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1. Introduction. The notion of rational Baker–Akhiezer (BA) function related
to a configuration of hyperplanes with multiplicities was introduced in [4, 6, 30] as
a multi-dimensional version of Krichever’s axiomatic approach [15]. Such a function
exists only for special configurations, in particular for all Coxeter configurations. For
the configuration of type An−1 with multiplicity m it has the form

�(n)
m = P(n)

m (x, λ)
A(x)mA(λ)m

exp(λ, x), (1)

where A(x) = ∏n
i<j(xi − xj) and (λ, x) = ∑n

i=1 λixi, and P(n)
m (x, λ) is a polynomial

in both x = (x1, . . . , xn) ∈ �n and λ = (λ1, . . . , λn) ∈ �n with the leading term
A(x)mA(λ)m. It satisfies the Schrödinger equation

L(n)
m �(n)

m = −(λ, λ)�(n)
m , (2)

where Lm is the n particle Calogero–Moser operator

L(n)
m = −� +

n∑
i<j

2m(m + 1)
(xi − xj)2

. (3)

The rational BA function �
(n)
m is determined uniquely by these properties and has a

remarkable symmetry:

�(n)
m (z, λ) = �(n)

m (λ, z)
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(see [4]). It plays an important role in the theories of commutative rings of differential
operators, Huygens principle and quasi-invariants of Coxeter groups [4, 6, 7, 9].

Three ways for computing this function are known. The first one due to Chalykh
and one of the authors [6] is known only in the first non-trivial case m = 1 and is a
recursive formula in the number n of variables. The second one uses the iteration of the
shift operator (increasing m by one) by Heckman and Opdam, which can be effectively
described using the Dunkl operators [11]. The third one, based on the formula of Berest
[2], is the most general: it works for all locus configurations (see [4]).

In this paper we present a new formula for the BA function both in rational and
trigonometric cases as a simple iterated residue. The structure of the integrand is the
same as in other integral formulas known in the theory of Calogero–Moser system and
related Jack polynomials (see [1, 13, 17, 20]), but the integration cycle is different and
adapted only for the case of integer multiplicities.

We present also another formula for the BA function as a Selberg-type integral,
which can be considered as the analytic continuation of the residue formula from
m to −m − 1, which is an obvious symmetry of the Calogero–Moser operator. The
comparison of these two formulas with other known forms of the BA function can be
interpreted as new explicit evaluation of the special Selberg-type integrals, which are
probably new. We present similar results also in the deformed A(n, 1) case discovered
in [5, 29].

Our approach is based on a generalisation of the identity, which plays an important
role in the theory of Jack polynomials [19, 27] and various versions used in [1, 13, 18, 22].
In particular, Langmann [18] suggested a simple explanation of this identity within the
theory of Calogero–Moser models with different types of particles [16, 23], which is
very convenient for us and allows to extend it for the general A(n, m) deformation [25].

2. Rational BA function. The following result can be considered a version of
the ‘adding particle’ approach from [6]. Let us introduce for any two set of variables
u1, . . . , uk and v1, . . . , vl the function

A(u, v) =
k∏

i=1

l∏
j=1

(ui − vj). (4)

We will also use the notation

ū = u1 + · · · + uk.

For fixed distinct x1, . . . , xk+1 ∈ � let us choose the cycle of integration σ in k
integration variables zi as a product of small circles |zi − xi| = ε around the first k
points xi, i = 1, . . . , k and denote by dz the differential form

dz = dz1 ∧ dz2 ∧ · · · ∧ dzk.

THEOREM 2.1. The BA functions with k and k + 1 particles are related by the following
iterated-residue formula:

∮
σ

A(x)m+1A(z)m+1

A(z, x)m+1
eλk+1(x̄−z̄)�(k)

m (z, λ1, . . . , λk)dz = C1�
(k+1)
m (x, λ1, . . . , λk+1), (5)
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where

C1 = C1(k, m, λ) = (2π i)k

(m!)k

k∏
i=1

(λi − λk+1)m.

