + wn−2z + · · · + zn−1).

Since |z|, |w| ≤ 1, and z 6= w,

c = |c| ≤

∞
∑

n=2

|bn|
(

|w|n−1 + |w|n−2|z| + · · · + |z|n−1
)

≤

∞
∑

n=2

|bn|n < c,

that is absurd. We arrive at a contradiction, and so f is injective in D \ {0}. It is easy

to see that f is non-extendable. Thus, D \ {0} is a domain of injective holomorphy.

Let Ω ′ be any domain and a, b ∈ Ω
′, a 6= b. Then Ω = Ω

′ \ {a, b} is not a do-

main of injective holomorphy. Suppose that f : Ω → C is an injective holomorphic

function that is non-extendable; we shall arrive at a contradiction. The points a, b are

isolated singularities for f . If a or b is an essential singularity, then f is not injective.

If a or b is a removable singularity, then f is extendable. Thus, both a and b are poles.

But then, because f is an open mapping, a neighbourhood of ∞ is covered twice,

one time around a and a second time around b. Therefore f is not injective, and we
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have arrived at a contradiction. We conclude that Ω = Ω
′ \ {a, b} is not a domain of

injective holomorphy. The last example takes the following more general form.

Proposition 2.1 Let Ω ′ be any domain and let E ⊂ Ω
′ be a non-empty closed subset

of zero analytic capacity that contains at least two points. Then Ω = Ω
′ \ E is not a

domain of injective holomorphy.

Proof Let f : Ω → C be injective and meromorphic; we shall show that f is mero-

morphically extendable.

Since any continuum is of positive analytic capacity, it follows that E is a totally

disconnected subset of Ω ′, and so there is an open subset U ′ ⊂ Ω
′ such that U

′

is

a compact subset of Ω ′, U ′ ∩ E 6= ∅, and ∂U ′ ∩ E = ∅. Thus, K = U ′ ∩ E is

a non-empty compact subset of U ′. Set U = U ′ \ K. Then U is an open subset

of Ω and Ω \ U is a non-empty open subset of Ω and so f (Ω \ U ) contains a disc

{z ∈ C : |z−c| < δ} for some c ∈ C. The function g = 1/( f −c) is holomorphic and

bounded in U = U ′ \ K, since f (Ω \U ) ∩ f (U ) = ∅, due to the injectivity of f on

Ω. Since g is bounded and holomorphic on U ′ \K and K ⊂ U ′ is of analytic capacity

zero, it follows that g extends to a (bounded) holomorphic function on U ′. Thus f

extends meromorphically to U ′. In other words, f extends to the set K, which lies

outside Ω. Hence, f is extendable and Ω is not a domain of injective meromorphy.

Suppose now that E contains two distinct points a and b, and f : Ω → C is injec-

tive and holomorphic. We have already seen that f extends meromorphically to Ω
′.

If f is finite at one of the points a or b, then f extends holomorphically to that point,

and so Ω is not a domain of injective holomorphy. The only other possibility is that

both a and b are poles. This will lead to a contradiction. Indeed, let Da and Db be

disjoint discs in Ω
′ centered at a and b respectively. There is an open neighbourhood

V of ∞ contained in f (Da)∩ f (Db). Thus f (Da \E) and f (Db \E) both contain open

dense subsets of V . Hence, f (Da \ E) ∩ f (Db \ E) contains an open and dense subset

of V and, in particular, is non-empty. This is a contradiction, since f is injective on

Ω\E and the sets (Da \E) and (Db \E) are disjoint. Thus, f extends holomorphically

from Ω, and so Ω is not a domain of injective holomorphy.

Prime examples of Ω’s as in Proposition 2.1 abound in potential theory. Any

closed set E of harmonic capacity zero is of analytic capacity zero. Suppose Ω
′ is

any domain in C and u : Ω → [−∞,+∞) is any continuous subharmonic function

on Ω
′. We call u−1(−∞) the pole set of u. If the pole set of u is not empty, then

Ω = Ω
′ \ u−1(−∞) is not a domain of injective meromorphy, and if the pole set

contains at least two points, then Ω is not a domain of injective holomorphy.

Remark An obvious modification of the above proof shows that if a ∈ Ω
′ and

Ω = Ω
′\{a}, then each injective meromorphic function on Ω extends to an injective

meromorphic function on Ω
′.

