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Abstract

Relational autocompletion is the problem of automatically filling out some missing values in
multi-relational data. We tackle this problem within the probabilistic logic programming frame-
work of Distributional Clauses (DCs), which supports both discrete and continuous probability
distributions. Within this framework, we introduce DiceML – an approach to learn both the
structure and the parameters of DC programs from relational data (with possibly missing data).
To realize this, DiceML integrates statistical modeling and DCs with rule learning. The distin-
guishing features of DiceML are that it (1) tackles autocompletion in relational data, (2) learns
DCs extended with statistical models, (3) deals with both discrete and continuous distributions,
(4) can exploit background knowledge, and (5) uses an expectation–maximization-based (EM)
algorithm to cope with missing data. The empirical results show the promise of the approach,
even when there is missing data.

KEYWORDS: probabilistic logic programming, statistical relational learning, structure learning,
inductive logic programming

1 Introduction

Spreadsheets are arguably the most accessible tool for data analysis and millions of users

use them. Generally, real-world data is not gathered in a single table but in multiple

tables that are related to each other. Real-world data is often noisy and may have missing

values. End users, however, do not have access to the state-of-the-art techniques offered
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by Statistical Relational AI (StarAI, Kersting et al. 2011) to analyze such data. To

tackle this issue, we study the problem of relational autocompletion, where the goal is

to automatically fill out the entries specified by users in multiple related tables. This

problem setting is simple, yet challenging and is viewed as an essential component of an

automatic data scientist (De Raedt et al. 2018). We tackle this problem by learning a

probabilistic logic program that defines the joint probability distribution over attributes

of all instances in the multiple related tables. This program can then be used to estimate

the most likely values of the cells of interest.

Probabilistic logic programming (PLP, Ngo and Haddawy 1997; Sato 1997; Vennekens

et al. 2004; De Raedt et al. 2007; Poole 2008) and statistical relational learning (SRL,

Jaeger 1997; Richardson and Domingos 2006; Koller et al. 2007; Natarajan et al. 2008;

Neville and Jensen 2007; Kimmig et al. 2012) have introduced various formalisms that

integrate relational logic with graphical models. While many PLP and SRL techniques

exist, only a few of them are hybrid, that is, can deal with both discrete and continuous

variables. One of these hybrid formalisms are the Distributional Clauses (DCs) introduced

by Gutmann et al. (2011). DCs form a probabilistic logic programming language that

extends the programming language Prolog with continuous as well as discrete probability

distributions. It is this language that we adopt in this paper.

We first integrate statistical models in DCs and use these to learn intricate patterns

present in the data. This extended DC framework allows us to learn a DC program that

specifies a probability distribution over attributes of multiple tables. Just like graphical

models, this program can then be used for various types of inference. For instance, one

can infer not only the output of statistical models based on their inputs but also the

input when the output is observed.

In line with inductive logic programming (Muggleton 1991; Lavrac and Dzeroski

1994; Quinlan and Cameron-Jones 1995), we propose an approach, named DiceML1

(Distributional C lauses with Statistical M odels Learner), that learns such a DC pro-

gram from relational data and background knowledge. DiceML jointly learns the struc-

ture of DCs, the parameters of their probability distributions and the parameters of the

statistical models. The learned program can subsequently be used for autocompletion.

We study the problem also in the presence of missing data. The problem of learning

the structure of hybrid relational models then becomes even more challenging and has, to

the best of our knowledge, never been attempted before. To tackle this problem, DiceML

performs structure learning inside the stochastic EM procedure (Diebolt and Ip 1995).

Related Work There are several works in SRL for learning probabilistic models for rela-

tional data, such as probabilistic relational models (PRMs, Friedman et al. 1999), rela-

tional Markov networks (RMNs, Taskar et al. 2002), and relational dependency networks

(RDNs, Neville and Jensen 2007). PRMs extend Bayesian networks with concepts of ob-

jects, their properties, and relations between them. RDNs extend dependency networks,

and RMNs extend Markov networks in the same relational setting. However, these models

are generally restricted to discrete data. To address this shortcoming, several hybrid SRL

formalisms were proposed such as continuous Bayesian logic programs (CBLPs, Kersting

and De Raedt 2007), hybrid Markov logic networks (HMLNs, Wang and Domingos 2008),

1 The code is publicly available: https://github.com/niteshroyal/DiceML, publication
date: 15/09/19

https://doi.org/10.1017/S1471068421000144 Published online by Cambridge University Press

https://github.com/niteshroyal/DiceML
https://doi.org/10.1017/S1471068421000144


Learning Distributional Programs for Relational Autocompletion 83

hybrid probabilistic relational models (HPRMs, Narman et al. 2010), and relational con-

tinuous models (RCMs, Choi et al. 2010). The work on hybrid SRL has mainly been

focused on developing theory to represent continuous variables within the various SRL

formalisms and on adapting inference procedures for hybrid domains. However, little at-

tention has been given to the design of algorithms for structure learning of hybrid SRL

models. The same is true for works on hybrid probabilistic programming (HProbLog,

Gutmann et al. 2010), (DC, Gutmann et al. 2011; Nitti et al. 2016a), (Extended-Prism,

Islam et al. 2012), (Hybrid-cplint, Alberti et al. 2017), (Michels et al. 2016), (BLOG, Wu

et al. 2018), (Dos Martires et al. 2019). Closest to our work is the work on hybrid rela-

tional dependency networks (HRDNs, Ravkic et al. 2015), for which structure learning

was also studied, but this learning algorithm assumes that the data is fully observed.

There are also few approaches for structure learning in the presence of missing data such

as Kersting and Raiko (2005); Khot et al. (2012; 2015). However, these approaches are

restricted to discrete data. Furthermore, existing hybrid models that extend PGMs with

relations, such as HRDNs, are associated with local probability distributions such as con-

ditional probability tables. As a result, it is difficult to represent certain independencies

such as context-specific independencies (CSIs, Boutilier et al. 1996). On the contrary,

DC can represent CSIs leading to interpretable DC programs.

Learning meaningful and interpretable symbolic representations from data in the form

of rules has been studied in many forms by the inductive logic programming(ILP) com-

munity (Quinlan 1990; Muggleton 1995; Blockeel and De Raedt 1998; Srinivasan 2001).

The standard ILP setting requires the input to be deterministic and usually the rules

as well. Although some rule learners (Neville et al. 2003; Vens et al. 2007) output the

confidence of their predictions, the rules learned for different targets have not been used

jointly for probabilistic inference. To alleviate these limitations, De Raedt et al. (2015)

proposed ProbFoil+ that can learn probabilistic rules from probabilistic data and back-

ground knowledge. In this approach, rules learned for different targets can jointly be used

for inference. However, this approach does not deal with continuous random variables

and missing data. A handful approaches can learn rules with continuous probability dis-

tributions, and the learned rules can also be jointly used for inference. One such approach

was proposed by Speichert and Belle (2018) using piecewise polynomials to learn intri-

cate patterns from data. This approach differs from our approach as we use statistical

models to learn these patterns. Moreover, it is restricted to fully observed determinis-

tic input. Another approach for structure learning of dynamic DCs, an extended DC

framework that deals with time, has also been proposed by Nitti et al. (2016b). However,

this approach cannot learn DCs from background knowledge, which itself can be a set

of DCs. Furthermore, it learns the dynamic DCs from fully observed data and does not

deal with missing values in relational data as we do. To the best of our knowledge, the

present paper makes the first attempt to learn interpretable hybrid probabilistic logic

programs from partially observed probabilistic data as well as background knowledge.

DC programs have been successfully applied in robotics and perceptual anchoring us-

ing handcrafted programs or by learning parameters of simple programs with defined

structure (Moldovan et al. 2018; Persson et al. 2019). The technique we present in the

present paper has already been successfully applied for structure learning in the per-

ceptual anchoring context (Zuidberg Dos Martires et al. 2020) and extends these other

results.
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Our approach also deals with missing values in relational data. Thus, it is also related

to the vast literature on database cleaning (Ilyas and Chu 2015). However, there are

not many database-cleaning methods that can learn distributions of the data and use

them to automatically fill in missing data (mostly due to the complexity of the problem

and the scale of real-world relational databases), and those methods that can to some

extent model probability distributions, for example, Yakout et al. (2013); Rekatsinas

et al. (2017), still cannot model complex probability distributions involving both discrete

and continuous random variables. While the approach presented in this paper cannot

scale to databases containing billions of tuples, it can model very complex probabilistic

distributions.

A different approach for autocompletion in spreadsheets was proposed by Kolb et al.

(2020). In this approach, multiple related tables are joined in a preprocessing step in

order to obtain a single table, and then constraints and Bayesian networks are learned.

Thus this approach propositionalizes the data, which implies that the joined table may

contain redundant information, implying that the learned model will not be succinct.

Learning succinct first-order probabilistic models, which we do, is required to truly deal

with relational data.

Contributions We summarize our contributions in this paper as follows:

• We integrate DC with statistical models and use the resulting framework to repre-

sent a hybrid relational model.

• We introduce DiceML, the approach for relational autocompletion that learns DCs

with statistical models from relational data and background knowledge.

• We extend DiceML to learn DC programs from relational data with missing values

using the stochastic EM algorithm.

• We empirically evaluate DiceML on synthetic as well as real-world data, which

shows the promise of our approach.

Organization The paper is organized as follows. We start by sketching the problem setting

in Section 2. Section 3 reviews logic programming concepts and DCs. In Section 4, we

discuss the integration of DCs with statistical models. In Section 5, we describe the

specification of the DC program that we shall learn. Section 6.1 explains the learning

algorithm, which is then evaluated in Section 7.

2 Problem setting

Let us introduce relational autocompletion using the simplified spreadsheet in Table 1.

It consists of entity tables and associative tables. Each entity table (e.g. client, loan, and

account) contains information about instances of the same type. An associative table (e.g.

hasAcc and hasLoan) encodes a relationship among entities. This toy example illustrates

two important properties of real-world applications, namely (i) the attributes of entities

may be numeric or categorical, and (ii) there may be missing values in entity tables.

