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We study Lie algebras with cone potential which play a prominent role in the Lie theory of semigroups. For
these algebras, we obtain a uniqueness theorem for Levi complements and information on the fine structure of
the root system.
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1. Introduction

An important part of the Lie theory of semigroups is the study of invariant cones in Lie
algebras. It turns out that the existence of an invariant pointed cone with inner points
in a real Lie algebra L imposes severe restrictions on the structure of L. First of all, L
possesses compactly embedded Cartan algebras. As all of these are conjugate, it's no
harm to fix one such, say H. Now L as an //-module decomposes into the zero-module
L° = H and a complementary module L+ which in turn can be split up into its isotypic
components. In order to parameterize these, one uses a certain set Q of linear forms on
H which are called the roots of the pair (L,H). These linear forms arise in pairs (a, -co).
Choosing one element from each pair, one gets a set Cl+ and a complex structure
/:L+->L+. Now the above-mentioned decomposition of L into its isotypic components
can be written down as

© L°>,
coeSl*

where

L°> = {xeL\lh,x] = co(h)Ix for all hsH).

This is an orthogonal decomposition with respect to the Cartan-Killing form B of L.
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72 KARLHEINZ SPINDLER

Furthermore, there is a unique maximal compactly embedded subalgebra of L
containing H. We denote this algebra by KH, its center by Z(KH).

Let comp L denote the set of compact elements of L, i.e., those elements x e L with
eKaax compact. The Lie algebra L is called quasi-hermitian if Z(KH) n (comp L)° #0. If L
is quasi-hermitian, the set of roots decomposes into two disjoint classes, namely the
class ClK of those roots co with Lmi^KH and the class QP of those roots co with
Lm n KH = {0}. The two types are called compact roots and non-compact roots,
respectively. Writing

PH:= 0 L°,
toeilpnCl*

we have the decomposition L = KH © PH where [KH, PH] £ pH.
Finally, L is said to have cone potential if [/x,x]#0 whenever x # 0 comes from one

of the root spaces La. Let us denote by Z, N and R the centre, the nilradical and the
radical of L, respectively. Now if L has cone potential, then N n L™' = R n L™ for all
coefi, and [Af,JV]sZ. Previously, the author has obtained a universal construction for
Lie algebras with cone potential (see [6, (4.3), (4.4), pp. 76-82]) saying the following:
Any Lie algebra with cone potential is a direct sum of an abelian algebra and a
quotient of an algebra.

M©(A 2 M) 0 ©g

where g is a reductive algebra and where M is a g-module such that a Cartan algebra h
of g acts compactly and effectively on M in a certain way such that (/\2M)0^{0}. For
the rest of this paper, we shall fix a real Lie algebra L with a compactly embedded
Cartan algebra H. As above, let us denote the centre, the nilradical and the radical of L
by Z, N and R, respectively.

Some constructions which are important in the theory of invariant cones depend on
the fact that a suitable Levi complement S can be chosen. In this paper we shall show
the uniqueness of such a suitable S (once H is fixed) and draw some conclusions.

The leading theme in our investigations is the question to what extent the structure of
a Lie algebra is determined by the existence of an invariant cone. Theorems 2 and 3
below give some further results in this direction. One can hope that eventually an
effective classification of Lie algebras with invariant cones can be given.

Definition. Let L be a Lie algebra with radical R. A Cartan algebra H and a Levi
complement S will be called adapted if the decomposition

H = (H nR)®(HnS)

holds. The following theorem is well-known (see [2, VII.3, Ex. 11, pp. 61-62)] or [6,
(2.7), pp. 44-45]).

Theorem. Let L be a Lie algebra over afield of characteristic 0 with radical R.
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LEVI COMPLEMENTS AND ROOTS 73

(a) Given a Levi complement S and a Cartan algebra Ho of S, there is a subalgebra
U^R such that H: = H0+U is a Cartan algebra of L. (Note that H0 = H r>S and
U = Hr\R in this case, so that H and S are adapted.)

(b) Given a Cartan algebra H of L, there exist a Levi complement S, a Cartan algebra
Ho of S and a subalgebra U^R such that H = H0 + U. {Note that H0 = Hr\S and
U = H nR in this case, so that S and H are adapted.)