Example 2.2 Let Ω be a domain in C. We assume that no component of C \ Ω is a

singleton. Let zo be a point of Ω. Then Ω is a domain of injective holomorphy if and

only if Ω ′
= Ω \ {zo} is a domain of injective holomorphy.
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Proof Suppose first that Ω is a domain of injective holomorphy. If Ω = C, we

have already pointed out that 1/(z − zo) is an injective holomorphic function on the

punctured plane that is non-extendable. Suppose Ω 6= C and let f be a function that

is injective, holomorphic, and non-extendable in Ω. Then

g(z) =
1

f (z) − f (zo)

is injective, holomorphic, and non-extendable in Ω
′. Indeed, suppose g is extendable.

Since g is not extendable to zo, it follows that g is extendable through ∂Ω. There are

open discs D1 ⊂ D2 such that D1 ⊂ Ω, D2 ∩ ∂Ω 6= ∅, and there is a function G

holomorphic in D2 such that G = g on D1. Let W be the component of D2 ∩ Ω

containing D1. Choose a point w ∈ D2 ∩ ∂W such that G(w) 6= 0. Now choose

an open disc U ⊂ D2 centered at w such that G has no zeros in U and choose an

open disc V ⊂ U ∩W. Then 1/G + f (zo) is holomorphic in U and agrees with f on

V . Thus f is extendable from Ω, which contradicts the choice of f . Therefore, g is

non-extendable from Ω
′ as claimed.

Suppose conversely, that f is a function holomorphic and injective in Ω
′, which

is non-extendable. Then zo is a simple pole of f . Let b be a point of C \ f (Ω ′) and

set g(z) = 1/( f (z) − b). Then g is holomorphic and injective in Ω, and we claim

that g is non-extendable. Indeed, suppose g is extendable. Then there are open discs

D1 ⊂ D2 such that D1 ⊂ Ω, D2 ∩ ∂Ω 6= ∅, and there is a function G holomorphic

in D2 such that G = g on D1. Let W be the component of D2 containing D1. Choose

a point w ∈ D2 ∩ ∂W such that G(w) 6= 0. Now choose an open disc U ⊂ D2

centered at w such that G has no zeros in U and choose an open disc V ⊂ U ∩ W.
Then 1/G + b is holomorphic in U and agrees with f on V . Since w 6= zo, it follows

that f is extendable from Ω
′, which contradicts the choice of f . Therefore g is non-

extendable as claimed.

3 A Generic Result

Let Ω ⊂ C be a bounded domain that is regular; that is Ω
o
= Ω. This is equivalent

to saying that, for every w ∈ ∂Ω, there exists a sequence wn ∈ Ω
c
, n = 1, 2, . . . con-

verging to w. The space H(Ω) of functions holomorphic on Ω is endowed with the

topology of uniform convergence on compacta. The space A(Ω) consists of all holo-

morphic functions f ∈ H(Ω) that extend continuously to Ω. This space is endowed

with the supremum norm ‖ f ‖∞ = supz∈Ω
| f (z)|. The space A∞(Ω) consists of all

holomorphic functions f ∈ H(Ω) such that all derivatives f (ℓ), ℓ = 0, 1, 2, . . . extend

continuously to Ω. We continue to denote these extensions by f (ℓ). If f , g,∈ A∞(Ω),

then

dist( f , g) =

∞
∑

j=0

1

2 j

‖ f ( j) − g( j)‖∞
1 + ‖ f ( j) − g( j)‖∞

.

Let Y denote the set of restrictions to Ω of rational functions y that are holomor-

phic and injective on some neighbourhood V y (depending on y) of the closure of Ω.
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Let X be one of the following spaces:

(i) the closure of Y in H(Ω) endowed with the relative topology from H(Ω);

(ii) the closure of Y in A(Ω) endowed with the relative topology from A(Ω);

(iii) the closure of Y in A∞(Ω) endowed with the relative topology from A∞(Ω).

Note that, by Hurwitz’s Theorem, all functions in X are either injective or constant.

Hence, the non-extendable elements of X are injective.

Theorem 3.1 Let X be one of the above mentioned spaces, where Ω ⊂ C is a bounded

regular domain. Then the set U of non-extendable elements of X is Gδ and dense in X;

in particular, it is non-void, and so Ω is a domain of injective holomorphy.

Proof Let P = Ω ∩ (Q + iQ). For p ∈ P and f ∈ X we denote by Rp( f ) the radius

of convergence of the Taylor series of f with center p. Then, as in [5, Prop. 2.3], we

have U = ∩p∈P{ f ∈ X : Rp( f ) = dist(p, ∂Ω)}. Again, as in [5], we can easily see

that U is a Gδ subset of X. We shall show that U contains a dense Gδ subset of X.

