
Multi-scale (time and mass) dynamics of space objects
Proceedings IAU Symposium No. 364, 2022
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Abstract. Normal form methods allow one to compute quasi-invariants of a Hamiltonian system,
which are referred to as proper elements. The computation of the proper elements turns out to
be useful to associate dynamical properties that lead to identify families of space debris, as it
was done in the past for families of asteroids. In particular, through proper elements we are able
to group fragments generated by the same break-up event and we possibly associate them to a
parent body. A qualitative analysis of the results is given by the computation of the Pearson
correlation coefficient and the probability of the Kolmogorov-Smirnov statistical test.
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1. Introduction

The dynamics around the Earth can be classified taking into account the forces
involved, which depend on the distance from the Earth’s surface. To this end, we recall
the three main regions above the Earth surface: Low-Earth-Orbits (LEO), Medium-
Earth-Orbits (MEO) and Geosynchronous-Earth-Orbits (GEO). In all these regions, the
motion is mainly governed by the gravitational field of the Earth, but other forces might
influence the long term evolution of a spatial object, according to its altitude. Such
forces include, in particular, the non-spherical shape of the Earth, the attraction of
the Moon and the Sun, the solar radiation pressure. Once the Hamiltonian model is
given, we implement a Lie series normalization procedure to compute quasi-invariants
of the motion, namely the so-called proper elements, which are associated to semi-
major axis, eccentricity and inclination. Using simulated data after a break-up event
(a collision or an explosion), we analyzed the connection of the computation of the
proper elements with the dynamics observed immediately after the catastrophic event.
The results are corroborated by a statistical data analysis based on the check of the
Kolmogorov-Smirnov test and the computation of the Pearson correlation coefficient.
We refer to Celletti, Pucacco, & Vartolomei (2021a) for full details on the procedure and
to Celletti, Pucacco, & Vartolomei (2021b) for an application to concrete cases.
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2. The Model

A model of dynamics for space debris has been developed taking into account four
main forces that act on a satellite or a space debris, namely the gravitational potential
of the Earth, the attraction of the Moon and Sun, and the Solar radiation pressure. The
entire model has been described in Celletti et al. (2017a) starting from the Cartesian
equations of motion and using the expansion in the orbital elements. The Hamiltonian
function has the following form

H = HKep + HE + HM + HS + HSRP ,

where HKep is given by

HKep = −GME

2a
,

where G is the gravitational constant, ME is the mass of the Earth and a denotes the
semi-major axis.

Following Kaula (1966), the Hamiltonian part corresponding to the Earth’s pertur-
bation can be written as an expansion in orbital elements of the space object. In the
quasi-inertial reference frame, the Hamiltonian function can be written as
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The perturbation of the space object due to the Moon and Sun attractions can be written
as an expansion in orbital elements of the 3rd body perturber and the debris, using the
following formula (see Kaula (1962)):

HM = −GmM
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where mM is the mass of the Moon, ys = 0, if (s mod 2)=0, ys = 1
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t= (l− 1) mod 2, and
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The functions Flmp(i), Flsq(iM ) and Glqr(eM ) have been introduced in Kaula (1962),
Celletti et al. (2017b); Hlpj(e) are the Hansen coefficients, while the terms Um,sl are
given by

Um,sl =
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where ε= 23o26′21.406′′ is the Earth’s obliquity. In applications, the expansion of the
Moon’s Hamiltonian will be truncated to l= 2 and averaged over the mean anomalies of
the object M and of the Moon MM .

The Hamiltonian due to the Sun depends on the orbital elements of the Sun and the
debris. The expansion of HS is given below and, again, we will consider the expansion
to l= 2, averaging over the mean anomalies of the object and perturber body:

HS = −GmS

∑
l≥2
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where mS is the mass of the Sun and

φlmphqj = (l− 2p)ω+ (l− 2p+ q)M − (l− 2h)ωS − (l− 2h+ j)MS +m(Ω − ΩS).

The contribution to the Hamiltonian due to Solar radiation pressure is given below:

HSRP =CrPr
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where Cr, Pr are, respectively, the reflectivity coefficient and the radiation pressure for
an object located at aS = 1AU , while A

m denotes the area-to-mass ratio. This function is
averaged over the mean anomaly of the object M , but it depends on the mean anomaly
of the sun MS .

3. Normal Forms

We construct a normal form, which consists of a procedure implementing iteratively
canonical changes of coordinates, in such a way that the Hamiltonian function is trans-
formed into a given form. In particular, we will require that the Hamiltonian is integrable
up to a remainder term. Each time we implement the iterative procedure, we decrease
the size of the norm of the remainder term; however, it is well known that such iteration
is in general not converging Poincare (1892); besides, the complexity of the computation
usually grows when increasing the normalization steps.

Proper elements are computed through normal form theory Efthymiopoulos (2011),
which we shortly summarize as follows. Consider the following Hamiltonian function

H (I, ϕ) = H0(I) + εH1(I, ϕ) , (3.1)

where (I, ϕ) denote action-angle variables with (I, ϕ) ∈B ×T
n, where n is the number

of degrees of freedom and B ⊂R
n denotes an open set. The function H0(I) appearing

in (3.1) is called the integrable part, ε∈R is a small parameter, H1(I, ϕ) is called the
perturbing function.

