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Abstract

The method of generalized cross-validation (GCV) provides a good value for the "ridge"
regularization parameter for an ill-conditioned linear system, such as the system pro-
duced by discretization of a Fredholm integral equation of the first kind. In this note we
apply GCV to a wider class of estimators than the one parameter ridge estimators. We
observe that the expected values of the parameter mean-square error, the predictive
mean-square error, and the GCV function are simultaneously minimized over this new
class, so we accept the minimizer of the GCV function as the best computable estimator.
We present a simple algorithm for computing this estimator from the data, so that a
numerical search is not needed.

1. Introduction

In this note, we consider the problem of estimating the solution of the matrix
equation

y = Ax (1)

under the assumptions that (i) A is an m X n matrix with m > n, (ii) A is
ill-conditioned, and (iii) the measurement of y is subject to error. We will assume
that the data is

z =y + u, (2)

where the error u is random, with mean zero and covariance 22,

<«> = 0, (uu*} = S2, (3)
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and where < > denotes the expected value, and * the complex conjugate
transpose.

An example of an ill-conditioned system such as (1) is a discrete approxima-
tion to a linear integral equation of the first kind,

y(s)= flk(s,t)x(t)dt, (4)
•'o

whose kernel defines a compact operator K on L2(0, 1). The singular values of K
converge to zero and the inverse of K is unbounded, so the solution of (4) (if
indeed one exists) may not depend continuously on the data and may contain
large errors. These properties are reflected in the matrix A, whose condition will
be poor and will worsen as its size is increased.

The method of regularization (introduced by Tihonov [7] and surveyed by de
Hoog [4] and Lukas [5]) is one attempt to control the instability inherent in (1).
Its strategy is to regard the unstable problem as a limit of a family of stable
problems, depending upon a number of regularization parameters, and to solve
instead one of the stable problems for a suitable choice of the parameters. For
example, we could replace (1) by the family of problems,

minimize \\z - Ax\\2 + X\\x\\2, (5)

depending upon the parameter X. However, the method faces an obvious
difficulty, the choice of the parameter X: if A is too small, the problem remains
numerically unstable, but if X is too large the solution of the regularized problem
may bear little relation to the true solution.

What is a general program for choosing the "best" regularization parameters?
We allow the estimate x of x to be a non-linear function of the data, restricted
by the following conditions.

(1) x should vanish identically whenever z vanishes, so the most general
relationship between x and z is

x = Bz, (6)

in which B is an n X m matrix, which may itself be a function of z.
(2) The range of B should be contained within the orthogonal complement of

the kernel of A. This is a natural condition, because the component of x in the
kernel of A cannot contribute toy.

(3) B must be the "best" estimator, in the sense that B must minimize a stated
objective function over a stated class o l n X m matrices. For example, we might
consider as possible objective functions

X=\\x- xf, (7)

y=\\y-y\\2, where .y = / lx , (8)
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Z = \\z - yf[ m'1 tr 22/tr(l - AB)Z2]2, (9)

or the expected values of these functions.
(4) B must be stable, in the sense that any matrix norm of B must be a

bounded function of the singular values of A. This guarantees that small errors
in the data cannot produce aribitrarily large errors in the estimate.

The contentious components in this program are the objective function and
the class of matrices to which the estimators are restricted: different choices lead
to conflicting definitions of "best" and a deluge of papers. (A good survey of the
literature is given by Golub, Heath and Wahba [2].) The difficulty is that the
"natural" objective functions, such as (Xy and < JO, contain unknown quanti-
ties, such as x and y, and so are uncomputable. Only when x is required to be
linear in z, unbiased, and the minimizer of the variance

(* - x)(x - x)*

does this not pose a problem. In this case, the best estimator is the Gauss-
Markov estimator,

B = (A*-Z-2A)+ A*?.'2,

where + denotes the Moore-Penrose inverse, which is computable either if 22 is
known or if 22 has the form

( Z % = «%j (10)

with o2 possibly unknown. If we relax the requirements that the estimate should
be unbiased and should depend linearly upon the data, then we must find a
computable function Q with the property that the minimizer of <g> is close to
the minimizer of one of the natural loss functions, such as (.xy. Then we can
assert that the ideal estimator is the minimizer Ba of (Xy, but the best
computable estimator is the minimizer 2?* of Q, for B* should be close to B°
whenever Q is close to <(?)•

When the covariance is known, it is not difficult to find a function Q with this
property. For example, suppose that the covariance 22 has the form (10) in
which a2 is known, and consider the class of ridge estimators,

and corresponding ridge estimates,

xx = Bxz.

