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SUMMARY

The response to selection in any line depends on the size of the initial
sample by which the line is founded. For a single locus with additive
gene action the effects of number of founders on early rate of response and
on final limits are studied in relation to selection intensity and number
of parents in the selected line. The reduction in total response caused by
a small number of founders is greatest for large populations under intense
selection, especially when the desirable alleles are rare in the base popu-
lation. If these alleles are at high frequencies it is possible that a line
which has gone through a bottleneck may be more sensitive to a reduced
population size during subsequent selection than a line which has not.
Under some conditions replicate selection lines founded with small
samples are likely to be less variable in response than lines founded with
moderately large samples.

INTRODUCTION

It has long been recognized that random fluctuations may lead to changes of
gene frequency. This phenomenon has been extensively studied by Wright since
his classic paper (1931) and by others. There has been disagreement over its
importance in the evolution of natural populations, but there can be no doubt of
its influence on the results of laboratory experiments in quantitative genetics. In
such experiments population sizes are typically small and the results must be inter-
preted in the light of the effects of random genetic drift.

The effects of restricted population size on limits of response to artificial selec-
tion have been analysed by Robertson (1960) for a single locus, and by Latter
(1965) and by Hill & Robertson (1966) for pairs of linked loci.

Random sampling effects may conveniently be divided into two classes: those
which depend on the initial sample ('founder effects'), and those consequent upon
a continued restriction of population size during selection. Robertson (1960) briefly
discussed some aspects of the interaction of these factors, and in a later paper
(1966) described some experimental results for selection lines which had been sub-
jected to a severe initial restriction in population size. In this paper I give a rather
more detailed treatment of the problem than that of Robertson.

These questions are of some practical importance in plant and animal breeding,
especially when a new breed or species is introduced to a country. The initial
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introduction may well be of only a small number of individuals. In such circum-
stances one would like to know how response to subsequent selection will be
affected by the number of founders.

THE GENETIC MODEL

The analysis will be of selection at a single locus and most attention will be given
to the case of additive gene action. For unlinked loci with no epistasis, these results
may be applied to polygenic traits in the usual way by taking the selection coeffi-
cient at a locus as the product of the standardized selection differential and the
effect of the locus measured as a proportion of the phenotypic standard deviation
(Falconer, 1960, p. 206).

We consider a very large random mating base population in which a locus is
segregating for two alleles A± and A2, the frequency of the allele A2 being p. From
this base population lines are started by taking a random sample of n individuals
from whose progeny selection is begun. During the selection phase the effective
population size is N and the selective values of the three genotypes are

\-\s 1 l + £s.

This model should give a reasonably accurate description of the effect of selection
on a locus with additive effects on a quantitative character.

THE RATE OF RESPONSE IN THE FIRST GENERATION

For the above model the rate of response to selection in a large population with
gene frequency x is given with sufficient accuracy by

Aa; = \sx(\— x),

provided s is not too large. In a sample of n individuals from the base population
the number of A2 alleles will have a binomial distribution with probability p and
index 2n. If we let x be the frequency of A2 in such a sample, then x will also be
the gene frequency in a very large group of progeny produced by the members of
the sample, and the response to selection in such a large progeny group will be
given by the above equation. We may find the average response over all such
samples by using the moments of the binomial distribution to obtain

Thus for selection among large numbers of progeny produced by samples of size n
the expected rate of response in the first generation is proportional to (1 — [l/2n]).

Similarly we may use the moments of the binomial distribution to find the
variance of the selection response between initial samples. This gives the result

var
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If we write C2 = var (Ax)/[E(Ax)]2 so that C is the coefficient of variation of
response rate,

2np(l-p) 2n2(l-

The coefficient of variation is least when p = 0-5 and rises as p departs from this
value.