By Baire’s Theorem, it suffices to fix a p ∈ P and prove that the set

A = { f ∈ X : Rp( f ) = dist(p, ∂Ω)}

contains a dense Gδ subset of X. Therefore, we fix p ∈ P and let w ∈ ∂Ω be such that

|p−w| = dist(p, ∂Ω). By assumption, there exists a sequence wm ∈ Ω
c
,m = 1, 2, . . .

converging to w.

We consider the sets E(n, k,m) = {g ∈ X : |Sn(g, p)(wm)| > k}, where

Sn(g, p)(z) =

n
∑

ℓ=0

g(ℓ)(p)

ℓ!
(z − p)ℓ.

Then it is easy to see that

A ⊃
⋂

k,m

∞
⋃

n=0

E(n, k,m).

Further, by the Cauchy estimates each E(n, k,m) is open in X, and so this intersection

is indeed a Gδ .

The density of this Gδ in X will follow once we show that
⋃

∞

n=0 E(n, k,m) is dense

in X, where k and m are fixed.

Let ϕ ∈ Y and let Ω ⊂ V ⊂ V ⊂ V1, where V,V1 are bounded and open and ϕ
is holomorphic and injective in V1. We may also assume that wm 6∈ V1 for the above

fixed m. For q a positive integer strictly greater than all multiplicities of the (finitely

many) poles of ϕ and for δ > 0, set

ϕδ(z) ≡ ϕ(z) +
δ

(z − wm)q
.

As δ → 0+, we also have that ϕδ → ϕ uniformly on compact subsets of V1. It follows

from Rouché’s Theorem that, for small δ > 0, ϕδ is injective on V (and on V ).

Therefore, for δ > 0 small enough, ϕδ ∈ Y ⊂ A∞(Ω) ⊂ A(Ω) ⊂ H(Ω). Moreover,
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ϕδ → ϕ, as δ → 0+, in the topologies of A∞(Ω),A(Ω) and H(Ω). Hence, for δ > 0,

we have that ϕδ ∈ X and ϕδ → ϕ in X as δ → 0+.

Fix a neighbourhood of ϕ in X. From the preceding paragraph, it follows that we

may choose δ > 0 so that ϕδ is in this neighbourhood.

From the choice of q, we see that wm is a pole of greatest multiplicity for ϕδ.
If wm is among the closest poles of ϕδ to the center p, then limn Sn(ϕδ, p)(wm) =

∞, according to a result of Dienes [1]. Then we can choose n big enough so that

|Sn(ϕδ, p)(wm)| > k.

If wm is outside the closed disc of convergence with center p, then it is well known

that Sn(ϕδ, p)(wm), n = 0, 1, 2, . . . , is an unbounded sequence. Indeed, suppose this

sequence is bounded, then the sequence

Sn(ϕδ, p)(wm) − Sn−1(ϕδ, p)(wm) =
ϕ(n)
δ (p)

n!
(wm − p)n, n = 0, 1, 2, . . . ,

is also bounded. It follows from Abel’s Lemma that Rϕδ
(p) ≥ |wm − p|. But wm lies

outside the closed disc of convergence, that is absurd. Thus, Sn(ϕδ, p)(wm), n =

0, 1, 2, . . . , is an unbounded sequence. Thus, again we can find n ∈ N, so that

|Sn(ϕδ, p)(wm)| > k.

This proves that
⋃

∞

n=0 E(n, k,m) is dense in X. It follows that U is a dense Gδ

subset of the complete metrizable space X. Since X 6= ∅ (it contains the function

f (z) = z), it follows that U is a non-void subset of X. Every element of X is either

injective in Ω or constant. The constants are extendable, so they cannot belong to

U . Hence, every element of U is injective. Since U 6= ∅ and the elements of U are

injective and non-extendable, it follows that Ω is a domain of injective holomorphy.

This completes the proof.

We remark that obvious modifications allow one to prove an analogue of Theo-

rem 3.1 for regular domains of the Riemann sphere. Moreover, an attentive exam-

ination of the proof of Theorem 3.1 allows one to prove a local version with few

modifications of the proof. We shall state such a local version without proof.

An horocycle of a domain Ω is a pair (w,D), where w is a boundary point of Ω and

D is an open disc in Ω having w on its boundary. We say that (w,D) is an horocycle of

the domain Ω at the boundary point w. If f is a function holomorphic in Ω, (w,D) is

a horocycle of Ω, V is an open disc containing the point w as well as the disc D, and F

is a function holomorphic in V such that F = f on D, then we say that the function

F extends the function f across the horocycle (w,D). Moreover, we shall say that the

function f is extendable across the horocycle (w,D) if there is such a V and such an

F. Let us say that a boundary point w of Ω is a regular boundary point if it is also

a boundary point of the exterior of Ω. If (w,D) is a horocycle at a regular boundary

point w of Ω and w is the only boundary point of Ω on the boundary of D, we say

that (w,D) is a regular horocycle of Ω.

