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INDECOMPOSABLE POSITIVE QUADRATIC FORMS 

BY 

MARTIN KRÛSKEMPER 

ABSTRACT. Let F be a formally real field. A quadratic form q is called 
positive if sgn^ ^ 0 for all orderings P of F. A positive q is called de
composable if there exist positive forms q\, <?2 such that q — q\±.qi. 
Otherwise it is called indecomposable. In a first part we ask for which 
F there exist indecomposable three dimensional forms over F. We show 
that such forms exist iff F does not satisfy the property (A) defined in (J. 
K. Arason, A. Pfister: Zur Théorie der quadratischen Formen iiber formal 
reellen Kôrpern, Math Z. 153, 289-296 (1977)). We use an indecom
posable three dimensional form defined by Arason and Pfister to construct 
indecomposable forms of arbitrary dimension. Then we examine the ques
tion for which fields F every positive form over F represents a nonzero 
sum of squares. 

Let F be a formally real field and X = XF the space of orderings of F. A quadratic 
form <p over F is called positive if sgnpy> ^ 0 for all P G X. A positive form (p 
is called decomposable if there exist positive forms i/>i, i/>2 such that (f — ̂ l-Mfe-
Otherwise it is called indecomposable. 

In the first part of this paper we ask for which F there exist indecomposable three 
dimensional forms over F. We show that such forms exist iff F does not satisfy 
the property (A) defined in the paper [1]. Then we use an indecomposable three 
dimensional form defined by Arason and Pfister to construct indecomposable forms 
of arbitrary dimension. In a third part we examine the question for which fields F 
every positive form over F represents a nonzero sum of squares. 

1. The property (P3). Let F be a formally real field. Let F'• = F - {0} and for 
0 i , . . . ,tf„ G F let 

H(au . . . ,an) = {P eX \at G P for / = 1, . . . ,«}. 

Let T — Tp denote the sums of squares of F and let t = T — {0}. 
First examples of indecomposable forms are obviously (1) and (1 , -1) . But one 

sees soon that finding an indecomposable three dimensional form is a far more difficult 
and interesting problem. Obviously a positive form <p — (a, b, c) is decomposable iff 
<p represents some t G t. We therefore say that F satisfies (P3) if every positive three 
dimensional form over F represents a t G 7>. 
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Let us recall some notations of the paper [1]. Arason and Pfister called a torsion 
form (p of dimension In (i.e., sgnp(/? = 0 for all P G X) strongly balanced if there 
are two dimensional torsion forms ^ i , . . . , ipn such that <p = (f\ + • • • + ipn where '+' 
denotes the orthogonal sum. A field F is said to satisfy (A) if every torsion form over 
F is strongly balanced. Thus F satisfies (A) iff every torsion form over F of dimension 
greater than two is decomposable. The connection between the properties (A) and (P^) 
is given by the following theorem: 

THEOREM 1. Let F be a formally real field. Then the following statements are equiv
alent: (i) F satisfies (P3). (ii) Every torsion quaternion form (1, <2, b, ab) with a,b G F' 
represents an s G —t. (ni) F satisfies (A). 

The equivalence of (//) and (///) is given by [1] Satz 4. For the remaining part of the 
proof we need: 

LEMMA 1. Let a,b G F such that H {a) C H(b). Then there exist s,t G T such that 
b = ta + s. 

PROOF, (see also [5] Lemma 6.3). The forms (I,a) and (b,ba) have the same 
signature values. Thus they are risometric in the sense of [7]. By [7] (1.19) we have 
beDT(l,a). D 

PROOF OF THEOREM 1: (/) —> (ii) : (—l1—a1—bJ—ab) represents an s G f iff the 
positive form (—a1 —b, —ab) does. (//) —• (/): Let (a, b, c) be a positive form over F. 
Then we have H (—a, —b) — </> and H(—c) C //(«, b) = H(ab). Thus there are t,s G T 
such that c = s — abt. We can assume t ^ 0. Now the torsion form (—1,^ , bt, —ab) 
represents an element of t and so does (t)(at, bt, —ab). Now if r = g2a + h2b — abtj2 

for gjhj G F and r G t, it follows that r -1- sj2 G t is represented by (a, b,c). • 

REMARKS, a) Let K be an algebraic number field. Then by [1] Satz 5 the rational 
function field K(x) satisfies (P3). b) Let W(F) be the Witt ring of F and 1(F) the 
augmentation ideal. If I3(F) is torsion free then F satisfies (P3). 

