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Abstract. We present a short overview of radio surveys for AGN, in
cluding the 'complete' flux limited surveys and 'filtered' surveys. We also 
describe our ultra-steep spectrum search for the highest redshift radio 
galaxies, and our follow-up VLA and ATCA observations of the most 
distant (z = 5.19) and the most luminous z < 2 radio galaxy known. 

1. Flux-limited and Filtered Radio Surveys 

Radio surveys play a crucial role in the study of AGN. Searches for AGN at 
radio wavelengths have several major advantages over other wavelength regimes, 
including: (i) the radio emission is often extremely powerful, and can be detected 
out to the highest redshifts (e.g. SDSSp J083643.85+005453.3 at z = 5.82, Fan 
et al. 2001), (ii) the most powerful radio sources at the highest redshifts pinpoint 
the most massive and luminous galaxies at such redshifts, allowing a detailed 
study, (iii) radio emission is not affected by dust emission, which often affects 
optical selection criteria. 

Several major observational efforts have therefore been performed during 
the last 4 decades to identify the host galaxies of large samples of radio sources 
(Table 1). These samples can be divided between 'complete' flux-limited sur
veys, and 'filtered' surveys, designed to select the highest redshift objects. The 
advantage of the flux-limited surveys is that, given sufficient spectroscopic red-
shift information, they can be used to derive the radio luminosity function (RLF; 
e.g., Dunlop & Peacock 1990, Willott et al. 2001). This RLF shows a strong 
increase between z = 0 and z ~ 2, and a possible decrease at larger redshifts is 
the subject of considerable debate (e.g. Jarvis et al. 2001b, Waddington et al. 
2001). The main problem for establishing the high-z RLF is the small number 
of z > 2 radio galaxies and quasars in the flux-limited samples. 
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Figure 1. Limiting flux density of all major radio surveys. Lines are 
of constant spectral indices of -1 .3 . Note that WENSS and SUMSS 
are ideally matched to NVSS to construct samples of USS sources. 

To find more high redshift radio galaxies (HzRGs; z > 2), additional selec
tion criteria have been used to construct 'filtered' surveys. The most successful 
of these is the selection of sources with ultra-steep radio spectra (USS), although 
others such as angular size upper limits have also been used. While the main 
explanation for the success of the USS criterion is a simple k—correction of the 
generally concave radio spectrum, other effects could strengthen the a — z cor
relation, including (i) the steepening of the rest-frame radio spectral index with 
radio power, and (ii) more important inverse Compton losses at high redshift. 

Table 1 shows that these filtered surveys reach fainter flux densities, and 
find objects with a mean redshift z ~ 2, while the flux-limited surveys target 
brighter sources at z ~ 1. 

2. Ultra-Steep Spectrum Search for High Redshift Radio Galaxies 

With the advent of several major radio surveys during the last decade (Table 2), 
it is now possible to construct large, uniform samples of radio sources. We have 
started a program to find significant numbers of z > 3 radio galaxies. Our 3 
samples consist of 669 USS sources, covering the entire sky outside the Galactic 
plane (see De Breuck et al. 2000). To derive spectral indices, we combined the 
WENSS and TEXAS survey with the NVSS. Figure 1 and Table 2 show that 
WENSS is ideally matched in both resolution and sensitivity for such a USS 
sample. In the regions not covered by the WENSS survey (5 < +28°), we have 
used the shallower TEXAS survey. 
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Figure 2. MP J2045-6018 (z = 1.464): Greyscales: CTIO K-bernd 
image; Contours: deep ATCA 8.64 GHz image. This is the most pow
erful radio source known at z < 2. Note the asymmetric structures in 
the radio lobes, and the weak radio core. The separation between the 
radio lobes is 32/.'6. 

More recently, we have also constructed a deeper sample in the —25° < S < 
—8° region using the southern extension of the WENSS, the Westerbork in the 
Southern Hemisphere (WISH, De Breuck et al., in prep.). At -40° < 6 < -30°, 
we shall combine the SUMSS with the NVSS to construct a first sensitive USS 
sample in the deep southern hemisphere. 

At S < —40°, the extragalactic radio sky is even less explored, with several 
extremely luminous radio sources (comparable to northern 3C sources) remain
ing to be identified. Burgess & Hunstead (1994) describe the only observational 
effort to date to identify these intriguing objects. We have therefore also con
structed the first USS sample at 5 < -40°, using the MRC and PMN surveys. 
From this sample, we have already discovered one of the most powerful radio 
sources known: MP J2045-6018 at z = 1.464 (Fig. 2). 

To identify the radio sources in our USS samples, we first obtained high 
resolution radio images from the VLA and ATCA. After an initial campaign 
of optical identifications, we switched to K—band imaging using the Keck and 
CTIO telescopes (De Breuck et al. 2002). Even with moderately deep imaging 
(K <20 to K <22), we find an identification rate of >95% for the 86 sources 
observed in K—band. Subsequent optical spectroscopy of 46 sources with 3-10m 
class telescopes has yielded redshifts for 72% of these, with a mean redshift of 
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Figure 3. TN J0924-2201 (z = 5.19): Left: radio spectrum, based 
on VLA observations. Note the steeper spectral indices at higher fre
quencies. Right: VLA 8.6 GHz map overlaid on a Keck/NIRC K—band 
image. The relative astrometric uncertainty is < $'.2. 

z ~ 2.5 (De Breuck et al. 2001). From this sample, we have discovered the 
most distant radio galaxy known: TN J0924—2201 at z = 5.19 (van Breugel et 
al. 1999). Figure 3 shows the radio spectrum determined from multi-frequency 
VLA imaging. The spectrum curves at high frequencies, consistent with what 
is seen in most powerful radio galaxies. Our deep VLA images (Fig. 3) show a 
l'/25 double radio source, but no radio core. 

Interestingly, despite integration times of lh or more with the Keck tele
scope, 5 sources show only a faint continuum emission, but no identifiable emis
sion lines between 4000 A and 9000 A. These sources are possibly obscured 
AGN, as suggested by the detection of several of these at (sub)mm wavelengths 
(Reuland et al., in preparation). 
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