Theorem 3.2 Let X be one of the above mentioned spaces, where Ω ⊂ C is a bounded

domain and (w,D) a regular horocycle of Ω. Then the set A of elements of X that are not

extendable across (w,D) is Gδ and dense in X. In particular, A is non-empty.
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For an arbitrary domain Ω in C, let us define the regular horocyclic boundary of

Ω to be the collection of all regular horocycles (w,D) of Ω. Let us say that a function

f holomorphic in Ω is nowhere extendable across the regular horocyclic boundary if

f is extendable across no regular horocycle (w,D) of Ω.

Corollary 3.3 Let X be one of the above mentioned spaces, where Ω ⊂ C is an arbi-

trary bounded domain in C. Then the set U of elements of X that are nowhere extendable

across the regular horocyclic boundary is Gδ and dense in X; in particular, it is non-void.

Proof We can construct a countable family (w j ,D j) of regular horocycles that is suf-

ficiently “dense”. That is, if a function f holomorphic in Ω is extendable across none

of the regular horocycles (w j ,D j), then it is extendable across no regular horocycle.

By Theorem 3.2, for each j, the set A j of elements of X that are not extendable across

(w j ,D j) is Gδ and dense in X. The corollary now follows from Baire’s theorem.

For a regular domain Ω, the regular horocyclic boundary is sufficiently “dense” in

the boundary ∂Ω so that Theorem 3.1 follows from Corollary 3.3. Thus, Theorem 3.1

is a consequence of Theorem 3.2. But, of course, the proof of Theorem 3.2 (that we

have omitted) incorporates the main ingredients of the proof of Theorem 3.1.

4 Further Examples of Domains of Injective Holomorphy

It follows from Theorem 3.1 that every Jordan domain is a domain of injective holo-

morphy. The same holds for every domain that is bounded by a finite number of

disjoint Jordan curves. Moreover, we can have unbounded examples as well.

Proposition 4.1 Let Ω ⊂ C be a regular domain. Then Ω is a domain of injective

holomorphy.

Proof If Ω is bounded, the result follows by Theorem 3.1.

If Ω = C, the result holds because of the function f (z) = z.

Suppose Ω is unbounded and Ω 6= C. As Ω
o
= Ω, it follows that Ω 6= C and

therefore, there exists w ∈ C and δ > 0 so that δ < dist(w,Ω). We set ϕ(z) =

1/(z − w). Then ϕ(Ω) is bounded.

Consider first the case where C \ Ω is unbounded. Then ϕ(Ω) is regular. So,

according to Theorem 3.1, there exists g ∈ H(ϕ(Ω)) injective and non-extendable.

We consider the function g ◦ ϕ ∈ H(Ω), which is injective. If g ◦ ϕ were extendable

through a boundary point Q ∈ ∂Ω,Q 6= ∞, then one could see that g would be

extendable through the boundary point ϕ(Q) = 1/(Q − w) 6= 0 in ∂(ϕ(Ω)), that

would give a contradiction. This completes the proof in case C \ Ω is unbounded.

If C \Ω is bounded, then ϕ(Ω) = ω \ {0}, where ω is a bounded regular domain.

Thus, ω is a domain of injective holomorphy and no component of C \ ω is a sin-

gleton. It follows from Example 2.2, that ϕ(Ω) = ω \ {0} is a domain of injective

holomorphy as well. Let g be an injective holomorphic function on ϕ(Ω), which is

non-extendable from ϕ(Ω). Then g ◦ ϕ is an injective holomorphic function on Ω,

which is non-extendable. This completes the proof.