Iterating this procedure we come to the following formula for the BA function.
Note that for n = 1 the Calogero–Moser operator (3) becomes simply the second
derivative and

�(1)
m (x, λ) = eλ1x1 .

By adding one integration variable at each step we will have n(n − 1)/2 integration
variables, which we denote ti,j with 1 ≤ i ≤ j ≤ n − 1. It is convenient also to denote
ti,n = xi, i = 1, . . . , n. The integrand has the following form (cf. [1, 13]):

ωm =
∏

i≤j,l≤j+1≤n

(ti,j − tl,j+1)−m−1
∏

1≤i<l≤j<n

(ti,j − tl,j)2+2m
∏

l≤j<n

e(λj−λj+1)tl,j dtl,j.

We assume that xi are distinct and choose the cycle of integration 	 as the product of
circles |tk,j − xk| = ε(n − j) with ε small enough.

COROLLARY 2.2. For any given positive integer m the rational BA function (1) can be
given by the following iterated-residue formula:

�(n)
m (x, λ) =

(
m!
2π i

) n(n−1)
2

eλnx̄A(x)1+mA(λ)−m
∮

	

ωm. (6)

To explain another integral representation of BA function note that the Calogero–
Moser operator (3) is invariant under the change

m → −1 − m.

This leads to the following formula for BA function as a Selberg-type integral [28].
Let us assume for convenience that xi, i = 1, . . . , k + 1 have distinct imaginary

parts and λi − λj have negative real parts for all i < j, i, j = 1, . . . , k + 1. Choose the
contour of integration γ such that zi = xi + τi, i = 1, . . . , k with real variables τi,
changing from 0 to ∞.

THEOREM 2.3. The rational BA functions for k and k + 1 particles are related by the
following Selberg-type integral formula:

∫
γ

A(z, x)m

A(x)mA(z)m
eλk+1(x̄−z̄)�(k)

m (z, λ1, . . . , λk)dz = C2�
(k+1)
m (x, λ1, . . . , λk+1), (7)

where

C2 = C2(m, k, λ) = (m!)k
k∏

i=1

(λk+1 − λi)−m−1.
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Figure 1. The Pochhammer contour � in the rational case.

Consider now in the same variables ti,j the form αm = ω−m−1,

αm =
∏

i≤j,l≤j+1≤n

(ti,j − tl,j+1)m
∏

1≤i<l≤j<n

(ti,j − tl,j)−2m
∏

l≤j<n

e(λj−λj+1)tl,j dtl,j,

and choose the integration contour � by assuming that ti,j = ti,j+1 + τi,j with real
variables τi,j, 1 ≤ i ≤ j = 1, . . . , n − 1 changing from zero to infinity.

COROLLARY 2.4. For any positive integer m the rational BA function (1) can be given
by the following Selberg-type integral:

�(n)
m (x, λ) = ((−1)m+1m!)−

n(n−1)
2 eλnx̄A(x)−mA(λ)m+1

∫
�

αm. (8)

These two different formulas are actually related by analytic continuation. To see
this consider the same integral (8) but over Pochhammer contour �:

IP(m) =
∫

�

αm

(see Figure 1). It converges for all m ∈ � and is related for positive real m to the
Selberg-type integral

I(m) =
∫

�

αm

in a simple way:

IP(m) = (e2π im − 1)
n(n−1)

2 I(m).
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Now replace m! in (8) by �(m + 1), where �(x) is the classical Euler gamma function,
and note that

�(m + 1)(e2π im − 1) = 2ieπ im sin πm�(m + 1) = (−1)m+12π i�−1(−m)

because of the reflection property of gamma function:

�(x)�(1 − x) = π

sin πx
.

We note here a remarkable similarity to Riemann’s first proof [21] of the reflection
property of the Riemann zeta function

π− s
2 �

(
s
2

)
ζ (s) = π− 1−s

2 �

(
1 − s

2

)
ζ (1 − s).

