INDECOMPOSABLE POSITIVE QUADRATIC FORMS

BY
MARTIN KRÜSKEMPER

Abstract

Let F be a formally real field. A quadratic form q is called positive if $\operatorname{sgn}_{p} \geqq 0$ for all orderings P of F. A positive q is called decomposable if there exist positive forms q_{1}, q_{2} such that $q=q_{1} \perp q_{2}$. Otherwise it is called indecomposable. In a first part we ask for which F there exist indecomposable three dimensional forms over F. We show that such forms exist iff F does not satisfy the property (A) defined in (J. K. Arason, A. Pfister: Zur Theorie der quadratischen Formen über formal reellen Körpern, Math Z. 153, 289-296 (1977)). We use an indecomposable three dimensional form defined by Arason and Pfister to construct indecomposable forms of arbitrary dimension. Then we examine the question for which fields F every positive form over F represents a nonzero sum of squares.

Let F be a formally real field and $X=X_{F}$ the space of orderings of F. A quadratic form φ over F is called positive if $\operatorname{sgn}_{p} \varphi \geqq 0$ for all $P \in X$. A positive form φ is called decomposable if there exist positive forms ψ_{1}, ψ_{2} such that $\varphi=\psi_{1} \perp \psi_{2}$. Otherwise it is called indecomposable.

In the first part of this paper we ask for which F there exist indecomposable three dimensional forms over F. We show that such forms exist iff F does not satisfy the property (A) defined in the paper [1]. Then we use an indecomposable three dimensional form defined by Arason and Pfister to construct indecomposable forms of arbitrary dimension. In a third part we examine the question for which fields F every positive form over F represents a nonzero sum of squares.

1. The property $\left(P_{3}\right)$. Let F be a formally real field. Let $F \cdot F-\{0\}$ and for $a_{1}, \ldots, a_{n} \in F \cdot$ let

$$
H\left(a_{1}, \ldots, a_{n}\right)=\left\{P \in X \mid a_{i} \in P \text { for } i=1, \ldots, n\right\} .
$$

Let $T=T_{F}$ denote the sums of squares of F and let $\dot{T}=T-\{0\}$.
First examples of indecomposable forms are obviously $\langle 1\rangle$ and $\langle 1,-1\rangle$. But one sees soon that finding an indecomposable three dimensional form is a far more difficult and interesting problem. Obviously a positive form $\varphi=\langle a, b, c\rangle$ is decomposable iff φ represents some $t \in \dot{T}$. We therefore say that F satisfies $\left(P_{3}\right)$ if every positive three dimensional form over F represents a $t \in \dot{T}_{F}$.

[^0]Let us recall some notations of the paper [1]. Arason and Pfister called a torsion form φ of dimension $2 n$ (i.e., $\operatorname{sgn}_{p} \varphi=0$ for all $P \in X$) strongly balanced if there are two dimensional torsion forms $\varphi_{1}, \ldots, \varphi_{n}$ such that $\varphi=\varphi_{1}+\cdots+\varphi_{n}$ where ' + ' denotes the orthogonal sum. A field F is said to satisfy (A) if every torsion form over F is strongly balanced. Thus F satisfies (A) iff every torsion form over F of dimension greater than two is decomposable. The connection between the properties (A) and $\left(P_{3}\right)$ is given by the following theorem:

Theorem 1. Let F be a formally real field. Then the following statements are equivalent: (i) F satisfies $\left(P_{3}\right)$. (ii) Every torsion quaternion form $\langle 1, a, b, a b\rangle$ with $a, b \in F$. represents an $s \in-\dot{T}$. (iii) F satisfies (A).

The equivalence of (ii) and (iii) is given by [1] Satz 4. For the remaining part of the proof we need:

Lemma 1. Let $a, b \in F$ such that $H(a) \subset H(b)$. Then there exist $s, t \in T$ such that $b=t a+s$.

Proof. (see also [5] Lemma 6.3). The forms $\langle 1, a\rangle$ and $\langle b, b a\rangle$ have the same signature values. Thus they are T-isometric in the sense of [7]. By [7] (1.19) we have $b \in D_{T}\langle 1, a\rangle$.