It is well known that xx is the solution of (5), so A is a regularization parameter
and its value represents a compromise between fitting the data and controlling
the noise in the solution. If the ideal X° is taken to be the minimizer of <y>,
then Craven and Wahba [1], referring to the work of Mallows [6], have suggested
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that a good computable A8 is the minimizer of

Q = ||(1 - AB)z\\2 - a2 tr(l - AB){\ - AB)* + o2trABB*A*,

for this function has the property that

When the covariance is unknown, the problem is much more difficult.
However, an attractive solution was proposed by Wahba [8] and further devel-
oped by Golub, Heath and Wahba [2] and Craven and Wahba [1] in papers on
the solution of integral equations with noisy data, regression, and curve fitting.
Their method, known as generalized cross-validation (GCV), allows a good
value for the ridge parameter to be chosen from the data, when the coveriance
has the form (10) but the value of a2 is unknown. They suggest that the ideal AD

is the minimizer of <y>, and that the best computable A* should be taken to be
the minimizer of the GCV function, which reduces to

Z = ||(1 - AB)z\\2/[tr(l - AB)]2

under the present assumptions on 22. In support of this suggestion, they offer
strong intuitive arguments and then prove that A° will be close to the minimizer
A" of <Z> whenever AA* becomes ill-conditioned for large m. For example,
when A is a discrete approximation to a compact integral operator K, Wahba [8]
has estimated the difference AD — A" in terms of the asymptotic rate of decay of
the singular values of K. So they argue that A* should provide a good choice for
A, provided Z is close to <Z>. The best computable A* can be found by a global
parameter search.

In this note we consider a natural extension of the method of generalized
cross-validation in which we retain the GCV objective function Z, but enlarge
the class of allowed estimators. When restricted to the new class, which we
denote by Sr, each of the objective functions <Ar>, <y> and <Z> has only one
extremum, a global minimum, and these are attained simultaneously at B° in <5.
Furthermore, B° is stable. Thus, we assert that the best computable estimator is
the minimizer 5* of Z over ®s. We will present an algorithm which allows B* to
be computed trivially, without the need for a parameter search.

2. Class of estimators

Let us suppose that A has the singular value decomposition,

A = USV*,
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in which:
(1) U is an m X m unitary matrix whose columns are orthonormal eigenvec-

tors of A A*;
(2) S is an m X n diagonal matrix

S,

S =

0

in which su s2, . . . , sn are the singular values of A, the positive square roots of
the eigenvalues of A *A;

(3) V is an n X n unitary matrix whose columns are orthonormal eigenvectors
of A*A.
We can assume that the singular values are ordered so that

sx > s2 > • • • > s n > 0 .

The rank of A, denoted by r, is the number of non-zero singular values, and the
Moore-Penrose generalized inverse of A is given by

A+ = VS+U*,

where

S+ =

and

if Si > 0,

0 if s, = 0.

We introduce the family f o f n X m matrices with the form

B = VFS+U*,
where

0 < F < 1

and

r = rank A.

(11)

(12)

F =
f,

0

0

0

(13)

https://doi.org/10.1017/S0334270000002836 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002836


506 D. M. O'Brien and J. N. Holt [ 61

We call F a filter, because it clearly filters the spectrum of singular values of A,
and B the corresponding filtered estimator. Such matrices satisfy the following
conditions:

(1) both A B and BA are hermitian;
(2) 0 < AB < 1 and 0 < BA < 1;
(3) the range of B is contained in the orthogonal complement of the kernel of

A.
Conversely, any matrix B which satisfies conditions (1) to (3) must have the

form shown in equation (11) with 0 < F < 1. Furthermore, F will be block
diagonal with the dimension of each block equal to the multiplicity of the
corresponding singular value of A. In particular, if the singular values of A are
distinct, then F must have the form (13). In order to prove these assertions, let

B = VTU*
and partition S and T

n n)' I T TV
U U/ \ - l 2 1 122l

so that Su contains the non-zero singular values of A. The condition that the
range of B should be in the orthogonal complement of the kernel of A forces
T21 = T22 = 0. Next, the conditions that AB and BA should be hermitian show
that r,2 = 0 and

= * i i"

Hence, Su (anti) commutes with the (skew) hermitian part of Tn, so Tn must be
hermitian and block diagonal with the dimensionality of each block equal to the
multiplicity of the corresponding singular value in Su. In particular, if the
singular values are distinct, then Tl, must be diagonal. Lastly, the conditions

0 < AB < 1 and 0 < BA < 1
show that T can be factorized, T= FS+, with 0 < F < 1.