In particular, to any Cartan algebra H we can find a Levi complement adapted to H.
In the theory of invariant cones, it turns out that one has to use a suitable Levi
complement with additional properties. For the proof of the following theorem, we refer
to [4, III. 6.28, pp. 227-228] or 6, (3.7), pp. 67-68].

Theorem. / / L is a real Lie algebra with a compactly embedded Cartan algebra H,
there is a Levi complement S adapted to H such that

For any such Levi complement, the following assertions hold.

(1) H nS is a compactly embedded Cartan algebra of S.

(2) H + S = (H n R) © S, and this is a reductive Lie algebra.

(3)[tf,S]sS.

(4) La = (L°'nR)® (L<° n S) for all co e Q.

(5) / !=(HnJ?)®(L+ n R) is a direct sum of {H + S)-modules.

In this paper, we shall prove that in a Lie algebra with cone potential such a Levi
complement is uniquely determined. The method of proof will give further information
on the structure of the root system.

2. Lie algebra modules V with (/\2V)0^{0}

A representation p:L->End V induces a representation /\pp:L-*End f\pV given by

{/\pp)(x)(v A w) = (p(x)v) A W + V A (p(x)w).

For later purposes, we want to investigate the zero-module (/\PV)O of this induced
representation. Although we will be only interested in the case p = 2, we treat the general
case because no extra effort is needed. With the canonical pairing

(®e(/\pV)*,l;e/\pV),

the diagram
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74 KARLHEINZ SPINDLER

(*'P)(J)|

commutes so that fi intertwines the representations App and (A"P*)*, i.e., is an
isomorphism of modules. (Here and in the sequel, we identify (/\PV)* and /\PV* as
modules.)

By the universal property of /\PV* we can identify the alternating p-forms on V*
with the linear forms on /\PV*:

V*X-XV

/\»V*.

Now a p-form /? on F* is called p*-invariant, if Y,k = iP(<t>i>--->P*(x)<f)k,...,(l>p) = O for all
<£, e V* and all x e L. If /? is alternating, this is the case if and only if

. , . „ A • • • A <pp)=\

k = l

for all 0feK* and all xeL, i.e., if and only if /? annihilates (App*)(^)(A"F*)- N o w

S:AP^->(A"l /*)* is associated with the isomorphism Q:/\"V^AhpV* which is given
by fi(£)(</>!,...,0p)=fl(f)(01 A ••• A(£p). We see that an element £e/\pV belongs to the
zero-module (/\PV)O if and only if ( A pp)(x)(^) = 0 for all x e L; i.e., if and only if

0 = (D(( A P)(X)O = - ( ( A " p)*(*)O)K| = -fi(5)(( A 'p)*W*)

for all xeL and all <t>e(/\"V)*. Clearly, this condition holds if and only if
annihilates ( A pp*){L)(f\pV*), i.e., if and only if Q(£) is invariant. Hence we have

where Altpnv V* denotes the space of invariant alternating p-forms on V*. In particular,
^(A2^)o = Alt'2

nv V* is just the space of invariant skew-symmetric bilinear forms on V*.
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Now recall that a symplectic form on a vector space is a non-degenerate, skew-
symmetric bilinear form. We shall prove the following result.

Proposition 1. / / V is any Lie algebra module, then ( / \2K)osAlt2
n v V. If V is

irreducible, then (/\2 V)o ̂  {0} if and only if V possesses an invariant symplectic form. In
particular, dim V must be even in this case.

Proof. By the discussion above we have (/\2K)0^Alt2
nv V*. Now let us observe that

Alt2
nvF*^Alt2

nvK To see this, choose a basis B = {vu....,vn) of V and take the
corresponding dual basis B* = (</>!,...,$„) on V* which is given by 4)^0^8^. Fix an
arbitrary element xeL. If p{x)e},=£"= i xyef for all j , then p*(x)4>j= — £" = 1 x ^ , because
we have

{p*(x)(t>j)(ek)= -

iA )(fe) f o r

••=! /

So if we denote the matrix representation of a linear operator 9 with respect to a basis
B by 0B we have shown that p*{x)g*= —(p(x)B)T for all xeL.

To any bilinear form ct:VxV->U there is associated a unique matrix A satisfying
a(Y,ixivhY<jyjvj) = xTAy- Saying that a. is non-degenerate, skew-symmetric, and p-
invariant is tantamount saying

det/i^O, AT=-A, XTA + AX = Qfora\\X = p(x)B(xeL).