3. Trigonometric case. It is actually more convenient for us to use the hyperbolic
rather than trigonometric functions, but all the results are automatically applied to
both cases because of the algebraic nature of BA function.

The trigonometric version of the BA function satisfies the equation

L(n)
m �(n)

m = −4(ν, ν)�(n)
m , (9)

where

L(n)
m = −� +

n∑
i<j

2m(m + 1)

sinh2(xi − xj)
(10)

is the Sutherland operator. It has the form

�(n)
m = P(x, ν)

B(x)mCm(ν)
exp 2(ν, x), (11)

where P(x, ν) is a trigonometric polynomial in x and a usual polynomial in ν with the
leading term B(x)mA(ν)m, where

B(x) =
n∏

i<j

sinh(xi − xj)

and

Cm(ν) =
m∏

k=1

n∏
i<j

(νi − νj − k).

The normalisation constant Cm(ν) is chosen in such a way that

lim
x→+∞

P(x, ν)
B(x)mCm(ν)

= 1

when x → +∞ in the Weyl chamber x1 > x2 > · · · > xn (see [3, 8]). In the exponential
variables

ui = exp 2xi, i = 1, . . . , n
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the BA function can be rewritten as

�(n)
m = Q(u, ν)

A(u)mCm(ν)
uν, (12)

where uν = uν1
1 . . . uνn

n and Q(u, ν) is polynomial in ν with the leading term A(u)mA(ν)m.

It is convenient to modify the definition of A(w, u) to include some sign factor as
follows:

A∗(w, u) =
∏
i≤j

(wi − uj)
∏
i>j

(uj − wi).

Let w = (w1, . . . , wk), u = (u1, . . . , uk+1) and the cycle σ similarly to the rational
case be the product of circles |ui − wi| = ε, i = 1, . . . , k with small positive ε.

THEOREM 3.1. The trigonometric BA functions �
(k)
m (w, ν1, . . . , νk) and

�
(k+1)
m (u, ν1, . . . , νk+1) are related by the following iterated-residue formula:

k+1∏
i=1

uνk+1
i

∫
σ

A(u)m+1A(w)m+1

A∗(w, u)m+1

×
k∏

i=1

wm−νk+1
i �(k)

m (w, ν1, . . . , νk)dw = C�(k+1)
m (u, ν1, . . . , νk+1), (13)

where

C = (2π i)k
k∏

i=1

(
νi − νk+1 − 1

m

)

and (
a
m

)
= a(a − 1) . . . (a − m + 1)

m!
.

As before we introduce n(n − 1)/2 integration variables ti,j with 1 ≤ i < j ≤ n with
the convention that ti,n = ui, i = 1, . . . , n. The integrand in the trigonometric case has
the following form (cf. [13]):

ω∗
m =

n−1∏
j=1

A−m−1
j,j+1

n∏
j=1

A2+2m
j,j

∏
l<j

n−1∏
i≤j

tνj−νj+1+m
i,j dti,j,

where

Aj,j+1(t) =
n∏

i≤j,l≤j+1,i≤l

(ti,j − tl,j+1)
n∏

i≤j,l≤j+1,i>l

(ti,j − tl,j+1)

and

Aj,j(t) =
∏

1≤i<l≤j≤n−1

(ti,j − tl,j).
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The cycle of integration 	 as before is the product of circles |ti,j − ui| = ε(n − j) with ε

small enough. Note that in contrast to [13] the origin is outside of these circles, so we
have no problems with the multi-valuedness of the integrand.

COROLLARY 3.2. The trigonometric BA function (12) can be given as an iterated
residue

�(n)
m (u, ν) = C(n, m, ν)

n∏
i=1

uνn
i A(u)1+m

∫
	

ω∗
m (14)

with

C(n, m, ν)−1 = (2π i)
n(n−1)

2

n∏
i<j

(
νi − νj − 1

m

)
.