Next we consider the variation in rate of response between replicate lines, each
with an effective number of parents equal to N, taken from the same initial
sample. Kojima (1961) showed that for an initial sample with gene frequency x the
variance of response was given by

±x(l-

The expected variance between replicate lines within founder groups may then be
found by averaging this expression over all initial samples. Since for such binomial
samples

E[x(l-x)(l- 2x)] =3»( l -

we find the variance to be

var

This component of variance would usually be rather larger than the component
of variance between initial samples, especially when s is small. If selection lines
are founded from separate and independent samples the variance in rate of
response will be the sum of the two components. The variance would be dominated
by the within founder group component except when loci with large s values were
involved. For example, vrhenp = 0-5 the ratio of the between to the within initial
sample component is Ns2jl6n2.

SELECTION LIMITS

Of perhaps greater interest is the effect of a small number of founders on limits
to selection response. Robertson (1960) gave results for an initial sample of one
pair and also for three generations of single pair matings before selection began.
We now consider an arbitrary initial sample size.

If a selection line is taken from an initial sample in which the favoured allele has
frequency x then, as shown by Kimura (1957), the chance of fixing the desirable
allele under our model is

l_e-2Nsx
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We must find the expected value of u(x) for samples of size n from a population
with gene frequency p. Denoting this as un(p) we have

un(P) = l_e-2Ns

Now
In /2«\

E(e-w*) = 2 \pi(\-p)

= (\

and consequently
, v i ( i « + « e )

«*(!») = 1 _ e - 2 i v 8 — •

The limit of this expression asn-> oo is Kimura's result, as of course it should be.
For small values of Ns a power series expansion is

showing that the total response is approximately 2N times the initial response, as
was shown by Robertson (1960) in the absence of a founder effect. For small values
of Ns the founder effect is to reduce the total genetic gain by a fraction 1/2%. For
large values of Ns we take the limit as Ns -*• oo and obtain

un(P) = l - ( l - # ) 2 n -

This is intuitively obvious, since if Ns is large the favoured allele will be fixed if it
occurs in the initial sample, for which the probability is 1 — (1 — p)Zn. In this case
if p is small and n not large un{p) ~ 2np. The selection limit for rare alleles is thus
much more strongly influenced by number of founders when Ns is large than when
Ns is small.

The precise treatment of recessive genes is much more difficult, but a little may
be deduced easily. When Ns is very large the favoured recessive will be fixed if
included in the initial sample so that un(p) will be the same as for additive genes.
For a given initial sample with frequency x for the desirable recessive allele, the
chance of fixation given by Kimura (1957) may be expanded in a power series for
small Ns values to give

u{x) = x +

Averaging this over all initial samples of size n gives

For p = 0-5 the total gain is a fraction (1 — [1/2%]) of that from a large founder
group; for very small p the fraction is (1 — [l/4n2]); and for p near to 1 the fraction
is nearly (1 — [3/4%]). Thus for small Ns values the founder effect on response due
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Fig. 1. Total selection response for a given number of founders as a fraction of that
for an infinite number. Curves are drawn for base population gene frequencies of 0-8,
0-5, 0-2, 01 and 001.
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to recessive alleles resembles that for additive alleles. The same is true for large Ns
values, but no results have been found for intermediate values.

We return now to further consideration of the chance of fixation at an additive
locus. It is convenient to work with the ratio

which is the average total gain from a group of n founders as a fraction of that
expected from an infinitely large founder group under the same conditions of
selection. It is thus a useful measure of the limitations on total gain which are
imposed by a reduction in the initial sample size, and we now consider its behaviour
as p, Ns and n vary.

When Ns is small

Wn{p)^l-±,

while for large values of Ns
wn(p)~ l-(l-p)in-\

For a range of values of n, p and Ns the values of wn(p) have been calculated and
the results are presented in Fig. 1.