We shall see that there are many non-regular bounded domains that are domains

of injective holomorphy, but for this we must look more closely at the boundary. To
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this end, it will be convenient to introduce the notion of a “dense” set of horocycles

that applies to an arbitrary domain Ω ⊂ C, which is non-degenerate, that is, not

empty nor all of C. A holomorphic function f in Ω is holomorphically extendable

over C if there are two open discs U and V with U ⊂ Ω ∩ V and V ∩ ∂Ω 6= ∅, and

there is a function F holomorphic in V such that F = f in U . In this situation, let us

say that the function f is extended through (or over) the pair of discs (U ,V ). There

exists a countable family (U j ,V j) of such pairs of discs that is sufficient for the above

definition. That is, a function f holomorphic in Ω is holomorphically extendable

over C if and only if f is extendable over the pair (U j ,V j) for some j. That is, f is

extendable if and only if for some j there is a function F holomorphic in V j such

that F = f in U j . Moreover, we may construct such a sequence of pairs having

the property that for any ǫ > 0, the family of pairs (U j ,V j) for which the diameter

of V j is greater than ǫ is locally finite. Thus, we may consider that the sequence of

pairs (U j ,V j) approaches the boundary. Let us say that a boundary point p of Ω is

horocyclically accessible if p lies on the boundary of an open disc D contained in Ω.

We say that D is an horocycle at p, or we also say that (p,D) is an horocycle inΩ.Now,

for each pair (U j ,V j), we may choose an horocycle (p j ,D j) such that D j is in the

component of V j ∩Ω containing U j . This family of horocycles (p j ,D j) is sufficiently

“dense” for our purposes. That is, if a holomorphic function F on V j extends f

from U j , then F extends f from D j . We say that F extends f over the horocycle

(p j ,D j). Thus, a holomorphic function f in Ω extends holomorphically over C if

and only if it extends over one of the horocycles (p j ,D j). Without bothering to

formally introduce an appropriate topology, let us agree to call the sequence (p j ,D j)

a sequence of horocycles that approaches the boundary of Ω in a dense manner.

Theorem 4.2 Let Ω 6= C be a simply connected domain. There is a bounded injective

holomorphic function on Ω that is non-extendable. Thus Ω is a domain of injective

holomorphy.

Proof Let ϕ : Ω → D be a conformal mapping of Ω onto the unit disc D. If

w1,w2, . . . is an interpolating sequence in D, we shall say that the sequence zn =

ϕ−1(wn), n = 1, 2, . . . , is an interpolating sequence in Ω. We shall construct an in-

terpolating sequence {zn} that approaches the boundary ∂Ω in a sufficiently dense

manner. We shall interpolate along the sequence {wn} by a bounded function b so

as to assign the values 0 and i to the sequence {b(wn)}. Choose a real number c > 0

such that ℜb + c > 0 and set

h(w) =

∫ w

0

(b(ω) + c)dω

for w ∈ D. Then h ′
= b + c, so ℜh ′

= ℜb + c > 0, and so h is injective in D.
Thus, f = h ◦ ϕ is injective in Ω and f ′(zn) = h ′(wn)ϕ ′(zn) = (b(wn) + c)ϕ ′(zn).
We shall choose the sequence {zn} so as to approach a sufficiently dense set of points

p ∈ ∂Ω, and we may assume that for each such p the corresponding subsequence of

argϕ ′(zn) has a limit modulo 2π. The corresponding subsequence of arg f ′(zn) will

take the two values argϕ ′(zn( j)) and arg(i+c)+argϕ ′(zn(k)) for different subsequences

zn( j) and zn(k). If f ′ were extendable across p with f ′(p) 6= 0, then the difference of
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argϕ ′(zn( j)) and arg(i + c) + argϕ ′(zn(k)) should converge to zero modulo 2π, as

zn( j) and zn(k) converge to p. However, this converges to arg(i + c) modulo 2π, that

is absurd. But even if f ′(p) were 0, there would be a nearby point, with the same

extension, where f ′(q) 6= 0. At such a nearby point, we would have the preceding

contradiction. Thus, f ′ is non-extendable across p and consequently, the same is

true of f . If the set of such p is sufficiently dense, then f will be nowhere extendable.

There remains the choice of an appropriate interpolating sequence {zn} in Ω. A

function f in Ω is non-extendable if it is non-extendable through each point p of

the boundary ∂Ω. Of course, there are uncountably many boundary points, and the

situation seems to be even more complicated, since a given boundary point can be

approached from “different sides” and f should be non-extendable through p for all

of these approaches. The number of different approaches to a given boundary point

p could be uncountable. For example, consider the simply connected domain

Ω =
(

C \ [0,+∞)
)

\
∞
⋃

n=1

2n
⋃

m=1

[0, n−1 exp(imπ2−n)],

where [0, b] denotes the segment from 0 to a point b. Then, from the point of view of

holomorphic continuation, there are uncountably many different approaches to the

boundary point 0.