Proof of Theorem 1: (i) \rightarrow (ii) : $\langle-1,-a,-b,-a b\rangle$ represents an $s \in \dot{T}$ iff the positive form $\langle-a,-b,-a b\rangle$ does. (ii) $\rightarrow(i)$: Let $\langle a, b, c\rangle$ be a positive form over F. Then we have $H(-a,-b)=\phi$ and $H(-c) \subset H(a, b)=H(a b)$. Thus there are $t, s \in T$ such that $c=s-a b t$. We can assume $t \neq 0$. Now the torsion form $\langle-1, a t, b t,-a b\rangle$ represents an element of \dot{T} and so does $\langle t\rangle\langle a t, b t,-a b\rangle$. Now if $r=g^{2} a+h^{2} b-a b t j^{2}$ for $g, h, j \in F$ and $r \in \dot{T}$, it follows that $r+s j^{2} \in \dot{T}$ is represented by $\langle a, b, c\rangle$.

Remarks. a) Let K be an algebraic number field. Then by [1] Satz 5 the rational function field $K(x)$ satisfies $\left(P_{3}\right)$. b) Let $W(F)$ be the Witt ring of F and $I(F)$ the augmentation ideal. If $I^{3}(F)$ is torsion free then F satisfies $\left(P_{3}\right)$.

Proof. For every torsion quaternion form φ over F we have $2 \times \varphi=0$ in $W(F)$. Now apply [12] 2.13.14.

Example. 1. We want to construct a field satisfying $\left(P_{3}\right)$ and having arbitrarily high Pythagoras number, u-invariant and stability index. (For the definition of these field invariants see [7], [10], [12].) Let $F_{1}=\mathbb{R}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{n}\right)\right)$ and $F_{2}=\mathbb{Z} / 3 \mathbb{Z}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{n}\right)\right)$. By [10] 2.1 there exists a unique ordered field F_{3} such that the Pythagoras number of F_{3} is 2^{n}. Now let $s\left(F_{i}\right)$ denote the quadratic form scheme of F_{i} in the sense of [4]. The property $\left(P_{3}\right)$ is closed under formation of direct sums and group extensions. Now by [6] the direct sum $\oplus_{i=1}^{3} s\left(F_{i}\right)$ is a field scheme which satisfies $\left(P_{3}\right)$.

From [3] it follows that fields with $\left|F \cdot / F^{\cdot 2}\right| \leqq 32$ satisfy $\left(P_{3}\right)$. It is unknown whether there exist fields which satisfy $S A P$ (see [7]) but do not satify $\left(P_{3}\right)$.

Example. 2. Using methods of Cassels, Arason and Pfister constructed a torsion
quaternion form over $\mathbb{Q}(x, y)$ which is not strongly balanced. From $[A, P]$ Beispiel 1 it follows that the positive form $\rho=\left\langle-x, 1+y^{2}+3 x, x+y^{2}+3 x^{2}\right\rangle$ over $\mathbb{Q}(x, y)$ is indecomposable.
2. Indecomposable positive forms. In this section we want to construct indecomposable positive forms of arbitrary dimension n.

Case A) n is even. Let $F=\mathbb{R}(z)$ and $F(n):=F\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{n}\right)\right)$. First, we define for every $r \in \mathbb{N}$ a subset H_{r} of $H(z)$. Let

$$
\begin{aligned}
H_{r} & :=\left\{P \in H(z) \mid r<_{p} z<_{p} r+1\right\} \\
& =H\left(\alpha_{r}\right)
\end{aligned}
$$

where $\alpha_{r}:=(z-r)(r+1-z)$. Then we have

$$
H(z) \supset \bigcup_{r \in \mathbb{N}} H\left(\alpha_{r}\right)
$$

For all $i \neq j$ we have $H\left(\alpha_{i}\right) \cap H\left(\alpha_{j}\right)=\phi$. For $n=0,1, \ldots$ we define the form φ_{n} over $F(n)$ in the following way:

$$
\varphi_{n}=\langle 1, z\rangle+\sum_{i=1}^{n}\left\langle 1, \alpha_{i}\right\rangle t_{i} .
$$