As we mentioned before, we implement a change of coordinates which transforms the
Hamiltonian to remove the perturbation to orders of ε2. Usually, such normalization
procedure can only be iterated for some steps, after which it starts to diverge Poincare
(1892).

Let the function H1 be expanded in Fourier series as

H1(I, ϕ) =
∑
k∈K

bk(I) exp(ik ·ϕ) ,
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where K ⊆Z
n and bk denote functions with real coefficients. We call χ the generating

function associated to the canonical transformation from the original coordinates (I, ϕ)

to the new coordinates (I ′, ϕ′):

I = SεχI
′ , ϕ= Sεχϕ

′ ,

where Sεχ acts on a function F as

SεχF := F +

∞∑
i=1

εi

i!
{{...{F , χ}, . . . }, χ}

with {·, ·} representing the Poisson bracket operator. To compute Sεχ, we assume that

the new Hamiltonian H (1) = SεχH takes the form

H (1)(I ′, ϕ′) =Z1(I ′) + ε2H2(I ′, ϕ′) , (3.2)

where Z1 = H0 + εH 1 is the new integrable part (the bar denotes the average over the
angles), while H2 is the new remainder function which is of order ε2. Inserting the
transformation of coordinates in (3.1), the new Hamiltonian takes the desired form (3.2),
if χ satisfies the following normal form equation:

H1(I ′, ϕ′) + {H0(I ′), χ(I ′, ϕ′)} = H 1(I ′).

Let us expand χ in Fourier series, let the frequency be ω0 = ∂H0

∂I′ , then the generating

function is given by

χ(I ′, ϕ′) = −i
∑
k∈Zn

bk(I ′)
k · ω0

exp(ik ·ϕ′) ,

provided the following non-resonance condition is satisfied: k · ω0 �= 0. Normal forms of
higher order are obtained by iterating the procedure described above.

4. Results

4.1. Simulator of break-up events

Using a simulator of break-up events developed within the ongoing collaboration in
Apetrii, Celletti, Efthymiopoulos, Galeş, Vartolomei (2021), we produce synthetic data
in order to show the effectiveness of the proper elements. This simulator reproduces the
break-up model Evolve 4.0 provided by NASA (see Johnson (2001), Klinkrad (2006))
and allows us to determine the cross-sections, masses, and imparted velocities of the
fragments after an explosion or a collision. Our procedure consists in the following steps:

(i) simulate a break-up event and obtain the Cartesian coordinates for all generated
fragments;

(ii) compute the orbital elements for each fragment;
(iii) using the orbital elements after the break-up, we propagate each fragment for a

given period of time, typically up to 150 years;
(iv) we use the position of the fragments after the propagation up to a given interval

of time (e.g., 150 years) to compute the proper elements of each fragment;
(v) the distribution of the proper elements is then compared to that of the elements

at the initial time after the break-up.

4.2. Proper Elements

We take an example concerning an explosion that generates 465 fragments. The event
occurs at a medium altitude of the parent body with a= 25200 km and with a relatively
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Figure 1. Distribution of initial osculating elements (first row), mean elements after 150 years
(second row), and proper elements computed from mean elements after 150 years (third row) in
the a-i plane (left), i-e plane (right). Initial osculating elements of the parent body: a= 25200
km, e= 0.07, i= 29o, ω= 40o, Ω = 100o.

small inclination and eccentricity, e= 0.07, i= 29o; the other elements are fixed as ω= 40o

and Ω = 100o.
Figure 1 shows the osculating elements after break-up (first row), mean elements after

150 years (second row), and proper elements computed after 150 years (third row) in the
planes a-i and i-e. The scales have been fixed as the minimum and the maximum values
of the evolution of the elements after 150 years.

While the distribution of the fragments in the mean elements is different from that
in osculating elements, the first and third rows of Figure 1 show a connection between
fragments at the break-up event and the distribution of the proper elements.

4.3. Statistical analysis

We compare the distributions of semimajor axis, eccentricity and inclination at
break-up, after 150 years, and by computing the proper elements after 150 years, by
implementing some statistical methods for data analysis Cowan (1997). Two of these
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methods are Kolmogorov-Smirnov (K-S) test that compares two distributions, and the
Pearson correlation coefficient between the datasets.

As an example, we take the case of moderate orbits presented in Figure 1 and we
implement the above methods to analyze the data. Since the semi-major axis is always
constant, we are interested just in the analysis of eccentricity and inclination.

The K-S test for inclination gives a small probability, the so-called p-value, equal to
0.365534 when checking the similarity between the initial dataset and the mean elements
after 150 years, while it gives a higher p-value equal to 0.968287 when looking at the
initial data and the proper elements.

Pearson correlation coefficient provides evidence of the difference in inclination between
the initial data and the data after 150 years, where its value turns out to be equal to
0.811243. Instead, a higher coefficient equal to 0.945672 is obtained when comparing the
initial and proper elements.

5. Conclusions

In the present work we test the computation of the proper elements in the space debris
problem. The Hamiltonian formulation of the model was used to describe the dynamics
taking into account several perturbations: the potential of the Earth, the attraction of
the Moon and the Sun, and the Solar radiation pressure. Using a break-up simulator, we
analyzed the connection between proper elements and the initial osculating elements. In
view of possible applications, we foresee several ways to improve the results, in primis
the study of a more elaborated model including a larger number of spherical harmonics
and a higher order expansion of the Hamiltonian.
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