Fortunately, we need not consider all boundary points, nor need we consider all

approaches to those boundary points that we do consider. Indeed, it is sufficient

to consider horocyclic approach. Let us say that a holomorphic function f on Ω is

extendable through the horocycle D at p belonging to the boundary of Ω, if there are

open discs U and V with U ⊂ D, U ⊂ V, p ∈ V and a holomorphic function F on V

such that F = f on D ∩U . A holomorphic function f on Ω is non-extendable if and

only if, for each horocyclically accessible boundary point p and each horocycle D at

p, f is non-extendable through D at p.

Let (p j ,D j), j = 1, 2, . . . , be a sequence of horocycles that approaches the bound-

ary in a dense manner in the sense defined above. Let α j be the radius of D j ending at

p j . Now, let {zn} be an interpolating sequence in Ω constructed by selecting distinct

points successively on the radii:

α1; α1, α2; α1, α2, α3; . . . .

Now, as in the beginning of the proof, let b be a bounded holomorphic function

in Ω taking the values 0 and i along the interpolating sequence {zn}. Moreover, we

shall be careful to assure that along each α j both values 0 and i are assumed infinitely

often. We may easily arrange so that for every i = 1, 2, . . . , for the indices n such that

zn belongs to αi , the corresponding subsequence argφ ′(zn) belonging to [0, 2π) has

a limit. Then f ′, constructed in the first paragraph of this proof, is non-extendable

through each (p j ,D j), j = 1, 2, . . . , unless perhaps f ′(pk j) = 0. But if f ′(p j) were

0, there would be nearby points with the same extension where the derivative is not

0, and for such points we would have the non-extendability, which is a contradiction.

Because of the way the horocycles (p j ,D j), j = 1, 2, . . . , were chosen, the function

f ′ is non-extendable over (U j ,V j); j = 1, 2, . . . . From the way in that the sequence
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(U j ,V j) was defined, it follows that f ′ is non-extendable. The first paragraph of this

proof has now been justified, and the proof is complete.

Corollary 4.3 Let Ω ⊂ C be a simply connected domain containing ∞ and different

from C. We set Ω ′
= Ω ∩ C. There is an injective holomorphic function on Ω

′, which is

non-extendable and bounded and hence holomorphically extendable to the point ∞.

This follows from Theorem 4.2, if we compose with a transformation of the form

w = 1/(z − zo), where zo 6∈ Ω.
Let us say that an open set Ω in C is of injective holomorphy if it supports an

injective holomorphic function whose restriction to every component of Ω is non-

extendable. If an open set Ω is of injective holomorphy, then obviously every compo-

nent of Ω is a domain of injective holomorphy. The converse does not hold, as we can

see by taking as Ω the union of two disjoint punctured discs. However, a corollary

of Theorem 4.2 is that every simply connected open set Ω included in C and differ-

ent from C supports a bounded injective holomorphic function whose restriction to

every component of Ω is non-extendable; in particular, Ω is of injective holomorphy.

Indeed if On are the components of the simply connected open set Ω, then The-

orem 4.2 easily implies the existence of functions fn on On injective, holomorphic,

non-extendable, and satisfying 1 − 1/n < | fn(z)| < 1 − 1/(n + 1). Then the func-

tions fn build a function f on Ω, that is injective, bounded, and holomorphic and

whose restriction to each component of Ω is non extendable.

We could also define an open setΩ to be a set of injective meromorphy if it supports

an injective meromorphic function whose restriction to every component of Ω is

non-extendable. Again, if an open set Ω is of injective meromorphy, then obviously

every component of Ω is a domain of injective meromorphy. However, we do not

know whether the converse is true.

We remark that with the above construction of a sufficiently dense countable fam-

ily of horocycles, it is easy to prove the well-known fact that every domain Ω of C is

a domain of holomorphy over C. We may assume Ω 6= C. For a sequence {zn} of

distinct points in Ω that has no limit points in Ω and is frequently in each of these

countably many horocycles, there exists, by the Weierstrass theorem, a holomorphic

function f in Ω whose zeros are precisely the points of {zn}. Such a function is non-

extendable, because any extension would be identically zero, that is absurd. Replac-

ing the Weierstrass theorem by the Mittag–Leffler theorem (that is more elementary),

we have a meromorphic function in Ω whose poles are precisely the points of {zn}.
Since poles are always isolated, it follows that this function is meromorphically non-

extendable over C. Thus, every domain of C is also a domain of meromorphy over

C. In fact, it is known that domains of holomorphy and domains of meromorphy

over Cn coincide ([2]). However, the proof of Proposition 2.1 shows that domains of

injective holomorphy are not the same as domains of injective meromorphy. More

precisely, D \ {0}, where D denotes the open unit disc, is not a domain of injective

meromorphy, but it is a domain of injective holomorphy.