Now $\operatorname{dim} \varphi_{n}=2 n+2$ and the signature values of φ_{n} are 0,2 and 4 . Assume that φ_{n} is decomposable: $\varphi_{n}=\rho_{1}+\rho_{2}$ with $\rho_{1}, \rho_{2} \neq 0$ positive. Every decomposition of this kind is compatible with the orthogonal decomposition in residue class forms. Thus we can assume that $\langle 1, z\rangle$ is a summand of ρ_{1} and ρ_{2} is a sum of the $\left\langle 1, \alpha_{i}\right\rangle t_{i}$, which is impossible. Therefore φ_{n} is indecomposable.

Case B) n is odd. We set $F=\mathbb{Q}(x, y, z)$ and $F(n):=F\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{n}\right)\right)$. Now, over F we define $\varphi=\left\langle-x, 1+y^{2}+3 x, x+y^{2} x+3 x^{2}+z^{2}\right\rangle$. For the embedding $F \hookrightarrow L:=\mathbb{Q}(x, y)((z))$ we have $\varphi_{L}=\rho$ where ρ is defined as in example 1 . Thus φ is indecomposable. We also have

$$
\operatorname{sgn}_{P} \varphi= \begin{cases}3 & \text { if } P \in H(\operatorname{det} \varphi) \\ 1 & \text { otherwise }\end{cases}
$$

Let $a:=x+y^{2} x+3 x^{2}$. Then the determinant of φ is $-1-\left(z^{2}\right) / a \bmod$ squares. One sees immediately that for all $r \in \mathbb{N}$ there is an ordering $P \in X_{F}$ such that $r<_{P}-\left(z^{2}\right) / a<_{P} r+1$. Now as above we set

$$
\begin{aligned}
& H_{r}=H\left(\alpha_{r}\right), \\
& \alpha_{r}:=-\left(\frac{z^{2}}{a}+r\right)\left(r+1+\frac{z^{2}}{a}\right)
\end{aligned}
$$

and have

$$
H(\operatorname{det} \varphi) \supset \bigcup_{r \in \mathbb{N}} H\left(\alpha_{r}\right)
$$

and all $H\left(\alpha_{r}\right)$ are non-empty. For $n=0,1, \ldots$ we define the form φ_{n} over $F(n)$ as

$$
\varphi_{n}=\varphi+\sum_{i=1}^{n}\left\langle 1, \alpha_{i}\right\rangle t_{i} .
$$

Then $\operatorname{dim} \varphi_{n}=2 n+3$ and the signature values of φ_{n} are 1,3 and 5 . As above we get that φ_{n} is indecomposable.
3. The property (P). We say that a formally real field F satisfies (P) if every positive form over F represents a nonzero sum of squares. We now want to study this property and soon find a large class of fields which satisfy (P), the pythagorean fields. To show this we use Marshall's language of spaces of orderings (see [8]). The definition of the property (P) carries over to spaces of orderings in the obvious way.

Theorem 2. Let (X, G) be a space of orderings. Then (X, G) satisfies (P).
Proof. Let φ be positive over (X, G). To show that $\varphi+\langle-1\rangle$ is isotropic we apply the isotropy theorem [9] (1.4) and can therefore assume that X is finite. The property (P) is closed under formation of direct sums. We can therefore assume (X, G) to be a group extension of $\left(X^{\prime}, G^{\prime}\right)$ and that $\left(X^{\prime}, G^{\prime}\right)$ satisfies (P). But if φ is positive so is the first residue class form of φ. Hence φ represents 1 .

The example $\langle t,-2 t\rangle$ over $\mathbb{Q}((t))$ motivates a necessary condition for F to satisfy (P). Let v be a valuation of $F, R=R_{v}$ the valuation ring, $\Gamma=\Gamma_{v}$ the value group, $k=k_{v}$ the residue class field and $\pi=\pi_{v}: F \rightarrow k$ the projection. We say that F satisfies (PYT) if for every valuation v of F one of the following conditions is satisfied: (i) Γ_{v} is 2-divisible; (ii) k_{v} is pythagorean of not formally real.