Similarly to the rational case we have also the following Selberg-type representation
of BA functions.

Assume for convenience that the complex numbers u1, u2, . . . , uk+1 have different
arguments, and consider the contour γ ∗ when wi belongs to the segment joining 0
and ui for i = 1, . . . , k. In other words, we assume that wi = τiui, i = 1, . . . k with real
τi between 0 and 1. We assume also that νi − νk+1 have large positive real parts to
guarantee the convergence of the following integral.

THEOREM 3.3. The BA functions �
(k)
m and �

(k+1)
m are related by the Selberg-type

integral formula

k+1∏
i=1

uνk+1
i

∫
γ ∗

A∗(w, u)m

A(u)mA(w)m

k∏
i=1

w−m−1−νk+1
i �(k)

m (w, ν1, . . . , νk)dw

= C3�
(k+1)
m (u, ν1, . . . , νk+1), (15)

where

C3 = (−1)km
k∏

i=1

�(m + 1)�(νi − νk+1)
�(νi − νk+1 + m + 1)

.

Consider

α∗
m = ω∗

−m−1 =
n−1∏
j=1

Am
j,j+1

n∏
j=1

A−2m
j,j

∏
l<j

n−1∏
i≤j

tνj−νj+1−m−1
i,j dti,j,

and choose the contour of integration �∗ such that ti,j = τi,jti,j+1 with τi,j ∈ [0, 1].

COROLLARY 3.4. The trigonometric BA function (12) can be given as a Selberg-type
integral

�(n)
m (u, ν) = C4

n∏
i=1

uνn
i A(u)1+m

∫
�∗

α∗
m (16)
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Figure 2. The Pochhammer contour � in the trigonometric case.

with

C−1
4 = (−1)m n(n−1)

2

n∏
i<j

�(m + 1)�(νi − νj)
�(νi − νj + m + 1)

.

The same calculation as in the rational case shows that these two integral
representations are related by analytic continuation. The corresponding analogue of
the Pochhammer contour is shown in Figure 2.

4. Deformed case. Consider now the deformed Calogero–Moser operator [4, 5]

L(n,1)
m = −

n∑
i=1

∂2

∂x2
i

− m
∂2

∂y2
+

n∑
i<j

2m(m + 1)
(xi − xj)2

+
n∑

i=1

2(m + 1)
(xi − y)2

, (17)

corresponding to an additional particle with mass 1
m interacting with n Calogero–

Moser particles in a special way. According to [5] for any integer m ∈ � it has the
eigenfunction (which we will call deformed BA function) of the form

�(n,1)
m = P(x, y, λ, μ)

A(x)m∗A(x, y)A(λ)m∗A(λ,μ)
exp

(
(λ, x) + 1

m
μy

)
, (18)

where m∗ = max(m,−m − 1); λ = (λ1, . . . , λn) ∈ �n; μ ∈ �;

A(x) =
n∏

i<j

(xi − xj) and A(x, y) =
n∏

i=1

(xi − y);

and P(x, y, λ, μ) is a polynomial in all variables with the highest degree term
A(x)m∗

A(x, y)A(λ)m∗
A(λ,μ).

Let �
(n)
m (z1, . . . , zn; λ1, . . . , λn) be the BA function (1) from the first section. For

positive m we assume as before that all xi have different imaginary parts and that
real part of λi − μ, i = 1, . . . , n are negative and choose the contour γ of integration
zi = xi + τi by considering τi ∈ �+, i = 1, . . . , n.
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For negative m we assume simply that xi are distinct and choose the cycle σ as a
product of circles |zi − xi| = ε, i = 1, . . . , n.

THEOREM 4.1. The rational deformed BA function (18) for positive integer m can be
given by the following Selberg-type integral:

�(n,1)
m (x, y, λ, μ) = C5

A(x)mA(x, y)

∫
γ

A(z, x)mA(z, y)
A(z)m

eμ(x̄−z̄+ y
m )�(n)

m (z, λ)dz (19)

with

C5 =
∏n

i=1(μ − λi)m+1

(m!)n
.