These are denoted by “−”.
In addition, certain knowledge is available beforehand, and inclusion of this background

knowledge might be useful for learning; for instance, if a client of a bank has an account,
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Table 1. An example of a spreadsheet consisting of entity tables (client, loan and account),

and associative tables (hasLoan and hasAcc). Missing cells are denoted by “−” and the

cells of interest are denoted by “ ?”

and the account is linked to a loan, then the client has the loan. Knowledge may even

be uncertain; for instance, we might already have a probabilistic model that specifies a

probability distribution over the age of clients.

The problem that we tackle in this paper is to autocomplete specific cells selected

by users, denoted by “?”. This problem will be solved by automatically learning a DC

program from such data and background knowledge. This program can then be used to

fill out those cells with the most likely values. This setting can be viewed as a simple

nontrivial setting for automating data science (De Raedt et al. 2018).

3 Probabilistic logic programming

In this section, we first briefly review logic programming concepts and then introduce

DC framework which extend logic programs with probability distributions.

3.1 Logic programming

An atom p(t1, . . . , tn) consists of a predicate p/n of arity n and terms t1, . . . , tn. A

term is either a constant (written in lowercase), a variable (in uppercase), or a func-

tor applied to a tuple of terms. For example, hasLoan(a 1,L), hasLoan(a 1,l 1) and

hasLoan(a 1,func(L)) are atoms and a 1, L, l 1 and func(L) are terms. A literal is an

atom or its negation. Atoms which are negated are called negative atoms and atoms which

are not negated are called positive atoms. A clause is a universally quantified disjunction

of literals. A definite clause is a clause which contains exactly one positive atom and

zero or more negative atoms. In logic programming, one usually writes definite clauses

in the implication form h← b1, ..., bn (where we omit the universal quantifiers for ease of

writing). Here, the atom h is called head of the clause; and the set of atoms {b1, ..., bn} is
called body of the clause. A clause with an empty body is called a fact. A logic program

consists of a set of definite clauses.
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Example 3.1

The clause c ≡ clientLoan(C,L) ← hasAccount(C,A), hasLoan(A,L) is a definite

clause. Intuitively, it states that L is a loan of a client C if C has an account A and A is

associated to the loan L.

A term, atom or clause, is ground if it does not contain any variable. A substitution

θ = {V1/t1, ..., Vm/tm} assigns terms ti to variables Vi. Applying θ to a term, atom or

clause e yields the term, atom or clause eθ, where all occurrences of Vi in e are replaced

by the corresponding terms ti. A substitution θ is a grounding for c if cθ is ground, that

is, contains no variables (when there is no risk of confusion we drop “for c”).

Example 3.2

Applying the substitution θ = {C/c 1} to the clause c from Example 3.1 yields cθ which

is clientLoan(c 1,L) ← hasAccount(c 1,A), hasLoan(A,L).

A substitution θ unifies two atoms l1 and l2 if l1θ = l2θ. Such a substitution is called

a unifier. Unification is not always possible. If there exists a unifier for two atoms l1 and

l2, we call such atoms unifiable and we say that l1 and l2 unify.

Example 3.3

The substitution θ = {C/c 1, M/L} unifies the atoms clientLoan(c 1,L) and

clientLoan(C,M).

The Herbrand base of a logic program P, denoted HB(P), is the set of all ground atoms

which can be constructed using the predicates, function symbols and constants from the

program P. A Herbrand interpretation is an assignment of truth values to all atoms in

the Herbrand base. A Herbrand interpretation I is a model of a clause h ← Q, if and
only if, for all grounding substitutions θ such that Qθ ⊆ I, it also holds that hθ ∈ I.

The least Herbrand model of a logic program P, denoted LH(P), is the intersection

of all Herbrand models of the logic program P, that is, it consists of all ground atoms

f ∈ HB(P) that are logically entailed by the logic program P. The least Herbrand model

of a program P can be generated by repeatedly applying the so-called TP operator until

fixpoint. Let I be the set of all ground facts in the program P. Starting from the set I of

all ground facts contained in P, the TP operator is defined as follows:

TP(I) = {hθ | h← Q ∈ P,Qθ ⊆ I,where θ is a grounding substitution for h← Q},
(1)

That is, if the body of a rule is true in I for a substitution θ, the ground head hθ must

be in TP(I). It is possible to derive all possible true ground atoms using the TP operator

recursively, until a fixpoint is reached (TP(I) = I), that is, until no more ground atoms

can be added to I.

Given a logic program P, an answer substitution to a query of the form ?− q1, . . . , qm,

where the qi are literals, is a substitution θ such that q1θ, . . . , qmθ is entailed by P, that

is, belongs to LH(P).

3.2 Distributional clauses

DC framework is a natural extension of logic programs for representing probability dis-

tributions introduced by Gutmann et al. (2011).
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Definition 3.1

A DC is a rule of the form h ∼ D ← b1, ..., bn, where ∼ is a binary predicate used in infix

notation, h is a random variable term, and D a distributional term.

A DC specifies that for each grounding substitution θ of the clause, the random variable

hθ is distributed as Dθ whenever all biθ hold. So h and D are terms belonging to the

Herbrand universe denoting random variables r(t1, ..., tn) and distributions d(u1, ..., uk)

respectively. Unlike regular terms in the Herbrand universe, the random variable functors

r and distribution functors d cannot be nested.

To refer to the values of the random variables, we use the binary predicate ∼=, which is

used in infix notation for convenience. Here, r ∼= v is defined to be true if v is the value

of the random variable r.

Example 3.4

Consider the following distribution clause

creditScore(C) ∼ gaussian(755.5,0.1)← clientLoan(C,L),status(L)∼=appr.
Applying the grounding substitution θ = {C/c 1, L/l 1} to the DC results in defining

the random variable creditScore(c 1) as being drawn from the distribution Dθ =

gaussian(755.5, 0.1) whenever clientLoan(c 1,l 1) is true and the outcome of the

random variable status(l 1) takes the value appr (“approved”), that is, status(l 1)
∼= appr.

A DC without body is called a probabilistic fact, for example

age(c 2) ∼ gaussian(40,0.2).

It is also possible to define random variables that take only one value with probability

1, that is, deterministic facts, for example,

age(c 1) ∼ val(55).

A DC program P consists of a set of distributional clauses and a set of definite clauses.

The semantics of a DC program is given by a set of possible worlds, which can be

generated using the STP operator, a stochastic version of the TP operator. Gutmann

et al. (2011) define the STP operator using the following generative process. The process

starts with an initial world I containing all ground facts from the program. Then for

each DC h ∼ D ← b1, ..., bn in the program, whenever the body b1θ, ..., bnθ is true in the

set I for the grounding substitution θ, a value v for the random variable hθ is sampled

from the distribution Dθ and hθ ∼= v is added to the world I. This is also performed for

deterministic clauses, adding ground atoms to I whenever the body is true. A function

ReadTable(·) keeps track of already sampled values of random variables and ensures

that for each random variable, only one value is sampled. This process is then recursively

repeated until a fixpoint is reached (STP(I) = I), that is, until no more variables can be

sampled and added to the world. The resulting world is called a possible world, while the

intermediate worlds are called partial possible worlds.
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Example 3.5

Suppose that we are given the following DC program P:

hasAccount(c 1, a 1).
hasLoan(a 1, l 1).
age(c 1) ∼ val(55).
age(c 2) ∼ gaussian(40, 0.2).
status(l 1) ∼ discrete([0.7:appr, 0.3:decl]).
clientLoan(C,L) ← hasAccount(C,A), hasLoan(A,L).
creditScore(C) ∼ gaussian(755.5,0.1) ← clientLoan(C,L),

status(L)∼=appr.
creditScore(C) ∼ gaussian(350,0.1) ← clientLoan(C,L), status(L)∼=decl.

Applying the STP operator, we can sample a possible world of the program P as follows:

{hasAccount(c 1,a 1), hasLoan(a 1,l 1), age(c 1)∼=55} →
{hasAccount(c 1,a 1), hasLoan(a 1,l 1), age(c 1)∼=55, age(c 2)∼=40.2} →
{hasAccount(c 1,a 1), hasLoan(a 1,l 1), age(c 1)∼=55, age(c 2)∼=40.2,

status(l 1)∼=appr} →
{hasAccount(c 1,a 1), hasLoan(a 1,l 1), age(c 1)∼=55, age(c 2)∼=40.2,

status(l 1)∼=appr, clientLoan(c 1,l 1)} →
{hasAccount(c 1,a 1), hasLoan(a 1,l 1), age(c 1)∼=55, age(c 2)∼=40.2,

status(l 1)∼=appr, clientLoan(c 1,l 1), creditScore(c 1)∼=755.0}

A distributional program P is valid, as mentioned in Gutmann et al. (2011), if it satisfies

the following conditions. First, for each random variable hθ, hθ ∼ Dθ has to be unique

in the least fixpoint, that is, there is one distribution defined for each random variable.

Second, the program P needs to be stratified, that is, there exists a rank assignment ≺
over predicates of the program such that for each DC h ∼ D ← b1, ..., bn : bi ≺ h, and

for each definite clause h ← b1, ..., bn : bi 	 h. Third, all ground probabilistic facts are

Lebesgue-measurable. Fourth, each atom in the least fixpoint can be derived from a finite

number of probabilistic facts.

The first requirement is actually enforcing mutual exclusiveness for different ground

rules defining the same random variable h; that is, it enforces that the condition parts

of the two rules are mutually exclusive. This is similar to the conditions imposed in

PRISM (Sato and Kameya 2001). To understand this problem, reconsider Example 3.5.