The ridge estimators lie in this class. Indeed, it is not hard to show that the
corresponding filter has

f'-jk- '-1-2 •
The elements/,,/2 fr are the regularization parameters in our approach.

When all jt are equal to one, the matrix B coincides with A +, whose norm will
be large if any of the singular values is small. However, if the elements of F are
matched to the singular values of A so that the product FS + remains bounded
as a function of the singular values, then the estimator will be stable, but may
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not be accurate if the ft are too small. How then must F be chosen to achieve a
compromise between stability and fidelity?

3. Ideal and best computable filter

When restricted to filtered estimators, the functions (A1), <y>, <Z> and Z
reduce to the following expressions:

- BA)x\\

£ rf.
i-r+l

11(1 - AB)y\\2 + tiAB2.2B*A2B*A*

,,,v- „„ trO - AB)1.\l - AB)*\\m-* tr
< z > = ^ ~» L_L^ ML

[tr(l - AB)~Z2]

m "12

,=1 / - r + l JL f-1

[I/1

20-

^ 2
/ = /-+!

/

= r+l J

m 12

m~l 2 ai2

m "12

2 a,2
~r+\

z =

Here we have introduced the notation

and below we will also use
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Note that both Z and (Z)> have the same structure and can be obtained from

2

' - > J
with ?L suitable identification of the "arameters.

The key to the choice of the best filter is the following observation.

LEMMA 1. Each of the functions (X} and <y> has only one local extremum at
et = of/ (bf + of), / = 1, 2, . . . , r. (14)

If at least one of vo\, . . . , vo* is non-zero, W has only one local extremum at

et = — af/mf, i = 1, 2, . . . , r.

Otherwise, W has a line of degenerate local extrema along

et = kaf/mf,

where k is arbitrary. For each function, the local extremum is a global minimum.

PROOF. The first order, necessary condition for extrema of <Ar> and < Y > is

e,bf - (1 - e,)of = 0, (15)

which has only the solution (14). When (15) is satisfied, then

(X{e + 8e)> - <X(e)> = £ (8ef(bf + of)/sf > 0,

and

<y(e + 8e)> - <r(e)> = £ {8e,)\bf + of) > 0,
/-i

for any 8e, so the extrema are global minima.
The first order necessary condition for an entremum of W is

e . m ^ £ ejof + v\= afl£ ejmj + J . (16)

Every solution of the equation has the form

e, = kaf/mf, (17)

where A: is a constant, independent of /'. Let us fix k by substituting (17) into
(16). We find

*°,2[ £ ko^/mj + J = J.£ eof/mj + M
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and

af[kv - /i] = 0, / = 1, 2, . . .,r,

so k is arbitrary if va\, . . . , vo? all vanish, but k = \i/v otherwise. In the first
case W has only one local extremum, and in the second it has a line of
degenerate local extrema. At the extrema,

,1.
We will now check that

W(e + Se) - W(e)
(e,- + Sefmf + M 2 efmf +

for any 8e when e is given by (17). After bringing this fraction to a common,
positive denominator, and repeatedly using equations (16) and (17), we find its
numerator to be

" *N _
y - l mf I / = !

r

= v y (Se)2m2 +

> 0,

so e is the global minimiser of W.

Henceforth we will assume that the conditions given in Lemma 1 for degener-
ate minima are not satisfied. Thus, we will assume that at least one of

a}> i = 1,2, . . . ,r,
j-r+\

is non-zero, so that both Z and <Z> have only one local minimum. With this
restriction, we see that the global minima of <A">, <F> and <Z> are attained
simultaneously when

This prompts us to assert that the ideal filter F° is the minimizer of (X)>, and the
best computable filter F s is the minimizer of Z, subject to the constraints

0 < ft < 1, i = 1, 2 , . . . . r.
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We note that Z is computable either if 22 is known or if 22 has the form (10)
with a2 unknown. In the latter case, Z reduces to Wahba's GCV function.