For negative m = −m∗ − 1, m∗ ∈ �+ it can be represented as an iterated residue

�(n,1)
m = C6

A(x)m∗+1

A(x, y)

∫
σ

A(z)m∗+1A(z, y)
A(z, x)m∗+1

eμ(x̄−z̄+ y
m )�

(n)
m∗ (z, λ)dz, (20)

where

C6 =
(

m∗!
2π i

)n n∏
i=1

(λi − μ)−m∗
.

In the trigonometric case (see [5]) we have the operator

L(n,1)
m = −

n∑
i=1

∂2

∂x2
i

− m
∂2

∂y2
+

n∑
i<j

2m(m + 1)

sinh2(xi − xj)
+

n∑
i=1

2(m + 1)

sinh2(xi − y)
, (21)

and the BA function of the form

�(n,1)
m = Q(u, v, ν, μ)

A(u)m∗A(u, v)Cm∗ (ν)C(ν, μ)
uνv

μ

m , (22)

where ui = e2xi , i = 1, . . . , n; v = e2y; Q(u, v, ν, μ) is polynomial in ν ∈ �n, μ ∈ � with
the leading term A(u)m∗

A(u, v)A(ν)m∗
A(ν, μ); and

C(ν, μ) =
n∏

i=1

(
νi − μ − 1 + m

2

)
=

n∏
i=1

(
νi − μ + m∗

2

)
.

As in the non-deformed case, the form of C(ν, μ) is uniquely determined by the
property

lim
Q(u, v, ν, μ)

A(u)m∗A(u, v)Cm∗ (ν)C(ν, μ)
= 1

when (u, v) → + ∞ in the chamber u1 > u2 > · · · > un > v (see [3, 8]).
Let �

(n)
m (u1, . . . , un, ν1, . . . , νn) be the non-deformed n particle BA function (12).

For positive m we assume that all ui have different arguments and that all λi − ν are
real negative and choose the contour γ ∗ of integration wi = τiui with real τi ∈ [0, 1].
For negative m = −1 − m∗ we assume simply that ui are distinct and choose the cycle
σ ∗ as a product of circles |wi − ui| = ε, i = 1, . . . , n.
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THEOREM 4.2. The deformed trigonometric BA function �
(n,1)
m (u, v, ν, μ) for positive

integer m can be given by the Selberg-type integral

�(n,1)
m = C7

∏n
i=1 u

μ+ 1−m
2

i v
μ

m

A(u)mA(u, v)

∫
γ ∗

A∗(w, u)mA(w, v)
A(w)m

n∏
i=1

w
−μ− 1+m

2
i �(n)

m (w, ν)dw (23)

with

C−1
7 =

n∏
k=1

�(m + 1)�
(
νk − μ + 1−m

2

)
�

(
νk − μ + m+3

2

)

and for negative m = −m∗ − 1, m∗ ∈ �+ as an iterated residue

�(n,1)
m = C8

∏n
i=1 u

μ+ m∗+2
2

i v
μ

m A(u)m∗+1

A(u, v)

∫
γ ∗

A(w)m∗+1A(w, v)
A∗(w, u)m∗+1

n∏
i=1

w
−μ+ m∗

2
i �

(n)
m∗ (w, ν)dw,

(24)
where

C−1
8 = (2π i)n

n∏
i=1

(
νi − μ + m∗

2

m∗

)
.