Suppose we add a fact hasLoan(a 1,l 2) in the DC program. The client c 1 now has

two loans, namely, l 1 and l 2. Suppose in a possible world the status of loan l 1 and l 2

are decl (“declined”) and appr (“approved”) respectively. There are thus, two different

Gaussian distributions defined for the client score of c 1 in the world. The presence

of two distributions for a single random variable violates the first validity condition of

DC programs. Therefore this situation is not allowed. Gutmann et al. (2011) show that:

when a distributional program P satisfies the validity conditions then P specifies a proper

probability measure over the set of fixpoints of the operator STP.

Inference in DC programs is the process of computing probability of a query q given

evidence e. Sampling full possible worlds for inference is generally inefficient or may not

even terminate as possible worlds can be infinitely large. Therefore, DC framework uses

an efficient sampling algorithm based on backward reasoning and likelihood weighting

to generate only those facts that are relevant to answer the given query. To estimate

the probability, samples of partial possible worlds, that is, the set of relevant facts, are
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generated. A partial possible world is generated after a successful completion of a proof

of the evidence and the query using backward reasoning. The proof procedure is repeated

N times to estimate the probability p(q | e) that is given by,

p(q | e) =
∑N
i=1 w

(i)
q w

(i)
e∑N

i=1 w
(i)
e

, (2)

where w
(i)
e is the likelihood of e in an ith sample of a partial possible world, and w

(i)
q is

1 if the world entails q; otherwise, it is 0. (see Nitti et al. (2016a) for details).

4 Advanced constructs in the DC framework

In this section, we describe three advanced modeling constructs in the DC framework.

We allow for negation, aggregation functions and statistical models in bodies of the DCs.

4.1 Negation

Following Nitti et al. (2016a), we also allow for negated literals in the body of DCs, where

negation is interpreted as negation as failure. For instance:

creditScore(C)∼ gaussian(855.5,0.2)← clientLoan(C,L),\+status(L)∼=appr.
Here, the negation will succeed if the status of the loan L is anything but appr. It is also

possible to use negation to refer to undefined variables, for example, when the status is

undefined, one could use:

creditScore(C) ∼ gaussian(755.5,0.1) ← clientLoan(C,L), \+status(L)∼= .

the comparison involving undefined status will fail, thus its negation will succeed.

4.2 Aggregation

The example about mutual exclusiveness, as discussed in Section 3.2, points to the diffi-

culty of using the status of multiple loans in the basic version of the DCs. Therefore, we

introduce aggregation functions into DCs.

Aggregation functions combine the properties of a set of instances of a specific type

into a single property. Examples include the mode (most frequently occurring value);

mean value (if values are numerical), maximum or minimum, cardinality, etc. They are

implemented by second order aggregation predicates in the body of clauses. Aggrega-

tion predicates are analogous to the findall predicate in Prolog. They are of the form

aggr(T,Q,R), where aggr is an aggregation function (e.g. sum), T is the target aggre-

gation variable that occurs in the conjunctive goal query Q, and R is the result of the

aggregation.

Example 4.1

Consider the following two clauses:

creditScore(C) ∼ gaussian(755.5,0.1) ← mod(T, (clientLoan(C,L),
status(L)∼=T), X), X==appr.

creditScore(C) ∼ gaussian(500.5,0.1) ← \+ mod(T, (clientLoan(C,L),
status(L)∼=T), X).
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Table 2. The table specifies the functions implemented by various statistical model atoms

(Mψ) in DC. The functions together with the distribution (Dφ) in the head of the clauses

specify the probability distribution/density of the random variable (X) defined by the head

Type of Statistical model Function Probability

random atom (Mψ) implemented distribution/density

variable (X) in the body by Mψ The head of X

Continuous
linear([Y1, . . . , Yn],

[W1, . . . ,Wn+1],M)
M = Z X ∼ gaussian(M,σ2)

1

σ
√
2π

e
− 1

2σ2 (X−M)2

Boolean

logistic([Y1, . . . , Yn],

[W1, . . . ,Wn+1],

[P1, P2])

P1 =
1

1 + e−Z

P2 = 1− P1

X ∼ discrete([P1 :

true, P2 : false])

P
I[X=true]
1 ×
P
I[X=false]
2

Discrete

softmax([Y1, . . . , Yn],

[[W11 , . . . ,Wn+11 ], . . .

, [W1d , . . . ,Wn+1d ]],

[P1, . . . , Pd])

P1 =
eZ1

N

.

.

.

Pd =
eZd

N

X ∼ discrete([P1 :

l1, . . . , Pd : ld])

P
I[X=l1]
1 × · · · ×

P
I[X=ld]
d

where Z is Y1.W1 + · · ·+ Yn.Wn +Wn+1,

Zi is Y1.W1i + · · ·+ Yn.Wni +Wn+1i ,

N is
∑d
i=1 e

Zi ,

d is the size of domain of X (dom(X)) and li ∈ dom(X),

and I [·] is the “indicator function”, so that I [a true statement] = 1, and

I [a false statement] = 0

The aggregation predicate mod in the body of the first clause collects the status of all

loans that a client has into a list and unifies the constant appr (“approved”) with the

most frequently occurring value in the list. Thus, the first clause’s body will be true if

and only if the most frequently occurring value in this list is appr (i.e. the clause will fire

for those clients whose most loans are approved). It may also happen that a client has

no loan, or the client has loans but the statuses of these loans are not defined. In this

case, this aggregate predicate will fail, and the body of the second clause will be true.

4.3 Distributional clauses with statistical models

Next we look at the way continuous random variables can be used in the body of a DC

for specifying the distributions in the head. One possibility described in Gutmann et al.

(2011) is to use standard comparison operators in the body of the DCs, for example,

≥,≤, >,<, which can be used to compare values of random variables with constants or

with values of other random variables.

Another possibility which we describe in this section, is to use a statistical model

that maps outcomes of the random variables in the body of a DC to parameters of

the distribution in the head. Formally, a DC with a statistical model is a rule of the

form h ∼ Dφ ← b1, ..., bn,Mψ, where Mψ is an atom implementing a function with

parameters ψ which relates the continuous variables in {b1, ..., bn} with parameters φ in

the distribution Dφ. We allow for the statistical model atoms defined in Table 2.
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Example 4.2

Consider the following DCs, which state that the credit score of a client depends on

the age of the client. The loan status, which can either be high or low, depends on the

amount of the loan. The loan amount is, in turn, distributed according to a Gaussian

distribution.

creditScore(C) ∼ gaussian(M,0.1) ← age(C)∼=Y,
linear([Y],[10.1,200],M).

status(L) ∼ discrete(P1:low,P2:high) ← loan(L), loanAmt(L)∼=Y,
logistic([Y], [1.1,2.0],[P1,P2]).

loanAmt(L) ∼ gaussian(25472.3,10.2) ← loan(L).

Here, in the first clause, the linear model atom with parameters ψ = [10.1, 200] relates

the continuous variable Y and the mean M of the Gaussian distribution in the head.

Likewise, in the second clause, the logistic model atom with parameter ψ = [1.1, 2.0]

relates Y to the parameters φ = [P1, P2] of the discrete distribution in the head.

It is worth spending a moment studying the form of DCs with statistical models as

discussed above. Statistical models such as linear and logistic regression are fully inte-

grated with the probabilistic logic framework in a way that exploits the full expressiveness

of logic programming and the strengths of these models in learning intricate patterns.

Moreover, we will see in Section 6.1 that these models can easily be learned along with

the structure of the program. In this fully integrated framework, we not only infer in

the forward direction, that is, the output based on the input of these models but we

can also infer in the backward direction, that is, the input if we observe the output.

For instance, in the above example, if we observe the status of the loan, then we can

infer the loan amount, which is the input of the logistic model. Now, we can specify a

complex probability distribution over continuous and/or discrete random variables using

a distributional program having multiple clauses with statistical models.

5 Joint model program for multi-relational tables

We will now use the DC formalism to define a probability distribution over all attributes

of multiple related tables. The next subsections describe: (i) how to map tables onto the

set of DCs and (ii) the type of probabilistic relational model that we shall learn.

5.1 Modeling the input tables (Sets ADB and RDB)

In this paper, we use relational data consisting of multiple entity tables and multiple

associative tables. The entity tables are assumed to contain no foreign keys whereas the

associative tables are assumed to contain only foreign keys which represent relations

among entities. Although this is not a standard form, any relational data can be trans-

formed into this canonical form, without loss of generality. For instance, data in Table 1

is already in this form.

Next, we transform the given relational data DB to a set ADB ∪ RDB of facts that

will be used as the training data. Here, ADB contains information about the values of

attributes, and RDB consists of information about the relational structure of data (which

entities exist and the relations among them).
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In particular, given DB, we transform it as follows:

• For every instance t in an entity table e, we add the fact e(t) to RDB. For example,

from the client table, we add client(ann) for the instance ann.

• For each associative table r, we add facts r(t1, t2) to RDB for all tuples (t1, t2)

contained in the table r. For example, hasAcc(ann,a 11).

• For each instance t with an attribute a of value v, we add a deterministic fact

a(t) ∼ val(v) to ADB. For example, age(ann) ∼ val(33).

We call e/1 the entity relation, a/1 an attribute, and r/2 a link relation.

This representation of DB ensures that the existence2 of the individual entity is not

a random variable. Likewise, the relations among entities are also not random variables.

On the other hand, attributes of instances are random variables. For instance, in the

preceding example age(ann) is a random variable. This is exactly what we need for

the relational autocompletion setting that we study in this paper in which we are only

interested in predicting missing values of attributes but not in predicting missing relations

or missing entities.

The background knowledge BK, if present, is written in the form of a set of DCs and

is used in training.

5.2 Modeling the probability distribution

Next, we describe the form of DC programs, joint model programs (JMPs), that we will

learn for the relational autocompletion problem.

A JMP learned for a relational database DB consists of

1. the facts in the transformed RDB;
2. a set of learned DCs H that together define all the attributes in the database.

Furthermore, the learned clauses do not target relations and do not contain comparison

operators, even though continuous random variables may affect other random variables

via DCs using statistical models. Observe that ADB does not belong to JMPs since it is

used to train them.