Analogously, a bilinear form /? on V* is in Alt2nv V* if and only if its matrix B with
respect to the basis B* satisfies

detB^O, B r = - B , XB + BXT = 0 for all X = p(x)B (xeL);

here we used the fact that p*(x)B*= —(p(x)B)T. Now it is easy to check that putting
B-.^A'1 yields an isomorphism between Alt'2

nv and Alt'2
nv V*.

If the module V is irreducible, an element a e Alt2
nv V is either non-degenerate or the

zero-mapping. To see this, observe that the radical

Rada: = {i>eK|a(u,w) = Oforall weV}

is a submodule of V, due to the skew-symmetry of a. As V is irreducible, this is possible
only if R a d a = K (which means a=0) or Rada = {0} (which means the non-degeneracy
of a). Thus the non-zero elements of Alt2

nv V are precisely the invariant symplectic
forms. This gives the result. •
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76 KARLHEINZ SPINDLER

Before we can prove our next result we provide some background for the represen-
tation theory of so(3) and sl(2, U).

Let Vn be the space of all homogeneous complex polynomials of degree n in two
variables. Then SU(2) acts canonically on Vn. It is well-known ([1, II.5, pp. 84-86; also
7]) that the spaces Vn (neN0) form a complete collection of (equivalence classes of)
irreducible representations of SU(2). Since so(3)ssu(2) and since SU(2) is simply
connected, the spaces Vn are exactly the irreducible complex so(3)-modules. From the
representation theory of SU(2), we can thus easily deduce the following fact which we
will need later on: Let (e1,e2,e3) be a basis of so(3) with [e,,e, + 1] = e1 + 2. If an
irreducible complex representation p of so(3) is such that p(e,) is invertible, then no
weight of p takes any of the values ±2i on ex.

From the well-known classification of the irreducible sl(2, C)-modules ([5, IV, 2-4])
one easily deduces that of sl(2, U); complete calculations can be found in [3, II.2, pp. 39-
48]. The result is as follows. For any XeN, there is (up to isomorphism) a unique
irreducible sl(2, R)-module Vx with dim VX = A. +1. To describe this module, we put

— 1, if X is even,

ifAisodd;

in the sequel all terms with N +1 have to be ignored in the case that X is odd. Now we
can choose a basis (F0,IF0,Fl,IF1,...,FN,IFN,FN+l) of Vx such that the elements

with the bracket relations

satisfy the following conditions for O^n^iV:

U*lFn=-{k-2ri)Fn,

n = (X-n)IFn+l-nIFn_l, T */Fn= -{X-n)FH +

u H *IFn = {X-n)lFn+

If X is even, then additionally

In other words: With respect to this basis, U, T and H, considered as operators on
Vk, are given as matrices
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U: = , T: =

H: =

where

0 -<x\ , _ /a 0
0 ) a n d D . : =

If X is even, in all matrices a zero row and a zero column must be added.

Proposition 2. Suppose that Vx is the irreducible sl(2, U)-module of dimension X +1
with the basis given above. Then the zero submodule ( / \ 2 Vx)0 of /\2 Vx is {0} if X is even
and

ifX = 2N+l is odd.

Proof. We want to compute (/\2 Vx)0- If X is even, then dim Vk is odd, whence
(A2j/A)o = {0}- So suppose X = 2N+\ is odd. A basis of A 2 ^ is given by t h e vectors
Fm A Fn and IFm A /Fn where 0^m<«|JV and the vectors Fm A IFn where 0^m,n^N
are arbitrary. Now remember that the action of Xes\(2,U) on /\2VX is given by
X*(i; A wJ^Xi;) A w + v A (A'W). An element

«= Fn)+ A / F J + X ymn(Fm A /FJ

vanishes under the action of U if and only if

https://doi.org/10.1017/S0013091500005332 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005332


78 KARLHEINZ SPINDLER

0= U*{= I amn((l-2rn)(/Fm A FJ+(A-2n)(Fm A IFn))
m<n

+ Z /U-(A-2m)(Fm A /FJ-(A-2«)(/Fm A FJ)

+ Z ?mn((A-2m)(/Fm A /FJ-(A-2n)(Fm A Fn)
m, n

= I (amn(A-2rn)-/U2-2rt))(/Fm A FJ

+ I (ocmn(l-2n)-PmnU-2m))(Fm A 7Fn)

A /Fn)-(A-2«)(Fm A FJ);

= 0 for m — n =0 for m = n

i.e., U*£ = 0 if and only if ymn = 0 for all m+n and

or equivalently amn = /?„,„ = 0 for all m<n. (Note that

'A-2m ~{X-2ri)

does not vanish.) There is no restriction for the coefficients ynn (O^n^N). So we have
proved that the null space of U in /\2 Vx is

Z U(Fn A /FJ.