4. Stability and reduction in variance

ca.ii be wTiiicil

so

/ = 1 , 2 , . . . , / - ,

/ = 1, 2, . . . , r,

which is certainly a bounded function of sr Thus, the ideal estimator is stable.
F° also achieves a reduction in (X)> from its value with the Gauss-Markov

estimator, obtained when the filter is the projection

F* =

1
1

1
0

0

A short calculation gives

<x(F*)y - > o.

This difference will be large whenever any st <C ar

In practice we have the best computable filter, not the ideal, so these
properties of stability and reduction in variance cannot be guaranteed, except on
average.

5. Algorithm for the constrained minimization of Z

In the final section we focus attention on the special case in which
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and we present a simple algorithm for the minimization of
r m

2«tf + 2 <f
z = i=j * - , + ,

+ m - r\

subject to the constraints

0 < e, < 1, / = 1, 2, . . . , r.

We can suppose without loss of generality that the numbers cf have been
ordered so that

c2 > c\ > • • • > cf > 0.

Let
m

ak = 2 c;2» pk = m - k, k = 0, 1, . . . , r,

and set
k

y e + L

Thus, Z = Zr.
The algorithm runs as follows.

Start

Let k = r.

Loop

According to Lemma 1, the global minimizer of Zk is

Branch

If cf > ak/ fik, i = 1, 2, . . . , k, then the constraints are

satisfied and the problem is solved, so exit with the

current value of k. Otherwise, we must have cf <
ak/Pk f ° r some i = 1, 2, . . . , k.

Continue

Let e* denote the constrained minimizer of Zk. Because
Zk does not have any other local minima than (18), at
least one constraint must be active at e*, so ef = 1 for
some / = 1, 2, . . . , k. Furthermore, the sequences {e;*}
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and {cf} must be oppositely ordered, so {e?) must be

increasing, ef < e* < • • • e£.

This follows from the rearrangement theorem of

Hardy , Littlewood and Polya [3], because the de-

nomina to r of Zk is unaffected by a rearrangement of

{e*} , bu t the numerator takes its minimum when the

Hence , e* = e?+l = • • • = e£ = 1.

We now transfer el from the list of active variables to
the list of constrained variables, simply by replacing k
by k — 1 and returning to the start of the loop.

Exit

The algorithm returns the integer k.

LEMMA 2. The minimizer of Zr, subject to the constraints

0 < et < 1, i = 1, 2, . . . , r,

is

efcf = ak/pk, i - 1, 2, . . . , * , (19)

ef-\, i = k + 1, . . . , r,

where k is the integer returned by the algorithm.

PROOF. Let e* denote the constrained minimizer of Zr. If

0 < e* < 1, / = 1, 2, . . . , r,

then the constrained minimizer is the global minimizer and is given correctly by
(19) with k = r. Otherwise, let / be the smallest integer such that

e*+i = 1.

It then follows from the rearrangement theorem that

ef < • • • <ef <<?,*+1 = • • • = e* = 1.

Hence

Z r ( e t , . . . , et, e;+v . . . , e*) = Z , ( e * , . . . , e,*).

Now the unconstrained minimizer of Z, is

e*cf = a;/j3,, / = 1, 2, . . . , / ,

so e* certainly has the form given in (19). But the algorithm constructs the
largest integer k such that the minimizer of Zk is unconstrained, so we must have
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/ < k. If / < k, then

Zr(e») = Zk{e\, ...,el)< Zk(e*, . . . , tf) = Z,(ef, - . . , ef) = Z,(e«),

which contradicts the definition of e* as the constrained minimizer of Zr. Hence,
k = / and e* = e*.

6. Conclusion

We end this note with a warning to anyone faced with the problem of
inverting an ill-conditioned linear system of equations when the data is subject
to error. Even if both the covariance of the noise and the solution of the linear
system were known (!), so that the ideal estimator could be computed, the ratio
\(V*8x)j/(U*8y)i\ could still be as large as \aja,, which might not be insignifi-
cant. Only the average of the estimates obtained from a large number of data
sets will give the correct result. Consequently, it is essential to obtain as much
raw data as possible from the experimenter, to invert each data set separately,
and finally to average the results. It is folly to accept a single set of averaged
data from the experimenter, together with his estimate of the mean and covari-
ance of the noise. The averaging must follow the inversion.
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