Example 5.1

A JMP shown below specifies a distribution over all attributes of each instance in

Table 1.

client(ann). client(john). ...
hasAcc(ann,a 11). hasAcc(ann,a 20). ...
freq(A) ∼ discrete([0.2:low,0.8:high]) ← account(A).
savings(A) ∼ gaussian(2002,10.2) ← account(A), freq(A)∼=X, X==low.
savings(A) ∼ gaussian(3030,11.3) ← account(A), freq(A)∼=X, X==high.
age(C) ∼ gaussian(Mean,3) ← client(C), avg(X,(hasAcc(C,A),

savings(A)∼=X), Y), creditScore(C)∼=Z,
linear([Y,Z],[30,0.2,-0.4],Mean).

2 Note that DC can represent uncertain existence and uncertain relations, as discussed in Nitti et al.
(2017). However, the problem of learning existence is not well defined, and for learning a relation, we
need both true and false examples of the relation. In the real world, we do not observe false examples,
so learning relations is considered as a PU learning problem (Bekker and Davis 2020).
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loanAmt(L) ∼ gaussian(Mean,10) ← loan(L), avg(X,(hasLoan(A,L),
savings(A)∼=X),Y), linear([Y],[100.1, 10],Mean).

loanAmt(L) ∼ gaussian(25472.3,10.2) ← loan(L),
\+avg(X,(hasLoan(A,L),savings(A)∼=X),Y).

status(L) ∼ discrete([P1:appr, P2:pend, P3:decl]) ← loan(L), avg(X,
(hasLoan(A,L),hasAcc(C,A),creditScore(C)∼=X),Y), loanAmt(L)∼=Z,
softmax([Y,Z],[[0.1,-0.3,-2.4],[0.3,0.4,0.2],[0.8,1.9,-2.9]],
[P1,P2,P3]).

creditScore(C) ∼ gaussian(300,10.1) ← client(C), mod(X,(hasAcc(C,A),
freq(A)∼=X),Z), Z==low.

creditScore(C) ∼ gaussian(Mean,15.3) ← client(C), mod(X,(hasAcc(C,A),
freq(A)∼=X),Z), Z==high, max(X,(hasAcc(C,A), savings(A)∼=X), Y),
linear([Y],[600,0.2],Mean).

creditScore(C) ∼ gaussian(Mean,12.3) ← client(C),
\+mod(X,(hasAcc(C,A), freq(A)∼=X),Z), max(X,(hasAcc(C,A),
savings(A)∼=X), Y), linear([Y],[500,0.8],Mean).

At this point, it is worth taking time to study the above program in detail as sev-

eral aspects of the probability distribution specified by the program can be directly read

from it. First of all, the program specifies a probability distribution over 24 random

variables (cells) of the spreadsheet (Table 1), where 8 of them belong to client table

(age and credit score attributes of four clients), 8 to loan table (loan amount and status

attributes of four loans), and 8 to account table (savings and frequency attributes of

four accounts). When grounded, the set of clauses with the same head explicates random

variables that directly influence the random variable defined in the head. For instance,

the program explicates that the random variable freq(a 11) directly influences the ran-

dom variable savings(a 11) since the distribution from which savings(a 11) should

be drawn depends on the state of freq(a 11). Similarly, the program explicates that

random variables freq(a 11), freq(a 20), savings(a 11) and savings(a 20) directly

influence the random variable creditScore(ann), since the client ann has two accounts,

namely a 11 and a 20, and the credit score of ann depends on aggregate savings and

aggregate frequency of these two accounts. The distributions in the head and the statis-

tical models in the body of these grounded clauses quantify this direct causal influence.

The program represents this knowledge about all random variables in a concise way.

Unlike many graphical model-based representations such as PRMs (Getoor et al. 2001),

there is much local structure that is qualitatively represented by JMPs. To understand

this point, let us reconsider clauses for credit score in Example 5.1, the credit score of

ann is independent of savings of all her accounts when freq/1 (“frequency”) of most

of her accounts is low (a context). This is because in this context, the body of the

last two clauses for the credit score can never be true and the first clause specifies

the distribution of creditScore(ann) without considering the states of savings of her

accounts. To exploit these contextual independencies, the DC inference engine, which is

based on probabilistic reasoning, finds proofs of the observation and query to determine

the posterior probability of the query (Nitti et al. 2016a). Note that PRMs construct

ground Bayesian networks for inference, and it is well known that Bayesian networks can

not qualitatively represent these independencies (Boutilier et al. 1996). (Poole 2008, p.

239) provides a number of reasons for learning probabilistic logic programs.
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6 Learning joint model programs

The learning task consists of finding the hypothesis H that best explains the data ADB
w.r.t. the relational structure RDB and the background knowledge BK. This setting

is very much in line with traditional inductive logic programming (Lavrac and Dzeroski

1994) and probabilistic inductive logic programming (PILP, Riguzzi et al. 2014). It allows

one to consider background knowledge about the entities and relations among the entities

using a set of DCs. As usual in inductive logic programming, we shall also use a declarative

bias L to define which DCs are allowed in hypotheses and a scoring function score to

evaluate the quality of candidate hypotheses. The declarative bias is quite standard, it

is described in detail in the supplementary material.

Rather than learning DCs directly, we will learn distributional logic trees (DLTs), a

kind of first-order decision trees (Blockeel and De Raedt 1998) for DCs. The reasons are

(1) that decision trees are very effective from a machine learning perspective and (2) that

they automatically result in DCs that are mutually exclusive, that is, they guarantee that

the first validity requirement for DC programs is satisfied. This requirement states that

only one distribution can be defined for each random variable in a possible world.

Formally, a DLT for an attribute, a(T ), is a rooted tree, where the root is an entity

atom e(T ), each leaf is labeled by a probability distribution Dφ and/or a statistical model

Mψ, and each internal node is labeled with an atom bi. Internal nodes bi can be of two

types:

• a binary atom of the form aj(T ) ∼= V that unifies the outcome of an attribute aj(T )

with a variable V .

• an aggregation atom of the form aggr(X,Q, V ), as discussed in section 4.2, where

Q is of the form (r(T, T1), aj(T1) ∼= X) in which r is a link relation that relates

entities of type T to entities of type T1 and aj(T1) is an attribute.

As common in decision trees, the nodes’ children are defined based on the values that

the node can take; here, this corresponds to the values that V can take. There are two

cases to consider:

• V takes discrete values {v1, ..., vn}. Then there is one child for each value vi.

• V takes numeric values. Then its value is used to estimate the parameters of the

distribution Dφ and/or the statistical modelMψ in the leaves.

Furthermore, given that both the binary and the aggregation atom bi can fail, there is also

an optional extra child that captures that bi fails and V is undefined. This is reminiscent

of logical decision trees, where every internal node contains a query, and there is both

a success and a fail branch (Blockeel and De Raedt 1998). Finally, the tree’s leaf nodes

contain the head of the DC, which is of the form h ∼ Dφ. The leaf node also includes

the statistical modelMψ present in the body of the DC.

Depending on the type of the random variable defined by h, the distribution Dφ and the

modelMψ can be one of the three types defined in Table 2 in our current implementation

of DiceML. Examples of DLTs are shown in Figure 1. It should be clear that if no

continuous variable appears in the branch, then Mψ is absent, and Dφ is a Gaussian

distribution or discrete distribution depending on the type of random variable defined

by h.
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Fig. 1. A collection of DLTs corresponding to the JMP in Example 5.1.

It is straightforward to convert the DLT to a set of DCs. Basically, every path from the

root to a leaf node in the DLT corresponds to a DC of the form h ∼ Dφ ← b1, ..., bn,Mψ.

Example 6.1

The example of DLTs are shown in Figure 1. There is one tree for each attribute, and

together these DLTs make up the JMP of Example 5.1. Consider for instance the bottom

left DLT in the collection of DLTs shown in Figure 1. The leftmost path from the root

proceeding to the leaf node in the DLT corresponds to the following clause:

creditScore(C) ∼ gaussian(Mean,10.1) ← client(C), mod(X,(hasAcc(C,A),
freq(A)∼=X),low), linear([Y],[300,0.2],Mean).

We can now summarize the learning task that is tackled by DiceML as that of learning

a DLT for a particular attribute. More formally,

Given:

• an attribute a

• training data consisting of,

— a set of facts ADB ∪RDB representing a relational data DB;
— a set of DCs (possibly empty) representing the background knowledge BK;

• a declarative bias L that defines the set of DCs that are allowed in hypotheses;

• a scoring function

Find: A distributional logic tree for a, which satisfies L and which scores best on the

scoring function

Once DLTs are learned for all attributes, they are converted to clauses that together

with the set of facts RDB constitute the final learned JMP.
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Algorithm 1: Induction of distributional logic trees

procedure induce-DLT(T : tree, Q : query, E : examples, V : numeric variables)

if E is not empty and sufficiently homogeneous then

compute the best clause a(T ) ∼ Dφ ← Q,Mψ using V according to score

turn T into the leaf representing this clause

else

for all queries (Q, l(V )) ∈ ρ(Q) do

compute score((Q, l(V )), E)
end for

let (Q, l(V )) be the best refinement with regard to the score

T .test := l(V )

if V takes discrete values {v1, ..., vn} then
for all vi
Ei := the set of examples in E for which Q, l(V ), V == vi succeeds

call induce-DLT(T .child(i), Ei, (Q, l(V ), V == vi), V)
end for

else %V takes continuous values

Ev := the set of examples in E for which Q, l(V ) succeeds

call induce-DLT(T .child(success), Ev, (Q, l(V )), V ∪ {V })
Efail := the set of examples in E for which Q, l(V ) fails

call induce-DLT(T .child(fail), Efail, (Q, \+ l(V )), V)

We now describe our approach DiceML that learns JMPs. We do this in two different

steps. We first present an algorithm to learn a DLT for a single attribute. Afterwards, we

show how to learn a set of DLTs, that is, a JMP in an iterative EM-like manner, which

is useful to deal with missing values.