We could have seen this also in a non-computational way. Putting F^: = IRFn© IR/Fn,
the decomposition of Vx into the irreducible U [/-modules is given by

Using the isomorphism
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of U [/-modules, we obtain

""

where the subscript '0' denotes the zero modules of the action of U alone.
To see that {/\2VX = A2yn = u(Fn A IFnl we observe that

U*(Fn A IFn) = (VFn A IFn) + (Fn A UIFn) = ((X-2n)-(l-2n))(Fn A 7Fn) = 0;

more generally, every one-dimensional iRU-module is a zero module if it is obtained by
restriction of an sl(2,R)-action since eRU is compact.

To see that (Vf ® Vj)o = {0} we just state that Homv(Vt, K)) = {0} for i^j.
Now we ask when an element £ = Yjn=ocn(Fn A IFn)

 m the n u l ' space of U is also
annihilated by T. From

T(Fn A IFm) = (l-n){IFm+1 A IFn-Fn A Fn + 1) + M(Fn A F . ^ - Z F . . , A 7Fn)

we get

T^= £ cn(A-n)(/Fn+1 A /FJ+ X cn+1(n+l)(/Fn+1 A 7FJ

+ Z cn(A-«)(Fn+1 A F J + X cn + 1(«+l)(Fn + 1 A Fn)
n=0 n = - 1

' B + 1 A 7FJ + (F n + 1 A FJ)

JV+1 A F W ) .

This term vanishes if and only if

C n + 1 = - ^
n+l

which means

c. = (— 1

From the equation [V, T\ = 2H we see that all the elements annihilated by U and T are
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also annihilated by H and thus constitute already the null space of the sl(2, (R)-action. So
we have proved that for X odd we have

1F"\

•
Propositions 1 and 2 now yield immediately:

Theorem 1. Let V be an irreducible sl(2, R)-module.

There is a non-zero invariant symplectic form on V if and only if the dimension of V is
even. Then this invariant symplectic form is unique up to a scalar factor. •

We just proved that an sl(2, R)-module of even dimension possesses an invariant
symplectic form which is unique up to a scalar. In the next proposition we determine
this form explicitly.

Proposition 3. Let V be an irreducible sl(2, U)-module of even dimension with basis
vectors Fn,IFn as above. Then an invariant symplectic form on V is given by

n = 0

where v = YJn(vi<Fn + v'nI Fn) and w = ^n(wnFn + aj|,/Fn). In other words: With respect to the
basis (Fo, IF0, FltIFlt. ..,Fn, IFn), the form ft is represented by the matrix

i i. A (~!)V 0 1I, where An = - '

AN

Proof. Writing
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n = 0

an invariant symplectic form ft on V* is given by

A

= i ( - i r C) d e t (^<j>2(Fn) <P2(IFn)

If we define / : K-»K* by ${<f>,f{v)) = 4>{v) and put <pv: = f(v), then the desired form /? on
V is given by /?(u, w): = /?(</>„, <£J = 4>v{w). Now if v = Yin(vnFn+v'nIFn) then

<pv(IFn)

Taking </> ' on both sides and comparing coefficients yields

n

3. The uniqueness of the Levi complement

Theorem 2. Let L be a Lie algebra with cone potential and H a compactly embedded
Cartan algebra of L. Furthermore, let S be any Levi complement adapted to H such that
\_H nR,S] = {0}. Then for any root w either Lm^S or L" £ R.

We shall postpone the proof for a moment. Given this theorem, we can readily prove:

Theorem 3. Let L be a Lie algebra with cone potential and H a compactly embedded
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Cartan algebra of L. If S and S' are Levi complements adapted to H such that
[77 n R, S] = [77 n R, 5'] = {0}, then S = S'.