PROOF. For every torsion quaternion form <p over F we have 2 x ip = 0 in W(F). 
Now apply [12] 2.13.14. • 

EXAMPLE. 1. We want to construct a field satisfying (F3) and having arbitrarily high 
Pythagoras number, «-invariant and stability index. (For the definition of these field in
variants see [7], [10], [12].) Let F{ = K((h)) . . . ((*„)) and F2 = Z/3Z((f0) . . . ((tn)). 
By [10] 2.1 there exists a unique ordered field F3 such that the Pythagoras number 
of F3 is 2n. Now let s(F;) denote the quadratic form scheme of Fj in the sense of 
[4]. The property (P3) is closed under formation of direct sums and group extensions. 
Now by [6] the direct sum 0?=1.s(F/) is a field scheme which satisfies (P3). 

From [3] it follows that fields with \F• /F2\ ^ 32 satisfy (P3). It is unknown 
whether there exist fields which satisfy SAP (see [7]) but do not satify (P3). 

EXAMPLE. 2. Using methods of Cassels, Arason and Pfister constructed a torsion 
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quaternion form over Q(JC,J) which is not strongly balanced. From [A,P] Beispiel 1 
it follows that the positive form p — (— JC, 1 + y2 + 3JC, x + y2 + 3JC2) over Q(JC,J) is 
indecomposable. 

2. Indecomposable positive forms. In this section we want to construct indecom
posable positive forms of arbitrary dimension n. 

Case A) n is even. Let F = R(z) and F(n) := F((t\)) . . . ((tn)). First, we define 
for every r G N a subset Hr of //(z). Let 

Hr :={P eH(z)\r<pz<pr + l} 

= # (<*r) 

where a r := (z — r)(r + 1 — z). Then we have 

H(z)D\jH(ar). 
reN 

For all / ^ 7 we have //(«;) n / / (« / ) — </>. For « = 0, 1, . . . we define the form <̂ n 

over F(n) in the following way: 

n 

Lpn = (\1z) + ^2(l,ai)ti. 
/=i 

Now dim y?„ = 2n + 2 and the signature values of tpn are 0, 2 and 4. Assume that ipn 

is decomposable: ^„ = p\ + p2 with p b p2 7̂  0 positive. Every decomposition of this 
kind is compatible with the orthogonal decomposition in residue class forms. Thus 
we can assume that (l,z) is a summand of p\ and p^ is a sum of the (1, a,-)*/, which 
is impossible. Therefore ipn is indecomposable. 

Case B) n is odd. We set F = Q(JC,)>,Z) and F(w) := F((t{)) . . . ((*„)). Now, 
over F we define ^ = (— x, 1 + y2 + 3JC, JC + y2jc + 3JC2 + z2). For the embedding 
F ^->L := Q(JC,^)((Z)) we have <pL = p where p is defined as in example 1. Thus (p 
is indecomposable. We also have 

/ 3 if F G//(det <p), 
I 1 otherwise. 

Let a := JC + J2JC + 3JC2. Then the determinant of <p is — 1 — (z2)/a mod squares. 
One sees immediately that for all r G N there is an ordering P G XF such that 
r <P —{z2)/a <p r + 1. Now as above we set 

Hr = H(ar), 

^2 

ar (HH-7) 
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and have 

H(det<p)D\jH(ar) 

and all H(ar) are non-empty. For n = 0, 1, . . . we define the form (pn over F(n) as 

n 

Vn = y? + y^(l,Qf,-)^. 
/ = 1 

Then dim <pn — In + 3 and the signature values of ipn are 1, 3 and 5. As above we 
get that (fn is indecomposable. 

3. The property (P). We say that a formally real field F satisfies (P) if every 
positive form over F represents a nonzero sum of squares. We now want to study 
this property and soon find a large class of fields which satisfy (P), the pythagorean 
fields. To show this we use Marshall's language of spaces of orderings (see [8]). The 
definition of the property (P) carries over to spaces of orderings in the obvious way. 

THEOREM 2. Let (X,G) be a space of orderings. Then (X,G) satisfies (P). 

PROOF. Let <p be positive over (X, G). To show that <p + (—1) is isotropic we apply 
the isotropy theorem [9] (1.4) and can therefore assume that X is finite. The property 
(P) is closed under formation of direct sums. We can therefore assume (X, G) to be 
a group extension of (X', G') and that (X', G') satisfies (P). But if ip is positive so is 
the first residue class form of (p. Hence ip represents 1. • 

The example (f, — It) over Q((0) motivates a necessary condition for F to satisfy 
(P). Let v be a valuation of F, R = Rv the valuation ring, V = Fv the value group, 
k — kv the residue class field and n = nv : F —• k the projection. We say that F 
satisfies (PYT) if for every valuation v of F one of the following conditions is satisfied: 
(/) Tv is 2-divisible; (//) kv is pythagorean of not formally real. 