Combining previous results we have the following theorem.

Theorem 4.4 Let Ω be a domain in C having finitely many complementary compo-

nents in C. If at least two of these are singletons in C, then Ω is not a domain of injective

holomorphy. Otherwise, Ω is a domain of injective holomorphy.
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Proof Let K1,K2, . . . ,Kn be the complementary components of Ω in the Riemann

sphere C, where Kn is the component containing ∞. Suppose two components are

singletons in C. Then, by Proposition 2.1, Ω is not a domain of injective holomorphy.

Now suppose at most one of the components is a singleton in C. We claim that Ω

is a domain of injective holomorphy.

If n = 1, then Ω = C \ K1 is simply connected, and so by Theorem 4.2, Ω is a

domain of injective holomorphy.

If n > 1, consider the case that there is indeed a complementary component in

C that is a singleton in C, say K1 = {zo}. Then, by Example 2.2, Ω is a domain of

injective holomorphy if and only if Ω ∪ {zo} is a domain of injective holomorphy.

We may thus assume that no K1,K2, . . . ,Kn−1 is a singleton. We claim that we

may also assume that Kn is not a singleton. Indeed, suppose Kn is a singleton, that

is Kn = {∞}, and suppose we knew that if a domain W in C has only finitely many

complementary components in C and none of them are singletons, then W is a do-

main of injective holomorphy. Set

Ω∞ = C \
n−1
⋃

j=1

K j ,

choose a point a ∈ K1, and define ϕ(z) = 1/(z−a). Set W = ϕ(Ω∞). By hypothesis,

W is a domain of injective holomorphy, and by Example 2.2, there is an injective

holomorphic function g on Wo = W \ {0}, which is non-extendable. Thus, g ◦ ϕ is

an injective holomorphic function on Ω, which is non-extendable.

We thus suppose that no K j is a singleton. The proof is now by induction on n

and the case n = 1 has already been established.

Suppose n = 2. Set Ω1 = C \ K1. By Corollary 4.3 there is a bounded injective

holomorphic function f1 on Ω1 that is non-extendable. Set Ω2 = C \ f1(K2). Again,

by Corollary 4.3, there is an injective holomorphic function f2 on Ω2 that is non-

extendable. We claim that the holomorphic injective function f = f2 ◦ f1 on Ω is

non-extendable. Indeed, suppose, to obtain a contradiction, that there are two open

discs U ⊂ V , with U ⊂ Ω and V 6⊂ Ω and a function F holomorphic on V such that

F = f on U . Let W be the component of V ∩ Ω containing U and choose a point

p ∈ ∂W ∩ ∂Ω. Either p ∈ K1 or p ∈ K2.
Suppose first that p ∈ K1. We may choose a disc D ⊂ V centered at p so small

that

f1(D ∩ Ω) ∩ f1(K2) = ∅.

Hence,

( f2 ◦ f1)(D ∩ Ω) ∩
[

C \ f2{C \ f1(K2)}
]

= ∅.

Thus, F(p) ∈ f2{C \ f1(K2)} ≡ f2(Ω2). We may define F1 = f −1
2 ◦ F near p. Then

F1 is an extension of f1, which contradicts the choice of f1.

If, on the other hand, p ∈ K2, choose a disc D2 centered at f1(p) so small that

f −1
1 (D2) ⊂ V and choose a disc D1 ⊂ D2∩ f1(W ). On D2, the holomorphic function

F2 = F ◦ f −1
1 is well defined and it coincides with f2 on D1. Thus f2 is extendable,

which contradicts the choice of f2. This completes the proof that f is non-extendable

in Ω and establishes the theorem for n = 2.
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Suppose the theorem is valid if Ω has n − 1 complementary components in C,

none of that is a singleton, and suppose Ω has n complementary components, none

of that is a singleton.

Set Ω1 = C \ K1. By Corollary 4.3 there is an injective holomorphic function f1

on Ω1 that is non-extendable. Set

Ω2 = C \ f1(∪n
j=2K j).

By the inductive hypothesis, there is an injective holomorphic function f2 on Ω2 that

is non-extendable. As for the case n = 2, one can show that the holomorphic injective

function f = f2 ◦ f1 on Ω is non-extendable.

We remark that the situation for meromorphy is more elegant. Let us say that a

finitely-connected domain in C is non-degenerate if no complementary component

is a singleton. Then a finitely connected domain in C is a domain of injective mero-

morphy if and only if it is non-degenerate.

Corollary 4.5 Let Ω ⊂ C be a doubly connected domain. Then Ω is a domain of

injective holomorphy.