6.1 Learning a distributional logic tree

The distributional logic tree learner follows the standard decision tree learning algorithm

sketched in Algorithm 1.

The induction process for the tree for a target attribute predicate a(T ) starts with

the tree, and the query initialized to an entity predicate e(T ) of the same type as the

attribute predicate, the full set of examples E and the empty set of variables V. The
algorithm recursively adds nodes in the tree. Before adding a node, it first tests whether

the non-empty example set E is sufficiently homogeneous. If it is, it will compute the

best statistical modelMψ and the distribution Dφ to be used in that leaf. The set E is

judged sufficiently homogeneous in a tree if none of the possible splitting or refinement

operations increases the score by at least ε. Furthermore, as there is no information in

an empty set of examples, the algorithm does not learn DCs for branches of the tree that

contain no examples.

In case the nodes should be further expanded, the standard recursive splitting proce-

dure is followed, that is, all possible tests l to be put in the node are computed using a

refinement operator ρ and evaluated, the best refinement is selected and put in the node

as a test, afterwards the children of the node are computed, and the procedure is called
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recursively. If the literal l(V ) produces discrete values, there is one branch per possible

value; if it is continuous, there is one branch in which the value of the continuous variable

V will be remembered so that it can be used in the statistical model. The final branch is a

fail branch corresponding to the case where the query Q, l(V ) fails. Such failing branches

are also used in the logical decision tree learner TILDE (Blockeel and De Raedt 1998).

The process terminates when there are no attributes left to test on, or when examples

at each leaf nodes are sufficiently homogeneous.

Several aspects of the algorithm still need to be explained in detail.

The refinement operator For generating refinements of the node, the algorithm employs

a refinement operator (Džeroski 2009) that specializes the body Q (the conjunction of

atoms in the path from the root to the node) by adding a literal l to the body yielding

(Q, l), where l is either a binary atom of the form aj(T ) or an aggregation atom as

discussed in the beginning of this section. The operator ensures that only the refinements

that are declarative bias conform are generated. The details of the declarative bias are

provided in the supplementary material.

Estimating the parameters of the statistical model. The addition of the leaf node requires

one to estimate parameters of the statistical model Mψ and/or parameters of the dis-

tribution Dφ. Let us look at the following example to understand the estimation of the

parameters.

Example 6.2

Suppose that the training data consists of the following set of facts and DCs:

account(a 1). account(a 2).
freq(a 1) ∼ discrete([0.2:low,0.8:high]).
freq(a 2) ∼ val(low).
savings(a 1) ∼ val(3000).
savings(a 2) ∼ val(4000).
deposit(A) ∼ gaussian(30000, 100.1) ← account(A), freq(A)∼=low.
deposit(A) ∼ gaussian(40000, 200.2) ← account(A), freq(A)∼=high.
Further, suppose that a path from the root to leaf node while inducing DLT for savings

corresponds to the following clause,

savings(A) ∼ gaussian(μ,σ) ← account(A), freq(A)∼=low, deposit(A)∼=X,
linear([X],[w1,w0],μ).

where {w0, w1, μ, σ} are the parameters that we want to estimate.

There are two substitutions of the variable A, that is, θ1 = {A/a 1} and θ2 = {A/a 2},
that are possible for the clause. The parameters of the clause can be approximately

estimated from samples of the partial possible world obtained by proving the query

?- hθ1,Qθ1 and the samples obtained by proving the query ?- hθ2,Qθ2. Following Equa-

tion 2, the weight w
(j)
θi

of an jth sample obtained by proving a query ?- hθi,Qθi is given by,

w
(j)
θi

=
w

(j)
q w

(j)
e∑N

j=1 w
(j)
e

, (3)

where w
(j)
q is 1 if the jth sample of the partial possible world entails the query; otherwise,

it is 0. Since the evidence set is empty, w
(j)
e is always 1 here.

https://doi.org/10.1017/S1471068421000144 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000144


98 N. Kumar et al.

Suppose, we obtained the following partial possible worlds, where each world is

weighted by the weight obtained using Equation 3.

[savings(a 1)∼=3000,account(a 1),freq(a 1)∼=low,deposit(a 1)∼=30010.1],
w

(1)
θ1

= 0.5.

[savings(a 1)∼=3000,account(a 1),freq(a 1)∼=high,deposit(a 1)∼=40410.3],
w

(2)
θ1

= 0.

[savings(a 2)∼=4000,account(a 2),freq(a 2)∼=low,deposit(a 2)∼=30211.3],
w

(1)
θ2

= 0.5.

[savings(a 2)∼=4000,account(a 2),freq(a 2)∼=low,deposit(a 2)∼=30410.5],
w

(2)
θ2

= 0.5.

Thus, we have four data points (i.e. partial possible worlds) to estimate parameters. The

natural way for estimating the parameters is via log-likelihood maximization. However,

in our case, each data point is weighted. In such a case, Conniffe (1987) argues that the

estimation logically proceeds via expected log-likelihood maximization. So, to estimate

the parameters, we maximize the expected log-likelihood of savings, that is given by the

expression,

ln(N (3000 | 30010.1w1 + w0, σ))× 0.5 + ln(N (3000 | 40410.3w1 + w0, σ))× 0+

ln(N (4000 | 30211.3w1 + w0, σ))× 0.5 + ln(N (4000 | 30410.5w1 + w0, σ))× 0.5
. (4)

It should be clear that the same approach can be used to estimate the parameters from

any DCs and/or facts present in the training data.

Notice from the above example that substitutions of the clause are required to estimate

the clause’s parameters. We call such substitutions examples and define them formally,

Definition 6.1

(Examples at the leaf node) Given the training data and a path from the root to a leaf

node L corresponding to a clause h ∼ Dφ ← Q,Mψ, we define the examples E at the

leaf node L to be the set of substitutions of the clause that ground all entity relations,

link relations and attributes in the clause.

Generalizing from Equation 4, parameters of any distribution and/or of any statistical

model at any leaf node can be estimated by maximizing the expected log-likelihood E(ϕ),

which is given by the following expression,

E(ϕ) =
∑
θi∈E

N∑
j=1

ln(p(hθi | ϕ,Vθ(j)i ))w
(j)
θi
, (5)

where ϕ is the set of parameters, E is the set of examples at the leaf node, V is the set

of continuous variables in Q, N is the number of times the query ?- hθi,Qθi is proved,

w
(j)
θi

is the weight of the jth sample, Vθ(j)i is jth sample of continuous random variables

and p(hθi | ϕ,Vθ(j)i ) is the probability distribution of the random variable hθi given

ϕ and Vθ(j)i . For the three simpler statistical models that we considered, the expected

log-likelihood is a convex function. DiceML uses scikit-learn (Pedregosa et al. 2011) to

obtain the maximum likelihood estimate ϕ̂ of the parameters.

The Scoring Function Clauses are scored using the Bayesian Information Criterion (BIC,

Schwarz 1978) for selecting the best among the set of candidate clauses. The score of
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a clause h ∼ Dφ ← Q,Mψ, which corresponds to a path from the root to a leaf, is

given by,

s(h ∼ Dφ ← Q,Mψ) = 2E(ϕ̂)− k ln |E|, (6)

where |E| is the number of examples E at the leaf, k is the number of parameters. The

score avoids over-fitting and naturally takes care of the different number of examples at

different leaves. To determine the score of the refinement (Q, l(V )) of the clause, where

V takes discrete values {v1, . . . , vn}, the score of n + 1 clauses corresponding to n + 1

branches are summed. That is, the score of the refinement is given by,

score((Q, l(V )), EV ) = s(h ∼ Dφ1
← Q, l(V ), V == v1,Mψ1

) + · · ·+
s(h ∼ Dφn

← Q, l(V ), V == vn,Mψn
) + s(h ∼ Dφfail

← Q, \+ l(V ),Mψfail
),

(7)

where EV is the number of substitutions to the clause h ∼ DφV
← Q, l(V ),MψV

. The

score is computed in the similar manner when V takes continuous value.

Learning Joint Model Programs To learn our final joint model program PDB, we induce

DLTs, in an order defined by the user in the declarative bias, separately for each attribute

predicate. Recall that valid DC programs require the existence of a rank assignment ≺
over predicates of the program. The order declares the rank assignment over attributes.

Each path from the root to the leaf node in each DLT corresponds to a clause in the

program PDB. This program defines the joint probability distribution and probabilistic

inference in this program can be used to compute a probability distribution over any set

of cells given the observed value of any other set of cells.

6.2 Learning JMPs in the presence of missing data

We explore two approaches in this paper:

6.2.1 Handling missing data using negated literals

One approach of learning probabilistic models from missing data that we have emphasized

so far is to treat missing values as a separate category and learn conditional distribu-

tions also for this category. By reserving one branch in the internal nodes for missing

values (negation), DLTs do specify distributions for the target attribute (a) in the con-

dition when values are missing. This branch corresponds to the negated literal in the

distributional clause.

Example 6.3

Consider DLT for loanAmt (“loan amount”) in the collection of DLTs shown in Figure

1. The rightmost path from the root proceeding to the leaf node in the DLT corresponds

to the clause with negated literal:

loanAmt(L) ∼ gaussian(25472.3,10.2) ← loan(L), \+avg(X,
(hasLoan(A,L), savings(A)∼=X), Y).

The above clause specifies a distribution from which the loan amount is drawn if the loan

has no account or the loan has accounts but the savings of these accounts are missing.

There are other approaches of learning probabilistic models from missing data. The

most common approach is EM. We discuss this approach next.
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6.2.2 Learning JMPs using the stochastic EM

In this approach, we learn programs iteratively by explicitly modeling the missing data

and start with the program learned so far. To realize this, we learn programs inside

the stochastic EM algorithm (Diebolt and Ip 1995). In this setting, we assume that

background knowledge is not present.