Table 1. Total selective gain for a given value o/Ns as a fraction

of that when Ns = oo

(n is the initial sample size, p the gene frequency in the base population.)

n

Ns p 1 2 4 16 64 oo

0-5 001 0-2449 0-1344 0-0715 0-0208 0-0080 0-0058
0-1 0-2449 0-1451 0-0910 01561 0-0556 0-0562
0-5 0-2449 0-2105 0-2164 0-2374 0-2430 0-2449
0-8 0-2449 0-2826 0-3191 0-3468 0-3535 0-3557

4 0-01 0-9640 0-8214 0-5870 0-2205 0-0906 0-0676
01 0-9640 0-8349 0-6539 0-4752 0-4898 0-5010
0-5 0-9640 0-9062 0-9120 0-9536 0-9617 0-9640
0-8 0-9640 0-9642 0-9839 0-9918 0-9930 0-9934

For low values of Ns, wn(p) is little affected by gene frequency. But when Ns
is high wn(p) is very sensitive to differences in gene frequency, the founder effect
being particularly drastic for alleles rare in the base population. For alleles
common in the base population (p ^ 0-5) wn(p) is less affected by number of
founders when Ns is large than when Ns is small, while the opposite is true when
p is small.

Another way of looking at the results is to ask how the fraction of the possible
total advance varies with Ns for a given initial sample size. To do this we consider
the function
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The possible advance is 1 — p except for the (1 — p)2n cases where the desirable
allele is not included in the initial sample, hence the denominator of vNs(p).

Table 1 gives the results of a few calculations. It can be seen from the table that
vA,s(p) does not change very markedly with n when the desirable allele is common
in the base population, but declines appreciably as n increases if the favoured
allele is rare in the base population. The value of Ns which is required in order to
obtain a given fraction of the possible response is thus greatest for large initial
samples from a base population in which the favoured allele is rare.

VARIATION BETWEEN LINES AT FIXATION

Selection lines obtained by the same procedure from one base population will
vary in total response both because different initial samples are used and because
of different sampling accidents during selection. For independent lines the variance
between lines at the limit is given by the binomial sampling variance

This variance is greatest when un(p) = 0-5. One result of this is that under some
conditions replicate selection lines founded by fairly large groups may respond
more variably than similarly selected lines founded by only a few individuals. For
example, when p = 0-01 and Ns is large the between line variance is greatest when
n = 34. Thus in selection for a trait whose response depends mainly on loci of large
effect where the desirable allele is rare, the results may be more variable in lines
founded by a moderate number of individuals than in lines founded by very few
or very many. The reason is simply that in initial samples of moderate size
appreciable proportions would include and fail to include the favoured alleles.
Virtually all very small samples would fail to include them while virtually all very
large samples would include them.

AN EXAMPLE

Dr D. E. Robertson has kindly allowed me to quote some of his data which are
relevant to the above considerations. A full account of the experiment is to be
published later. From the Canberra base population (Latter, 1964) a number of
initial samples were taken, some consisting of one pair (n = 2), some of five pairs
(n = 10) and some 20 pairs (n = 40). From each founder group two samples of
progeny were taken. One was at once subjected to selection, and the other was
kept for five generations of random mating with 40 pairs of parents and then
selected in the same way as the first sample. All lines were selected for high sterno-
pleural bristle number on the left side at an intensity of 20 %. Some lines had five
pairs of parents per generation (N = 10) and some 20 pairs (N = 40). The number
of replicate lines varied between treatments. After 30 generations of selection (i.e.
after generation 35 in the lines with a lag period) selection was discontinued,
although some lines appeared to be still responding. In Table 2 the mean increase
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in bristle number, averaged over both sexes, is given for each treatment. I shall
take these values as approximating to relative values of selection limits. The lag
period had no consistent effect so I shall discuss averages over lag and direct
selection lines.

Clearly N has had a marked effect on the limits. But the number of founders
seems to have had an appreciable influence only when N = 10 and not when
N = 40. Alternatively, we might say a reduction in N has had more serious con-
sequences for small than for large founder groups. Can such results be explained
in terms of the theory given above?

Table 2. Gains in sternopleural bristle number from 30 generations of selection

(n is the number of founders, N the number of selected parents. Direct lines were
selected at once, lag lines after five generations of random mating.)

n N Replicates Direct Lag Average

10

40

From Fig. 1 we see that for loci with high values of p, the proportion of possible
response which is achieved is less sensitive to number of founders at high Ns values,
than at low Ns values. This suggests as an interpretation that most of the response
was obtained from loci at which the desirable alleles were common in the base
population. For example if we take p = 0-8 we can calculate selection gains as
wn(0-8)-0-8. For n = 2 and 16 and Ns = 1 and 4 the gains are

n = 2 n = 16

Ns = 1 0-1016 0-1206
Ns = 4 0-1913 0-1984

Without pressing the comparison too far we may note that in relative value these
are somewhat similar to the observed pattern. An explanation along these lines is
thus possible. However, Mr Robertson tells me there is evidence that a good deal
of the response is due to alleles rare in the base population. It is therefore not clear
that the theory presented here can provide a valid explanation.