Theorem 3. (a) if F satisfies (P) then F satisfies ($P Y T$). (b) Assume that F is a SAPfield. Then the following statements are equivalent: (i) F satisfies (P). (ii) F satisfies (PYT). (iii) F satisfies (ED).

Remark. The properties $S A P$ and ($E D$) are defined in [7] and [11] resp. The next example shows that in general ($P Y T$) does not imply (P).

Proof. (a): Let v be a valuation of \dot{F} such that $\Gamma / 2 \Gamma \neq 0$ and k is formally real and non pythagorean. Then there exist a sum of squares $\Sigma g_{i}^{2} \in k^{\cdot}-k^{2}$ and a $d \in F$. such that $v(d) \neq 0$ in $\Gamma / 2 \Gamma$. Choose $f_{i} \in F \cdot$ such that $\pi\left(f_{i}\right)=g_{i}$ and a $d \in F \cdot$ such that $v(d) \neq 0$ in $\Gamma / 2 \Gamma$. Choose $f_{i} \in f$. such that $\pi\left(f_{i}\right)=g_{i}$ and set $\varphi=\langle d\rangle\left\langle 1,-\sum f_{i}^{2}\right\rangle$. Then φ does not represent a nonzero sum of squares. (b): (ii) \rightarrow (iii): if F satisfies (PYT) and SAP then it follows from the characterisation theorem in [11] that F satisfies ($E D$). (iii) $\rightarrow(i)$ is trivial.

Example 3. Let k be an algebraic number field with two orderings $P_{1} \neq P_{2}$. Let R_{1} and R_{2} be real closures for P_{1} and P_{2} in some algebraic closure of k. We set $K=R_{1} \cap R_{2}$ and $F=K(x)$. Then every finite formally real extension of K is pythagorean (see [2]) and hence F satisfies (PYT). The stability index of F is two and the following lemma shows that F does not satisfy (P).

Lemma 2. Let K be a field such that there exist two different orderings P_{1}, P_{2} of K. Let $a \in K$ such that $a \in-P_{1}$ and $a \in-P_{2}$. Let $F=K(x)$ and $\psi=\left\langle a,-a\left(x^{2}+1\right)\right\rangle$. Then ψ does not represent a nonzero sum of squares.

Proof. Assume there exist polynomials $g(x), h(x), t(x) \in K[x]$ such that $t(x)=$ $a\left(h(x)^{2}-\left(x^{2}+1\right) g(x)^{2}\right)$ and $t(x) \in \dot{T}_{F}$. We can assume $(g, h)=1$. Let deg $h=m$. Then we get $\operatorname{deg} g=m-1$. Hence $\operatorname{deg} g$ or $\operatorname{deg} h$ is odd. Assume $\operatorname{deg} g$ is odd. Let g_{1} by an irreducible divisor of g with odd degree. Then we have $a h(x)^{2}=t(x)$ $\bmod g_{1}(x)$ where $h(x) \neq 0$ and $t(x)$ is a sum of squares. But P_{2} has an extension to $K[x] / g_{1}(x)$. The same argument applies to the case where $\operatorname{deg} h$ is odd.

As in the case of property $\left(P_{3}\right)$, it seems difficult to characterize those fields satisfying (P). Next we give two statements equivalent to (P). For a quadratic form φ we set $D(\varphi)=\left\{a \in F^{\cdot} \mid \varphi=\langle a, \ldots\rangle\right\}$.

Theorem 4. Let F be formally real. Then the following statements are equivalent: (i) F satisfies (P). (ii) Every two dimensional torsion form over F represents a nonzero sum of squares. (iii) For all $a_{1}, \ldots, a_{n} \in F, t \in \dot{T}$ we have: If $D\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right) \cap \dot{T} \neq$ ϕ then $D\left(\left\langle t a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right) \cap \ddot{T} \neq \phi$.