5. Proofs: main identity. Let

Lk,l
m (x, y) = −

(
∂2

∂x1
2 + · · · + ∂2

∂xk
2

)
− m

(
∂2

∂y1
2 + · · · + ∂2

∂yl
2

)
+

k∑
i<j

2m(m + 1)

sinh2(xi − xj)

+
l∑

i<j

2(m−1 + 1)

sinh2(yi − yj)
+

l∑
i=1

k∑
j=1

2(m + 1)

sinh2(xi − yj)
(25)

and

Lk,l
m (x, y) = −

(
∂2

∂x1
2 + · · · + ∂2

∂xk
2

)
− m

(
∂2

∂y1
2 + · · · + ∂2

∂yl
2

)
+

k∑
i<j

2m(m + 1)
(xi − xj)2

+
l∑

i<j

2(m−1 + 1)
(yi − yj)2

+
l∑

i=1

k∑
j=1

2(m + 1)
(xi − yj)2

(26)

be respectively trigonometric and rational deformed Calogero–Moser–Sutherland
(CMS) operators in x, y variables [25]. Let Lp,q

m be a similar operator in variables
z1, . . . , zp, w1, . . . , wq. Let A(u, v) be given by (4),

B(u, v) =
k∏

i=1

l∏
j=1

sinh(ui − vj),

and x̄ = x1 + · · · + xk as before.
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The key observation 1 comes from the following result (cf. Langmann [18]).

THEOREM 5.1. The following identity holds for the trigonometric deformed CMS
operators:

Lk,l
m K = Lp,q

m K + C0K, (27)

where

K(x, y; z, w) = B(x, z)mB(y, z)B(x, w)B(y, w)1/m

B(x)mB(x, y)B(y)1/mB(z)mB(z, w)B(w)1/m
eμ(x̄−z̄+ 1

m (ȳ−w̄))

and

C0 = 1
4

m2
[(

k − p + 1
m

(l − q)
)3

−
(

k − p + 1
m3

(l − q)
)]

+ μ2
(

p + q
m

− k − l
m

)
.

In the rational case we have the same identity (27) for

K(x, y; z, w) = A(x, z)mA(y, z)A(x, w)A(y, w)1/m

A(x)mA(x, y)A(y)1/mA(z)mA(z, w)A(w)1/m
eμ(x̄−z̄+ 1

m (ȳ−w̄))

and C0 = μ2(p + q
m − k − l

m ).

The identity (27) with l = q = 0 goes back to Stanley and Macdonald [19, 27]. In
the case q = 0 and arbitrary l it appeared in [26; see part (iii) in Lemma 3]. To prove it
in the general case we borrow the idea from the work of Langmann [18]. It is based on
the following result by Sen [23] (see also [16]).

Consider the following generalised CMS operator describing the interacting
particles of different masses on a line:

H = −
N∑

j=1

1
mj

∂2

∂x2
j

+
∑
j<k

γjk

sinh2(xj − xk)
. (28)

THEOREM 5.2 (Sen [23]). For the coupling constants of the special form

γij = (mi + mj)β(mimjβ − 1), (29)

where β is an arbitrary parameter, the operator (28) has the eigenfunction

�0 =
∏
i<j

sinhβmimj (xi − xj), (30)

H�0 = E0�0,

with the eigenvalue

E0 = −β2

3

⎛
⎜⎝

⎛
⎝ N∑

j=1

mj

⎞
⎠

3

−
N∑

j=1

m3
j

⎞
⎟⎠ . (31)

1As we have learnt from Martin Hallnas a similar result can be extracted from his paper with Edwin
Langmann [10].
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Now we note that γij = 0 if mj = −mi or mj = (miβ)−1. Choosing

m1 = · · · = mk = 1, mk+1 = · · · = mk+l = m−1,

mk+l+1 = · · · = mk+l+p = −1, mk+l+p+1 = · · · = mk+l+p+q = −m−1,

where m = −β, we see that the operator H reduces to the difference

H = Lk,l
m − Lp,q

m

of two decoupled deformed CMS operators, and the relation H�0 = E0�0 implies the
identity (27).

We note that this decoupling can be used to characterise the deformed CMS
operators among all generalised CMS operators with different masses (28). It does not
imply though the quantum integrability, which had to be proven by other means (see
[25, 26]).

