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We will consider the following enumeration problem. Let A and B be finite 
sets with a and fi elements in each set respectively. Let n be some positive 
integer such that n ^ aft. A subset 5 of the product set A X B of exactly n 
distinct ordered pairs {au bj) is said to be admissible if given any a Ç A and 
b € B, there exist elements (au bj) and (ak, bt) (they may be the same) in 
5 such that at = a and bi = b. We shall find here a generating function for 
the number N(a, /3; n) of distinct admissible subsets of A X B and from this 
generating function, an explicit expression for N(a, f3; n). In obtaining this 
result, the idea of a cut probability is used. This approach in a problem of 
enumeration may be of interest. 

One may consider A and B as (say) two chess teams competing with each 
other. N(a, /3; n) is then the number of ways of having n simultaneous matches 
between the two teams such that a player may be involved in several matches 
but there is at most one match between a pair of players and such that no 
player is left idle. 

In terms of graph theory, N(a, (3; n) is interpreted as follows. Consider a 
set of a + /3 labelled nodes of which a are in one colour and /3 are in another. 
AT(ce, $',n) is then the number of distinct 2-coloured graphs having exactly n 
branches on this set of nodes such that no node is allowed to be isolated. 

In reference (2), using Polya's theorem (1), Harary obtained expressions 
for the number of bi-coloured graphs. His results differ from ours first in the 
respective methods of approach and second in the fact that his enumeration 
was for graphs with unlabelled nodes. 

THEOREM. Let F be a generating junction for N(a, 13; n): 

a/3 

F(x;a, 0) = X) N(a, /3;n)xn. 

Then, 

F(x; a, 0) = ± ( -I)"1*-* (l) (1 - (1 + xff. 

The idea of the proof goes as follows. We consider a certain bi-rooted graph 
G and define for G a cut probability P . This probability P can be computed 
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in two ways in one of which N(a, 13; n), except for sign, enters as certain co­
efficients. The theorem is then proved by extracting certain coefficients of P 
and relating them to our enumeration problem. 

Let G be the bi-rooted graph shown in Fig. 1, 

OL 

F I G . 1. 

in which G has a nodes next to the left root-node and ft nodes next to the right 
root-node. There is one branch connecting each of the a nodes to the left root-
node, one branch connecting each of the (3 nodes to the right root-node, and 
one branch between every a-node and every /3-node. 

Consider now each branch as a piece of string and let 1 — q, 1 — r, and 
1 — s be respectively the probability that a left, middle, and right branch be 
cut in two (disconnected), and let us assume that the random variables (one 
for each branch) are independent. The cut probability P for the graph G is 
then the probability that G is cut in the sense that the left root-node and the 
right root-node are disconnected. 

LEMMA 1. The cut probability P for the graph G is given by 

P(Q, r, s) = g (l) (1 - S r V (5(1 - r)k + (1 - s))". 

Proof. Break the a left branches into two sets Li, Z2 of k and a — k elements 
in each and break the ft right branches into two sets Ri, R2 of j and 0 — j 
elements in each. Let Ekj be the event that every branch in Z,2 and in R2 is 
cut and every branch in L\ and R\ is left uncut, and that the graph G is itself 
cut. Then 

Pr{EkJ] = q\l - q)°-ks3(l - s ) ^ ' ( l - r)**. 

It then follows that 

- Ê (i) «*<i - «r'wi - ')' + (i - s»'. 
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LEMMA 2. Letf(r) be the coefficient of the term qa s& in P(q} r, s). Then 

(i) f(r)= T, ( - i r + ^ ( " ) ( l - ( l - r ) Y ; 

and 

(ii) Writing f(r) as 

f(r) = Co + dr + . . . + Ca r", 

the coefficient Cn of rn is ( — l)n N(a, 13; n). 

Proof. By expanding the expression P(q, r, s), (i) follows. To prove (ii), we 
note first that each middle branch defines a unique path from the left root-
node to the right root-node. Therefore there are aj3 distinct (not independent) 
such paths. Let Dt be the event that the ith. path is uncut. Then 

P(q, r, s) = 1 - Pr{D, U A U . . . U Dafi} 

= 1 - £ Pr{Dt] + S Pr{Dt D Dj] 
i i,j 

- . . . + (-i)*Prjz)1n...n^|. 
Now each sum can be expressed as 

D Pr{Dlin...nDtH] =rng(q,s) 
il, ..., in 

where g(q, s) is a polynomial in q and s, and rn can appear nowhere else in the 
above expression for P(q, r, s). Let d(a, ft) be the coefficient of qa sp in g(q, s). 
Then the number d(a, /3), except for sign, is the number of distinct graphs in­
volving a + 0 nodes and n branches such that each graph satisfies the con­
ditions given in the beginning. A check of sign yields d(a, 0) = ( — l)n 

N(a, P;n). Since d(a, (3) is just the coefficient of rn in / ( r ) , the lemma follows. 

Proof of theorem. It follows from Lemma 2 that 

£ (-l)nN(a,P;n)rn=f(r). 

Hence, the generating function F is 

F(x\<x,0) = E N(a,fcn)xn=f(-x) 
n 

= i (-ir*-*(")(i-(i+ *)*)', 
k=Q N ^ / 

and the theorem follows. 
As an example, we find for a = 3, /3 = 2 that 

F(x; 3, 2) = 6x3 + 12x4 + 6x5 + x6 

so that JV(3, 2; 3) = 6, N(3, 2; 4) = 12, N(3, 2; 5) = 6, and A7(3, 2; 6) = 1. 
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From this theorem, the expression for N(a, (3; n) can be derived explicitly. 
Let (x) denote the least integer greater than or equal to x, the following 
iteration of summations obtains. 

LEMMA 3. 

E E fdJ) = £ E /(;,/)• 
j=0 i=0 *=0 j=<i/k> 

Using this lemma and expanding the generating function for N(a, /?; n), 
one gets 

COROLLARY. 

*(«,*»)= E E c-ir+w©fâfâ-
k=<n/l3> j=<.n/k> \K/ \j/ \Tl / 

The writer is indebted to J. Riordan for pointing out the following identity, 
which appears novel, and for other enlightening comments. In the above 
corollary, if we set a = f3 — n, then N(n, n, n) is the number of permutations 
on n objects. The following identity therefore obtains: 
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