Proof. (i) \rightarrow (ii) is trivial. (ii) \rightarrow (iii): Assume $s=\sum_{i=1}^{n} a_{i} b_{i}^{2}$ for $s \in \dot{T}, a_{i} \in$ $F \cdot, b_{i} \in F$. By hypothesis there exist $h \in F$ and $w \in-\dot{T}$ such that $a_{1}\left(1-h^{2} t\right)=w$. Then $s-w b_{1}^{2} \in \dot{T}$ and

$$
s-w b_{1}^{2}=a_{1} t\left(h b_{1}\right)^{2}+\sum_{i=2}^{n} a_{i} b_{i}^{2} .
$$

(iii) \rightarrow (i) follows from [7] (1.28): Let φ be a positive form over F. By theorem 2 there is a ψ such that $D(\psi) \cap \dot{T} \neq \phi, \operatorname{dim} \varphi=\operatorname{dim} \psi$ and $\operatorname{sgn}_{P} \varphi=\operatorname{sgn}_{P} \psi$ for all $P \in X_{F}$. Now ψ can be changed to φ by a finite sequence of transformations. Hence by hypothesis $D(\varphi) \cap \dot{T} \neq \phi$.

Remark. The field defined in example 1 also satisfies (P) since the property (P) is closed under formation of direct sums.

Remark. Let F be formally real. Then every positive form φ over F with dim $\varphi \leqq 5$ is a P-form (see [5]).

Proof. By [5] 3.1 we can assume φ is defined over the space of orderings ($X_{F}, \dot{F} / \dot{T}$). By theorem 2 a 5 -dimensional form is decomposable. Hence we can assume $\varphi=$
$\langle 1, x, y, x y d\rangle$ where d is the determinant of φ. But the form $\varphi^{\prime}=\langle d, x, y, x y d\rangle$ is also positive and hence a quaternion form over X_{F}. We also have $\varphi=\varphi^{\prime}+\langle 1,-d\rangle$ in $W(F)$.

Note that by [5] 8.1 there exists an 8 -dimensional positive form which is not a P-form. It is still open whether there exist such forms of dimension 6 or 7 .

References

1. J. K. Arason, A. Pfister, Zur Theorie der quadratischen Formen über formal reellen Körpern, Math, Z. 153 (1977), 289-296.
2. L. Bröcker, Characterization of fans and hereditarily pythagorean fields, Math. Z. 151 (1976), 149163.
3. A. B. Carson, M. Marshall, Decomposition of Witt rings, Can. J. Math. 34 (1986), 1276-1302.
4. C. Cordes, Quadratic forms over nonformally real fields with a finite number of quaternion algebras, Pac. J. Math. 63 (1976), 357-365.
5. M. Krüskemper, W. Scharlau, On positive quadratic forms, Bull. Soc. Math. Belg. 40 ser. A, (1988), 255-280.
6. M. Kula, Fields and quadratic form schemes, Pr. Nauk Uniw. Slask. Katowicach 693, Ann. Math. Sil. 1 (1985), 7-22.
7. T. Y. Lam, Orderings, valuations and quadratic forms, Am. Math. Soc. Regional Conf. Series Math. No 52. 1983.
8. M. Marshall, Classification of finite spaces of orderings, Canad. J. Math. 31 (1979), 320-330.
9. -_, Spaces of orderings IV, Canad. J. Math. 32 (1980), 603-627.
10. A. Prestel, Remarks on the Pythogoras and Hasse number of real fields, J. Reine Angew. Math. 303/304 (1978), 284-294.
11. A. Prestel, R. Ware, Almost isotropic quadratic forms, J. London Math. Soc. 19 (1979), 241-244.
12. W. Scharlau, Quadratic and Hermitian forms, Berlin, Heldelberg, New York, Springer 1985.

Mathematisches Institut der Universität
Einsteinstraße 62
D-4400 Münster

[^0]: Received by the editors January 24, 1989 and, in revised form, June 27, 1989.
 AMS (1980) Math. Subject Classification: 11E04.
 © Canadian Mathematical Society 1989.