Recall that a continuum (compact connected set) is said to be degenerate if it is a

singleton.

Example 4.6 Let Ω be a domain whose complementary components are bounded,

isolated, and non-degenerate. Then Ω is a domain of injective holomorphy.

Proof We may assume that Ω contains the origin. We shall construct a sequence fn

of conformal mappings of Ω such that fn(0) = 0 and f ′(0) = 1, for each n.

First, we arrange the complementary components of Ω in a sequence Kn. Set

Ωn = C \ ∪n
j=1K j . Let f0 be the identity mapping f0(z) = z. Let h1 be an injective

holomorphic function on C \ K1 that is non-extendable and such that h1(0) = 0 and

h ′

1(0) = 1. Set f1 = h1. Suppose, for j = 1, . . . , n, the functions h j and f j have

been defined such that h j is an injective holomorphic function on C \ f j−1(K j) that

is non-extendable,

f j = h j ◦ f j−1, f j(0) = h j(0) = 0, and f ′

j (0) = h ′

j(0) = 1.

We let hn+1 be an injective holomorphic function on C\ fn(Kn+1) such that hn+1(0) =

0 and h ′

n+1(0) = 1 and we set fn+1 = hn+1 ◦ fn. Then the sequences hn and fn are de-

fined by induction. For each n, the function fn is an injective holomorphic function

on Ωn that is non-extendable.

By the Koebe distortion theorem, the family { fn} is normal on Ω = C \ ∪ jK j ,

and so there is a subsequence of the sequence { fn} that converges to a function f on

Ω that is either identically infinite or holomorphic. Since f (0) = 0, the function f

is holomorphic. Since each fn is injective and holomorphic, the limit function f is

either injective or constant, but since f ′(0) = 1, the function f is injective.
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We shall show that f is non-extendable. Suppose, for the sake of contradiction,

that f extends to a point p ∈ ∂Ω. Then p ∈ ∂Kn for some n. For m > n we may

write

fm = hm ◦ hm−1 ◦ · · · ◦ hn+1 ◦ fn = gn ◦ fn,

where gn is injective holomorphic on C \
⋃m

j=n+1 fn(K j). Recall that a subsequence of

{ fm} converges to f . By the same argument invoking the Koebe distortion theorem,

the corresponding subsequence of gm has a subsequence that converges to a function

g, that is injective holomorphic on

Wn = C \
{

fn(∞) ∪
∞
⋃

j=n+1

fn(K j)
}

.

Hence, there is a sequence of indices nk such that fnk
converges to f on Ω and gnk

converges to g on Wn. We may write

f = lim
k→∞

fnk
= lim

k→∞

hnk
◦ · · · ◦ hn+1 ◦ fn = lim

k→∞

gnk
= g ◦ fn.

Let σn be a Jordan curve in Ω that separates Kn from the other Km. Let Un be the

topological annulus bounded by σn and ∂Kn. Now fn(Un) is a topological annulus

on C whose boundary components are the Jordan curve fn(σn) and ∂Qn, where Qn

is the component of C \ fn(Un) that is disjoint from fn(σn). Now g is holomorphic

and injective in a neighborhood W of Qn. There is a neighborhood G of Kn such that

f (G ∩ Ω) ⊂ g(W ). Choose a disc D centered at p lying in G such that f extends to

D. Then, in D ∩ Ω, we have fn = g−1 ◦ f . But f extends to D, and g−1 is defined on

f (D). Therefore, fn extends to D, which is the desired contradiction.

An instance of a domain as in Example 4.6 would be the multiply slit plane

C \
+∞
⋃

−∞

[2n, 2n + 1].

Let Ω be a domain of C and let K j be a sequence of bounded non-degenerate

complementary components of Ω that are isolated in the sense that for each j there

is an open neighborhood G j of K j such that

(C \ Ω) ∩ G j = K j .

Then the proof of Example 4.6 shows that there exists an injective holomorphic func-

tion on Ω that extends to no boundary point of Ω lying on any K j . It follows that, if

for each open disc D each non-empty component of D∩Ω meets some K j , then Ω is

a domain of injective holomorphy. For example, let E be the Cantor set and let a j be a

sequence in R\E that in each complementary interval (bounded or not) accumulates

precisely to the (finite) end points. Let

K j = {a j} × [0, 1] and K =

(

E ∪
∞
⋃

j=1

{a j}
)

× [0, 1].

Then Ω = C \ K is a domain of injective holomorphy whose complement K has

uncountably many non-degenerate components.
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