The identity (27) suggests that the function K(x, y, z, w) could be used as the kernel
of the integral representation transforming the eigenfunctions of one of the deformed
CMS operators to another, although to make this precise could be a non-trivial task
(see e.g. [22], where a similar problem is discussed).

In particular, choosing in the rational case k = p + 1, l = q = 0 we come to the
integral of the type (5). Choosing a suitable cycle (contour) of integration we come to
the formula for the BA function. For example, in Theorem 2.1 the cycle σ is chosen
in such a way that each integration has only one non-zero residue to compute, which
guarantees that the result will be of the required form.

The rest of the proof is based on the fact well known in the theory of BA
function (see e.g. [8]) that properly normalised trigonometric BA function can be
characterised as the special eigenfunction of CMS operator, which is a particular case
of the Heckman–Opdam asymptotic solution [12]. The rational case can be treated as
the limit of the trigonometric one (see [6]).

6. Examples. In the simplest case n = 2 the rational BA function is known to
have the form (see e.g. [6])

�(2)
m = (λ1 − λ2)−m

(
D12 − 2m

x1 − x2

) (
D12 − 2(m − 1)

x1 − x2

)
. . .

(
D12 − 2

x1 − x2

)

× exp(λ1x1 + λ2x2), (32)

where

D12 = ∂

∂x1
− ∂

∂x2
.

We have two different representations for it. The first one is as a residue

�(2)
m = m!(x1 − x2)m+1

(λ1 − λ2)m
eλ2(x1+x2)Resz=x1

e(λ1−λ2)z

(z − x1)m+1(z − x2)m+1
; (33)
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the second one is the integral

�(2)
m = (λ2 − λ1)m+1

m!(x1 − x2)m
eλ2(x1+x2)

∫ +∞

x1

(z − x1)m(z − x2)me(λ1−λ2)zdz, (34)

which in this case can be effectively computed using the � integral

�(a) =
∫ +∞

0
za−1e−zdz = (a − 1)!

for positive integer a.
For n = 3 the corresponding BA function �

(3)
m (x1, x2, x3, λ1, λ2, λ3) can be written

as follows:

�(3)
m = CResz1=x1 Resz2=x2 Resw=z1

(z1 − z2)2m+2e(λ2−λ3)z̄e(λ1−λ2)w∏2
i=1(w − zi)m+1

∏2
i=1

∏3
j=1(zi − xj)m+1

, (35)

where

C = (m!)3 ∏3
i<j(xi − xj)m+1

∏3
i<j(λi − λj)m

eλ3x̄,

�(3)
m = D

∫ +∞

x1

∫ +∞

x2

∫ +∞

z1

×
∏2

i=1(w − zi)m ∏2
i=1

∏3
j=1(zi − xj)me(λ2−λ3)z̄e(λ1−λ2)w

(z1 − z2)2m
dz1dz2dw, (36)

with

D = (−1)m+1

∏3
i<j(λi − λj)m+1

(m!)3
∏3

i<j(xi − xj)m
eλ3x̄,

where as before x̄ = x1 + x2 + x3, z̄ = z1 + z2.

One can interpret these formulas either as a new way of representing of BA function
or as an explicit evaluation of the Selberg-type integral (36) in terms of the BA function,
which can be computed by other methods as well (see [4, 6, 30]). The same of course is
true for general n and in the deformed case.

We should mention here the work of Kazarnovski-Krol [14], who found explicit
expression of certain generalised Selberg integrals using Opdam’s results. Our formulas
work only for integer values of parameter m but depend on the additional variables x.

7. Concluding remarks. It would be interesting to explore the possibilities
of choosing different cycles to produce the integral formulas for the super Jack
polynomials [26]. For the usual Jack polynomials such integral formulas were obtained
in [1, 17, 18, 20].

Our approach can be also naturally extended to the (deformed) BCn case and
related theory of (super) Jacobi polynomials [24]. We will discuss this in more detail
elsewhere.
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