Consider a training multi-relational tables DB with missing cells Z = {Z1, . . . , Zm}
and observed cells {X1

∼= x1, . . . , Xn
∼= xn} (abbreviated as X ∼= x), where xi is the

value of the observed cell Xi. The iterative procedure starts by first learning a program

P
0
DB with negated literals from data with missing cells — using the same algorithm

(Algorithm 1), subsequent programs are learned from data after filling missing cells with

their sampled joint state. Formally, given the current learned program P
i
DB specifying a

probability distribution p(X,Z), the (i+ 1)-th EM step is conducted in two steps:

E-step A sample {Z1
∼= z1, . . . , Zm ∼= zm} (abbreviated as Z ∼= z) of the missing cells Z is

taken from the conditional probability distribution p(Z | X ∼= x). The missing cells Z are

filled in the tables by asserting the facts {Z1 ∼ val(z1), . . . , Zm ∼ val(zm)} (abbreviated
as Z ∼ val(z)) in the training data.

M-step A new program P
i+1
DB is learned from the training data , and subsequently facts

Z ∼ val(z) are retracted from the training data. However, in this case, the parameters

of distribution and/or statistical models at the leaf node are estimated by maximizing

the log-likelihood rather than maximizing the expected log-likelihood. This is because,

in this case, the training data does not consist of probabilistic facts or distributional

clauses. Following equation (5), the log-likelihood function L(ϕ) is given by the following

expression,

L(ϕ) =
∑
θi∈E

ln(p(hθi | ϕ,Vθ(j)i )). (8)

The number of iterations decides the termination of the procedure. It is worth noting

that we learn the structure as well as the parameters of the program PDB, which is more

challenging compared to learning only parameters of the model as in the case of standard

stochastic EM. In the experiment, we demonstrate that the program learned at the end

of stochastic EM procedure performs better compared to the learned program using the

previous approach (Section 6.2.1).

The learning algorithm presented in this section is similar to the standard structural

EM algorithm for learning Bayesian networks (Friedman 1997). The main difference,

apart from having different target representations (DC programs vs. Bayesian networks),

is that structural EM uses the standard EM (Dempster et al. 1977) for structure learning.

Our approach uses the stochastic EM for structure learning for the tractability reasons

(hybrid probabilistic inference in large relational data is computationally very challeng-

ing).

7 Experiments

This section empirically evaluates JMPs learned by DiceML. We first describe the data

sets that we used, and then explain the research questions that we address.
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We used the same data sets as used in Ravkic et al. (2015) to evaluate a hybrid

relational model. Details of these data sets are as follows:

Synthetic University Data Set This data set contains information of 800 students, 125

courses and 125 professors with three attributes in the data set being continuous while

the rest three attributes being discrete. For example, the attribute intelligence/1 rep-

resents the intelligence level of students in the range [50.0, 180.0] and the attribute

difficulty/1 represents the difficulty level of courses that takes three discrete values

{easy,med, hard}. The data set also contains three relations: takes/2, denoting which

course is taken by a student; friend/2, denoting whether two students are friends and

teaches/2, denoting which course is taught by a professor.

Real-world PKDD’99 Financial Data Set This data set is generated by processing the

financial data set from the PKDD’99 Discovery Challenge. The data set is about services

that a bank offers to its clients, such as loans, accounts, and credit cards. It contains

information of four types of entities: 5358 clients, 4490 accounts, 680 loans and 77 dis-

tricts. Ten attributes are of the continuous type, and three are of the discrete type. The

data set contains four relations: hasAccount/2 that links clients to accounts; hasLoan/2

that links accounts to loans; clientDistrict/2 that links clients to districts; and finally

clientLoan/2 that links clients to loans. This data set is split into ten folds considering

account to be the central entity. All information about clients, loans, and districts related

to one account appear in the same fold.

In addition to these benchmark data sets, we also performed experiments with one

more data set:

Real-world NBA Data Set This data set is about basketball matches from the National

Basketball Association (Schulte and Routley 2014). It records information about matches

played between two teams and actions performed by each player of those two teams. There

are 30 teams, 30 games, 392 players and 767 actions. In total, there are 19 attributes,

and all of them are of integer type. We treated 18 as continuous and 1 attribute, that is,

resultofteam1/1 that takes two values {win, loss} as discrete. This data set also contains

relations, such as, team1id/2 that specifies the first team of matches, team2id/2 that

specifies the second team of matches, teamid/3 that relates matches, players and teams.

Considering the match to be a central entity, 90% of the data set was used for training

and the rest for testing.

Specifically, we address the following questions:

Question 1. How does the performance of JMPs learned by DiceML com-

pare with the state-of-the-art hybrid relational models when trained on a

fully observed data?

We compared JMPs learned by DiceML, in the case of fully observed data, with

the model learned by the state-of-the-art algorithm Learner of Local Models – Hybrid

(LLM-H) introduced by Ravkic et al. (2015). The LLM-H algorithm learns a joint rela-

tional model in the form of a HRDN. This algorithm requires training data to be fully

observed. To evaluate HRDNs, (Ravkic et al. 2015) followed the methodology of predict-

ing an attribute of an instance in the testing data, using the rest of the testing data as
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Table 3. Differences between individual DLTs, HRDNs, and JMPs

Individual DLTs HRDNs JMPs

Individual models trained
for individual attributes

Joint models specifying
a joint probability
distribution over all
attributes

Joint models specifying
a joint probability
distribution over all
attributes

Can make use of negated
literals to deal with
missing data

Can not deal with missing
data

Can be trained using EM to
deal with missing data
and can also make use of
negated literals

Can not be used for the
autocompletion task that
requires probabilistic
inference

Can not be used for the
autocompletion task3

Can be used for the
autocompletion task

observed. We followed the same methodology in this experimental setting. In addition

to HRDNs, we also compared the performance of JMPs with individual DLTs learned

for each attribute separately. Indeed on fully observed data, we could learn individual

DLTs and use just one DLT to predict an attribute. However, then we could not deal

with the autocompletion task, that is, predicting any set of cells given any other set of

cells. The current experimental setting, that is, predicting a cell given all other cells, is

simple compared to the autocompletion setting (our original problem). For clarity, we

summarize the differences between these three models in Table 3.

Nonetheless, we performed this experiment as a sanity check to ensure that (i) the

individual DLTs that we learn are not worse than HRDNs and (ii) the JMPs are not

significantly worse than those DLTs. Even though we do not expect JMPs to be generally

better since learning joint models has no advantage over learning individual models when

training data is fully observed. Joint models can infer using both predictive and diagnostic

information (Pearl 1988), while individual models can only use predictive information.

We used the same evaluation metrics as used in Ravkic et al. (2015) to evaluate the

quality of predictions of JMPs.

Evaluation metric To measure the predictive performance for discrete attributes, multi-

class area under ROC curve (AUCtotal) (Provost and Domingos 2000) was used, whereas

normalized root-mean-square error (NRMSE) was used for continuous attributes. The

NRMSE of an attribute ranges from 0 to 1 and is calculated by dividing the RMSE by

the range of the attribute. To measure the quality of the probability estimates, weighted

pseudo-log-likelihood (WPLL) (Kok and Domingos 2005) was used, which corresponds

to calculating pseudo-log-likelihood of instances of an attribute in the test data set and

dividing it by the number of instances in the test data set.

In our experiment, we used the aggregation function average for continuous attributes,

and mode and cardinality for discrete attributes. An ordering chosen randomly among

3 Although HRDNs are joint probabilistic models, inference in the presence of unobserved data, which
is nontrivial, has not been studied (I. Ravkic, personal communication, February 2020). So it can not
be used for the relational autocompletion task.
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Table 4. The performance of JMP compared to HRDN and single trees for each attribute

(DLT) on fully observed PKDD’99 financial data set. The best results (mean ± standard

deviation) are in bold

Evaluation Predicate HRDN JMP DLT

AUCtotal gender/1 0.50 ± 0.01 0.52 ± 0.03 0.50 ± 0.03
freq/1 0.82 ± 0.01 0.77 ± 0.07 0.83 ± 0.04

loanStatus/1 0.66 ± 0.04 0.82 ± 0.05 0.79 ± 0.04

NRMSE clientAge/2 0.28 ± 0.02 0.24 ± 0.02 0.24 ± 0.01
avgSalary/1 0.13 ± 0.02 0.18 ± 0.01 0.24 ± 0.00

ratUrbInhab/1 0.20 ± 0.00 0.25 ± 0.01 0.18 ± 0.00
avgSumOfW/1 0.02 ± 0.00 0.02 ± 0.00 0.03 ± 0.01

avgSumOfCred/1 0.02 ± 0.00 0.02 ± 0.01 0.03 ± 0.01
stdOfW/1 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.00

stdOfCred/1 0.05 ± 0.01 0.04 ± 0.00 0.04 ± 0.00
avgNrWith/1 0.15 ± 0.01 0.11 ± 0.00 0.11 ± 0.01
loanAmount/1 0.16 ± 0.02 0.12 ± 0.01 0.11 ± 0.01

monthlyPayments/1 0.18 ± 0.02 0.14 ± 0.01 0.15 ± 0.02

Table 5. WPLL for each attribute on fully observed university data set, consisting of

800 students, 125 courses, and 125 professors. The best results are in bold

Predicate HRDN JMP DLT

nrhours/1 −4.48 −3.39 −3.20
difficulty/1 −0.02 −0.00 −0.03
ability/1 −5.34 −3.83 −3.77
intelligence/1 −4.66 −4.08 −3.37
grade/2 −1.45 −1.00 −1.00
satisfaction/2 −1.54 −1.05 −1.05
Total WPLL −17.49 −13.35 −12.42

attributes was provided in the declarative bias. While training individual DLTs, ordering

among attributes was not considered since those DLTs were not joint models but individ-

ual models for each attribute. We used the same data with the same settings as in Ravkic

et al. (2015) to compare the performance of our algorithm. Table 4 shows the comparison

on financial data set using 10-fold cross-validation. During testing, prediction of a test

cell was the mode of the probability distribution of the cell obtained by conditioning

over the rest of the test data. A Bayes-Ball algorithm (Shachter 1998) that performs lazy

grounding of the learned program was used to find the evidence that was relevant to the

test cell. Table 5 shows the comparison on university data set divided into training and

testing set. Numbers for HRDNs on these two data sets are taken directly from Rav-

kic et al. (2015). Table 6 shows the result on the additional data set, that is, the NBA

data set.