THEOREM 3. (a) if F satisfies (P) then F satisfies (PYT). (b) Assume that F is a SAP-
field. Then the following statements are equivalent: (i) F satisfies (P). (ii) F satisfies 
(PYT). (Hi) F satisfies (ED). 

REMARK. The properties SAP and (ED) are defined in [7] and [11] resp. The next 
example shows that in general (PYT) does not imply (P). 

PROOF, (a): Let v be a valuation of F such that T/2r ^ 0 and k is formally real 
and non pythagorean. Then there exist a sum of squares JLgf G k• — k2 and a d G F 
such that v(d) ^ 0 in r /2T. Choose/ G F such that n(fi) = gi and a J G F such that 
v(d) ^ 0 in T/2r. Choose f ef- such that TT(̂ -) = gt and set (p = (d)(l, - Y,f2). 
Then ip does not represent a nonzero sum of squares, (b): (//) —• (Hi): if F satisfies 
(PYT) and SAP then it follows from the characterisation theorem in [11] that F satisfies 
(ED), (iii) —> (/) is trivial. • 
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EXAMPLE 3. Let k be an algebraic number field with two orderings P\ ^ P2. Let 
R\ and R2 be real closures for P\ and P2 in some algebraic closure of k. We set 
K = Ri H R2 and F — K(x). Then every finite formally real extension of K is 
Pythagorean (see [2]) and hence F satisfies (PYT). The stability index of F is two and 
the following lemma shows that F does not satisfy (P). 

LEMMA 2. Let K be afield such that there exist two different orderings Pi, P2 ofK. 
Let a G K such that a G —P\ and a G — P2. Let F = K(x) and i/> — (<z, — a(x2 + 1)). 
Then V> does not represent a nonzero sum of squares. 

PROOF. Assume there exist polynomials g(x), h(x)1 t(x) G K[x] such that t(x) = 
a(h(x)2 — (x2 + l)g(x)2) and t(x) G 7>. We can assume (g,h) = 1. Let deg h = m. 
Then we get deg g — m — 1. Hence deg g or deg h is odd. Assume deg g is odd. 
Let gi by an irreducible divisor of g with odd degree. Then we have ah(x)2 = t(x) 
mod g\(x) where h(x) ^ 0 and t(x) is a sum of squares. But P2 has an extension to 
K[x]/g\(x). The same argument applies to the case where deg h is odd. • 

As in the case of property (P3), it seems difficult to characterize those fields satis
fying (P). Next we give two statements equivalent to (P). For a quadratic form (p we 
set D((f) = {a E F- \ ip = (a, . . . ) } . 

THEOREM 4. Let F be formally real. Then the following statements are equivalent: 
(i) F satisfies (P). (ii) Every two dimensional torsion form over F represents a nonzero 
sum of squares. (Hi) For all a 1, . . . , Û „ G F ' , t G f we have: IfD((a\, . . . , an))nt ^ 
(j> then D({ta\, #2, • • • ? #«)) H t ^ (j). 

PROOF. (/) —> (//') is trivial, (ii) —» (///): Assume s — YTi=\ aitf for s G T, at G 
F*, hi G F. By hypothesis there exist h G F and w G —F such that «i(l — /z2r) = w. 
Then s — wb\ G F and 

s — wb\ — a\t(hb\)2 + S^jaib
2
i. 

/=2 

(///) —-> (/) follows from [7] (1.28): Let (p be a positive form over F. By theorem 2 
there is a V> such that D(t/0 nf ^ </>, dim (/? = dim ^ and $gnP(p = sgnpi/; for all 
P eXF. Now ^ can be changed to ip by a finite sequence of transformations. Hence 
by hypothesis D(tp)fit^ <f>. D 

REMARK. The field defined in example 1 also satisfies (P) since the property (P) is 
closed under formation of direct sums. 

REMARK. Let F be formally real. Then every positive form (p over F with dim 
(p è 5 is a F-form (see [5]). 

PROOF. By [5] 3.1 we can assume ip is defined over the space of orderings (Xf,F/T). 
By theorem 2 a 5-dimensional form is decomposable. Hence we can assume <p = 
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(1, *, j , xyd) where d is the determinant of (p. But the form if' = (d, x, ^, xyd) is 
also positive and hence a quaternion form over Xf. We also have ip — (pf + (1, —J) 
in W(F). D 

Note that by [5] 8.1 there exists an 8-dimensional positive form which is not a P-form. 
It is still open whether there exist such forms of dimension 6 or 7. 
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