DISCUSSION
Perhaps the most striking feature of the theory is the way in which the founder

effect varies with the subsequent level of selection pressure as measured by Ns.
This is especially marked for rare desirable alleles. For such alleles, especially at
loci of large effect, a bottleneck will have drastic effects on the limits if thereafter
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selection lines have many parents which have been intensely selected. The effect
will be much less drastic if selected lines are maintained by only a few parents
under mild selection. On the other hand, when the favoured alleles are common, a
bottleneck will affect limits less in large intensely selected lines than in small
mildly selected ones.

Robertson (1960) wrote: 'Highly selected populations or those which have
passed through a severe "bottleneck" in population size will be tolerant of any
further size restrictions in the sense that the desirable alleles will be harder to lose
because, if they are present at all, they will have a reasonable frequency.' This is
certainly so if one is thinking of favourable alleles which are rare in the base
population. But if the statement is interpreted as suggesting that once a line has
gone through a bottleneck subsequent selection may safely be done with small
numbers, our theory shows this interpretation to be incorrect, since in at least
some cases a line would be more sensitive to such a reduced Ns value than it was
before the bottleneck.

The reason for this is not hard to see. If an allele is very common before the
bottleneck then it will probably be included in all samples, even small ones.
Intense selection in large populations thereafter should fix the favoured allele in
nearly all cases. Mild selection in small populations thereafter has a high proba-
bility of fixing the desirable allele in samples in which its frequency is high, but
not in samples in which its frequency is, by chance, low. Only in small samples will
the frequency be likely to fall sharply, so they will be more seriously affected than
large samples. In a sense this is Robertson's argument looked at from the other
side, with the rare allele being now the unfavourable one.

Leaving the subject of bottlenecks for the moment, let us suppose a line had
been selected for some time and that the frequency of a desirable allele had reached
0-8 in the line. If at this point the line is subdivided and one replicate is continued
with Ns = 4 while a second is run with Ns = 1, the respective probabilities of
fixation are 0-9987 and 0-9230. The relative further gains are thus 0-1987 and
0-1230 so that the line with smaller Ns value achieves only 60% of the further
response of that with Ns = 4. This may be relevant to the interpretation of results
reported by Jones, Frankham & Barker (1968). From lines which had been selected
for 16 generations with 40 pairs of parents they took lines with 10 pairs of parents
selected at the same intensity while continuing the 40-pair lines. In all three cases
the 10-pair lines gave a good deal less further response than the 40-pair lines over
the next 30 generations. Discussing this, the authors wrote: 'Robertson also
suggested that restricting population size after a number of generations of
selection would have little effect on the total response... Thus there were desirable
genes still at low frequencies.' Though this conclusion may well be true it does not
necessarily follow from the observations.

An alternative explanation would be that all loci of large effect had become
fixed, and only loci of small effect remained segregating. Subsequent response
from such loci would be highly susceptible to reduction in the value of Ns.

It is of course possible in such a situation that a high proportion of the total
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response obtainable from the foundation sample has been achieved when the
restriction is imposed, and that the loss of response due to the reduction in number
of parents is a small fraction of this total response. However, in animal breeding
practice the important question is not 'how far have we come?' but rather 'how
far can we go?'

The present theory suggests that the effect of a bottleneck on limits to selection
may be severe or mild, depending on gene frequency and on the subsequent
selection programme. It is, moreover, a single locus theory, and it is important
to know the extent to which the results are affected when selection acts on linked
systems of genes. A- general analysis of this problem raises very considerable
difficulties which will probably require extensive simulation studies for their
elucidation.
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