We observe that on several occasions, JMPs outperforms HRDNs, although both of

these approaches use the same features to learn classification and regression models for
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Table 6. WPLL for each attribute on the NBA data set. The best results are in bold

Predicate HRDN JMP DLT

plusminus/2 −5.38 −3.68 −3.62
defensiverebounds/2 −3.56 −2.14 −2.12
fieldgoalsmade/2 −1.66 −0.58 −1.03
assists/2 −3.10 −1.93 −1.91
blocksagainst/2 −1.36 −0.84 −0.76
freethrowsmade/2 −1.52 −1.25 −1.16
offensiverebounds/2 −2.27 −1.36 −1.41
threepointattempts/2 −0.00 −0.00 −0.00
threepointsmade/2 −0.00 −0.00 −0.00
starter/2 −0.67 −0.70 −0.36
turnovers/2 −2.45 −1.56 −1.55
personalfouls/2 −2.44 −1.67 −1.60
freethrowattempts/2 −1.66 −0.98 −0.99
points/2 −2.87 −1.84 −1.90
minutes/2 −10.91 −7.21 −7.21
steals/2 −1.63 −1.03 −1.03
fieldgoalattempts/2 −3.30 −1.98 −1.98
blockedshots/2 −1.37 −0.81 −0.81
resultofteam1/1 −2.05 −0.00 −0.00
Total WPLL −48.22 −29.56 −29.45

attributes. This observation can be explained by the fact that LLM-H learns tabular

conditional probability distributions (CPDs) while DiceML learns tree-structured CPDs

with much fewer parameters. (Chickering et al. 1997; Friedman and Goldszmidt 1998;

Breese et al. 1998) observed that tree-structured CPDs are a more efficient way of au-

tomatically learning propositional probabilistic models from data. Unsurprisingly, we

observe similar behavior for relational models as well. Apart from better performance,

tree-structured CPDs make JMPs more interpretable. JMPs are human-readable pro-

grams while HRDNs are not. As already discussed, we expect that single models for

attributes, that is, individual DLTs outperform both joint models, that is, JMPs and

HRDNs. It is worth reiterating that individual models can not be used for the autocom-

pletion task, while joint models can be used.

The experiment suggests that JMPs learned by DiceML can outperform the state-of-

the-art algorithm for fully observed data.

Question 2. Can DiceML utilize background knowledge while learning

distributional clauses?

Background knowledge provides additional information about attributes that can be

probabilistic when expressed as the set of DCs. A learning algorithm that can utilize

this information along with the training data can learn a better model. We performed

this experiment to examine whether DiceML can also learn a DLT for a single attribute

(a set of clauses for an attribute) from the training data along with background knowledge

expressed as a set of DCs. This learning task is a more complex task than the previous
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Fig. 2. Performance of models learned in the three scenarios (Question 2) versus the
percentage of removed cells. The bottom three figures show AUCtotal of discrete attributes,
whereas, the upper ten figures show NRMSE of continuous attributes. Less NRMSE is better

while more AUCtotal is better.

task, where we learned individual DLTs from only training data, since this task involves

probabilistic inference along with learning.

We used the financial data set divided into ten folds. Two folds (T ) were used for

training the DLT for an attribute; one fold was used for testing that DLT; and seven

folds were used for generating background knowledge BK, which was a set of DCs for

all attributes, that is, a JMP. We considered three scenarios: (1) A DLT for an attribute

was induced from the training set T ; subsequently, the DLT was used to predict the

attribute in the test fold. (2) A partial data set T ′ was generated by removing x% of

cells at random from the training set T . Subsequently, a DLT for the same attribute was

induced from the partial set T ′. Note that the DLT can be induced from partial data

since we allow negated literals in the body of clauses. (3) A DLT for the same attribute

was induced from the partial set T ′ as well as BK.

The predictive performance in the test set for the three scenarios, varying the per-

centage of removed cells, is shown in Figure 2. Compared to the second scenario, much

lower NRMSE is observed in the third scenario. On several occasions, DLTs learned in
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Fig. 3. Performance of the three models (Question 3) on the financial data set versus the
percentage of removed cells. The bottom three figures show AUCtotal of discrete attributes,
whereas, the upper ten figures show NRMSE of continuous attributes. Less NRMSE is better

while more AUCtotal is better.

the third scenario, even outperform the same learned in the first scenario. Note that BK

is itself a probabilistic model learned from seven folds of data and is rich in knowledge.

These results lead to the conclusion that DiceML can learn DCs from the training data

utilizing additional probabilistic information from background knowledge.

Question 3. Can DiceML learn JMPs from relational data when a large

portion of the data is missing?

Probabilistic inference in a hybrid relational joint model is challenging. An even more

challenging task, which requires numerous such inferences, is learning such models from

partially observed relational data. We evaluated the performance of JMPs learned by

DiceML from such data. To the best of our knowledge, no system in the literature can

learn such models from the partially observed relational data with continuous as well as

discrete attributes. We used the financial data set and performed the following experiment

to answer the question.

We randomly removed some percentage of cells from the client, loan, account, and

district tables of the financial data set to obtain a partial data set. Then we trained three

models to predict attributes in the test data set. The first model was a JMP obtained
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Table 7. The time taken to draw a joint state of missing data from the joint distribution

Percentage of missing cells number of missing cells Time in secs (approx.)

10% 3530 131
20% 7062 113
30% 10,595 97
40% 14,125 72

Fig. 4. Performance of the three models, discussed for Question 3, on the NBA data set. The
bottom figure show AUCtotal of the discrete attribute, whereas, the upper eighteen figures

show NRMSE of continuous attributes. Less NRMSE is better while more AUCtotal is better.

by performing stochastic EM on the partial data set. The second model was just an

individual model, that is, a DLT for each attribute trained on the partial data set. It is

worth reiterating that the DLT can be learned even when some cells are missing since

we allow negated literals in the body of DCs. The last model was also an individual DLT

for each attribute but was trained on the complete training data set. The performance

of these models is shown in Figure 3. Nine folds of the data set were used for training,

and the rest for testing. The variance of NRMSE/AUCtotal is shown by shaded region

when the experiment was repeated ten times on this data set. We observe that the JMP

obtained using EM performs better, for most of the attributes, than individual DLTs

trained on the partial data set. As expected, DLTs trained on the complete data perform

best. The convergence of the stochastic EM after few iterations is shown in Figure 5. To
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Fig. 5. The convergence of the stochastic EM on the financial data set.

obtain this figure, the JMP was obtained from the financial data set with 10% of cells

removed using EM. This figure shows the data log-likelihood after each iteration of EM

compared with the data log-likelihood when the JMP was obtained from the complete

data.

The experimental environment was an Intel(R) Xeon(R) E5-2640 v3 2.60GHz CPU,

128GB RAM server running Ubuntu 18.04.4 LTS (64 bit). On the financial data set,

DiceML took approximately 226 seconds to learn the JMP in each iteration of EM. The

time required to sample a joint state of missing data from this program is shown in

Table 7.

Results for the same experiment on the NBA data set is shown in Figure 4. We observe

that when a large portion of data is missing, the JMP learned using stochastic EM

performs better than individual DLTs. When 40% of data is missing, the JMP performs

better on 11 attributes out of 19 attributes. On 3 attributes, the performance is the same.

On 5 attributes, individual DLTs perform better.

All these results demonstrate that DiceML can learn JMPs even when a large portion

of data is missing.

8 Conclusions

We presented DiceML, a probabilistic logic programming based approach for tackling

the problem of autocompletion in multi-relational tables. We first integrate DCs with

statistical models. Then these clauses are used to represent a hybrid relational model in

the form of a DC program. Such a program is capable of defining a complex probability

distribution over the entire related tables. Probabilistic inference in this program allows

predicting any set of cells given any other set of cells required by the autocompletion task.

Since DC is expressive, we can map related tables to a set of facts in the DC language.

In line with the approaches to (probabilistic) inductive logic programming, our approach

learns such programs automatically from the set of facts and can make use of additional

probabilistic background knowledge, if available. We demonstrated that such programs
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learned from fully observed relational data can outperform the state-of-the-art hybrid

relational model. Another advantage of such programs over existing models is that such

programs are interpretable. Although inference in hybrid relational models is hard, we

demonstrated that the program learned by DiceML performs well, even when a large

portion of data is missing. DiceML combines stochastic EM with structure learning to

realize this.
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Džeroski, S. 2009. Relational data mining. In Data Mining and Knowledge Discovery Handbook.
Springer, 887–911.

Friedman, N. 1997. Learning belief networks in the presence of missing values and hidden
variables. In Proceedings of the Fourteenth International Conference on Machine Learning,
ICML ’97, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 125–133

Friedman, N., Getoor, L., Koller, D. and Pfeffer, A. 1999. Learning probabilistic rela-
tional models. In Proceedings of the 16th International Joint Conference on Artificial Intelli-
gence, IJCAI’99. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1300–1307

Friedman, N. and Goldszmidt, M. 1998 Learning Bayesian networks with local structure. In
Learning in Graphical Models, vol. 89. Springer, 421–459.

Getoor, L., Friedman, N., Koller, D. and Pfeffer, A. 2001. Learning probabilistic rela-
tional models. In Relational Data Mining. Springer, 307–335.

Gutmann, B., Jaeger, M. and De Raedt, L. 2010. Extending problog with continuous
distributions. In International Conference on Inductive Logic Programming, vol. 6489. Lecture
Notes in Computer Science. Springer, 76–91.

Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M. and De Raedt, L. 2011. The magic
of logical inference in probabilistic programming. Theory and Practice of Logic Programming,
11, 4–5, 663–680.

Ilyas, I. F. and Chu, X. 2015. Trends in cleaning relational data: Consistency and deduplica-
tion. Foundations and Trends in Databases, 5, 4, 281–393.

Islam, M. A., Ramakrishnan, C. and Ramakrishnan, I. 2012. Inference in probabilistic logic
programs with continuous random variables. Theory and Practice of Logic Programming, 12,
4–5, 505–523.

Jaeger, M. 1997. Relational Bayesian networks. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence 1997, UAI’97. AUAI Press, 266–273.

Kersting, K. and De Raedt, L. 2007. Bayesian logic programming: Theory and tool. In
Introduction to Statistical Relational Learning. MIT Press.

Kersting, K., Natarajan, S. and Poole, D. 2011. Statistical relational AI: Logic, probability
and computation. In Proceedings of the 11th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’11), 1–9.

Kersting, K. and Raiko, T. 2005. ‘say em’ for selecting probabilistic models for logical
sequences. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelli-
gence. AUAI Press, 300–307.

Khot, T., Natarajan, S., Kersting, K. and Shavlik, J. 2012. Structure learning with
hidden data in relational domains. In Proceedings of ICML Workshop on Statistical Relational
Learning. 2012.

Khot, T., Natarajan, S., Kersting, K. and Shavlik, J. 2015. Gradient-based boosting
for statistical relational learning: the markov logic network and missing data cases. Machine
Learning, 100, 1, 75–100.

Kimmig, A., Bach, S. H., Broecheler, M., Huang, B. and Getoor, L. 2012. A short
introduction to probabilistic soft logic. In In Proceedings of NIPS Workshop on Probabilistic
Programming: Foundations and Applications (NIPS Workshop-12).

Kok, S. and Domingos, P. Learning the structure of Markov logic networks. In Proceedings
of the 22nd International Conference on Machine Learning 2005. ACM, 441–448.

Kolb, S., Teso, S., Dries, A. and De Raedt, L. 2020. Predictive spreadsheet autocompletion
with constraints. Machine Learning, 109, 2, 307–325.

Koller, D., Friedman, N., Džeroski, S., Sutton, C., McCallum, A., Pfeffer, A.,
Abbeel, P., Wong, M.-F., Heckerman, D., Meek, C. and et al.. 2007. Introduction to
Statistical Relational Learning. MIT Press.

https://doi.org/10.1017/S1471068421000144 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000144


Learning Distributional Programs for Relational Autocompletion 111

Lavrac, N. and Dzeroski, S. 1994. Inductive Logic Programming: Techniques and Applica-
tions. Prentice Hall.

Michels, S., Hommersom, A. and Lucas, P. J. F. 2016. Approximate probabilistic inference
with bounded error for hybrid probabilistic logic programming. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI’16. AAAI Press, 3616–
3622.

Moldovan, B., Moreno, P., Nitti, D., Santos-Victor, J. and De Raedt, L. 2018. Rela-
tional affordances for multiple-object manipulation. Autonomous Robots, 42, 1, 19–44.

Muggleton, S. 1991. Inductive logic programming. New Generation Computing, 8, 4, 295–318.

Muggleton, S. 1995. Inverse entailment and progol. New Generation Computing, 13, 3–4,
245–286.

Narman, P., Buschle, M., Konig, J. and Johnson, P. 2010. Hybrid probabilistic relational
models for system quality analysis. In 2010 14th IEEE International Enterprise Distributed
Object Computing Conference, pp. 57–66. IEEE.

Natarajan, S., Tadepalli, P., Dietterich, T. G. and Fern, A. 2008. Learning first-order
probabilistic models with combining rules. Annals of Mathematics and Artificial Intelligence,
54, 1, 223–256.

Neville, J. and Jensen, D. 2007. Relational dependency networks. Journal of Machine Learn-
ing Research, 8, 653–692.

Neville, J., Jensen, D., Friedland, L. and Hay, M. Learning relational probability trees.
In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining 2003. ACM, 625–630.

Ngo, L. and Haddawy, P. 1997. Answering queries from context-sensitive probabilistic knowl-
edge bases. Theoretical Computer Science, 171, 1–2, 147–177.

Nitti, D., Belle, V., De Laet, T. and De Raedt, L. 2017. Planning in hybrid relational
mdps. Machine Learning, 106, 12, 1905–1932.

Nitti, D., De Laet, T. and De Raedt, L. 2016a. Probabilistic logic programming for hybrid
relational domains. Machine Learning, 103a, 3, 407–449.

Nitti, D., Ravkic, I., Davis, J. and De Raedt, L. 2016b. Learning the structure of dy-
namic hybrid relational models. In Proceedings of the Twenty-Second European Conference
on Artificial Intelligence 2016b, ECAI’16. IOS Press, NLD, 1283–1290.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Elsevier.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,

A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. 2011. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.

Persson, A., Dos Martires, P. Z., De Raedt, L. and Loutfi, A. 2019. Semantic relational
object tracking. IEEE Transactions on Cognitive and Developmental Systems, 12, 1, 84–97.

Poole, D. 2008. The independent choice logic and beyond. In Probabilistic Inductive Logic
Programming, vol. 4911. Lecture Notes in Computer Science, . Springer, 222–243.

Provost, F. and Domingos, P. 2000. Improving probability estimation trees. Machine Learn-
ing, 52, 3, 199–215.

Quinlan, J. R. 1990. Learning logical definitions from relations. Machine Learning, 5, 3, 239–
266.

Quinlan, J. R. and Cameron-Jones, R. M. 1995. Induction of logic programs: Foil and
related systems. New Generation Computing, 13, 3-4, 287–312.

Ravkic, I., Ramon, J. and Davis, J. 2015. Learning relational dependency networks in hybrid
domains. Machine Learning, 100, 2–3, 217–254.

https://doi.org/10.1017/S1471068421000144 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000144


112 N. Kumar et al.
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Appendix A Declarative bias

The use of declarative bias, which allows users to declaratively specify the search space

of possible clauses to be explored while learning, is common in ILP systems such as

PROGOL (Muggleton 1995), TILDE (Blockeel and De Raedt 1998), CLAUDIEN (De

Raedt and Dehaspe 1997), ALEPH (Srinivasan 2001), etc. When the space is potentially

huge, it plays an important role in restricting the search to finite and meaningful clauses.
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For our purposes, we adapt the bias declarations from (De Raedt 2008). In DiceML, the

bias consists of four types of declarations, that is, type, mode, rand, and rank declarations.

We describe them in turn with examples:

Types: All functors are accompanied by type declarations of the form

type(func(t1, · · · , tn)), where ti denotes the type of the i-th argument, that is,

the domain of the variable. For instance, consider the type declarations in Figure A 1.

Since the first argument of hasAcc/2 should be different type than the argument of

freq/1, the clause

age(C)∼ gaussian(30, 2.1) ← mod(X,(hasAcc(C,A),freq(C)∼=X),low).
is not type conform, but the following clause is:

age(C)∼ gaussian(30, 2.1) ← mod(X,(hasAcc(C,A),freq(A)∼=X),low).

Modes: We also employ modes, which is standard in ILP, for each attribute. Modes

specify the form of literal bi in the body of the clause h ∼ Dφ ← b1, . . . , bn,Mψ. A

mode declaration is an expression of the form mode(a1, aggr, (r(m1, . . . ,mj), a2(mk))),

where mi are different modes associated with variables of functors, aggr is the name of

aggregation function, r is the link relation, and ai are attributes. The expression specifies

the candidate aggregation functions considered while learning clauses for the attribute

a1. If the link relation is absent, then the aggregation function is not needed, so the mode

declaration reduces to the form mode(a1, none, a2(mk))). The modes mi can be either

input (denoted by “+”) or output (denoted by “−”). The input mode specifies that at

the time of calling the functor the corresponding argument must be instantiated, the

output mode specifies that the argument will be instantiated after a successful call to

the functor. Consider the mode declarations in Figure A 1. The clause

age(C)∼ gaussian(30, 2.1) ← mod(X,(cliLoan(C,L1),status(L2)∼=X),appr).
is not mode conform since the first argument of cliLoan/2, that is, the variable C does

not satisfy the output mode and the variable L2 does not satisfy the input mode. The

following clause, however, satisfies the mode:

age(C)∼ gaussian(30, 2.1)← mod(X,(cliLoan(C1,L1),status(L1)∼=X),appr).

Rand Declarations: They are used to define the type of random variables (i.e. discrete

or continuous) and to specify the domain of discrete random variables.

Rank Declarations: As we have already seen in Section 3.2, the second validity condition

of the DC program requires the existence of a rank assignment ≺ over predicates of the

program. Hence, we introduce these declarations, to specify the rank assignment over

attributes. While learning DCs for a single attribute, the rank declaration is not used, it

is crucial while learning DC programs.

Example Appendix A.1

An example of the input to DiceML is shown in Figure A 1, where Table 1 is converted

into facts, and background knowledge is expressed using DCs. The first clause in the

background knowledge shown in the bottom right of the figure states that the age of
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Fig. A 1. An example of input to DiceML, which consists of a transformation of the
spreadsheet in Table 1, along with background knowledge and declarative bias.

carl follows a Gaussian distribution, and the second clause states that if a client has an

account in the bank and the account is linked to a loan account, then the client also has

a loan.

https://doi.org/10.1017/S1471068421000144 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000144

	Introduction
	Problem setting
	Probabilistic logic programming
	Logic programming
	Distributional clauses

	Advanced constructs in the DC framework
	Negation
	Aggregation
	Distributional clauses with statistical models

	Joint model program for multi-relational tables
	Modeling the input tables (Sets ADB and RDB)
	Modeling the probability distribution

	Learning joint model programs
	Learning a distributional logic tree
	Learning JMPs in the presence of missing data

	Experiments
	Conclusions
	References
	Appendix A Declarative bias