Proof. We set 2>: = ©L-riR={o) La. By Theorem 2 above, we have

SnL+=S'nL+=l.

and H + S = H + S' = H + 1., which is a reductive algebra. But the semisimple part of a
reductive algebra is uniquely determined, being just its commutator algebra. So

Proof of Theorem 2. We want to show that for coeQ either Lm£7? or LW^S. Since
La=(La n R) ® (La n S), it is enough to show that we cannot have r n S # { 0 ) and
L^nR^ {0} at the same time. Let us assume L^nS^ {0} and Lan,R^ {0} to obtain a
contradiction. We pick an element s#0 in W nS. Then

<x: = R7s + Rs + R[7s,s] £ (L r a nS)® R[7s,s]

is isomorphic to sl(2, U) if <ueQP and isomorphic to so(3) if coeQK. (There is no other
possibility, since the complexification of a must be isomorphic to sl(2,C) due to the
structure theory of complex semisimple Lie algebras.) Now let us consider* the vector
space

V:= £ (UnR).
kerv^ker to

This is a er-module, because [L^Z/ ]sL< 0 + v + Lt0~v. We claim that its zero module Vo

with respect to the action of [7s, 5] alone is trivial. Indeed, if x = £vxveK0, then
0 = [[/s,s],x] = ^vv([/s,s])/xv, so if x v ^0 then [7s, s] e ker v = ker u> contradicting the
fact that a>([7s,s])/0. Furthermore, any irreducible a-module of V has even dimension
because it decomposes into two-dimensional subspaces which are invariant under the
action of [7s,s]e/7. Thus if <rSsl(2, U) then

A odd

where Vx is a submodule of type X as described in the second paragraph with
multiplicity nxeM0. Since co([Is,s])>0 for ff^sl(2,U), we can assume without loss of
generality that a>([7s,s]) = 2 (otherwise replace s by s/y/(o([_Is,s])). so that [7s, s]
corresponds to the element t/esl(2, U) [6, (3.4), p. 62]. Thus the real weight u> takes the
value 2 on [7s, s]. On the other hand, the minimum subspaces of Vx which are invariant
under [7s, s] are the planes Vx

n = UFn © R7Fn, and the values of the real weights for the

*This idea is due to Karl-Hermann Neeb who made me aware of a mistake in the original manuscript.
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spaces K̂  on (Is^] are the numbers X—In which are odd since X is odd. This is clearly
a contradiction, and we have ruled out the possibility that <r = sl(2, U).

Therefore, aSso(3). In this case co([/s,s])<0, and after a suitable normalization we
can assume that co([/s,s])= — 2. Then [Is,s] corresponds to the element 2e!6so(3) [6,
(3.4), p. 62]. Now we have seen that [Is,s] acts invertibly on V and hence on all
irreducible subspaces; hence no real weight takes the value —2 on [_ls,s] due to the
remarks following Proposition 1. Thus we have also ruled out the possibility that
<r = so(3) which is the desired contradiction. •

In the introduction we observed a partition of the root system il into the classes QK

and QP. Now, as a consequence of Theorem 2, the set SI also decomposes into the
disjoint classes

and

Now we characterize the elements o f H n R with the help of the S-roots.

Proposition 4. The following equivalence holds:

heHnRocj{h) = 0 for allcoeCls.

Proof. "=>" Let coeQs so that LmcS. Fix an element s # 0 in W. Then for all
/i e tf n R, we have co(h)Is = [h,s]e[H n R, S] = {0}, whence co(h) = 0.

"<^" Let h = hR + hs. For all s = s0 + Xa)(=nsScOeS we have

0= X

eR eS
Thus fJiR,s] = [/is,s] = 0. As seS was arbitrary, liseZ(S) = {0}. Consequently, h =
hReR. •

Note that this is a perfect parallel to the characterization of the centre of KH given by

heZ(KH)oa)(h) = 0 for all

Propostion 5.

(b)Hr\R<=Z(KH).

{C)(KH)' = IKH,KH-\ZS.

(d) Putting Zo: = Z(KH) n(H nS) and H': = H n (KH)' we have

H = {HnR)®Z0@H'.

= Z(KH)
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Proof, (a) Suppose LW^R for some coeilK. Fix an element xeLw\{0}. Then
Ux + UIx is a compactly embedded subalgebra of the solvable algebra R, hence

abelian. But this contradicts the cone potential of L.

(b) This is an immediate consequence of part (a) and Proposition 4. Indeed, if
heH nR, then CO(/J) = 0 for all weQs2fiK, whence heZ(KH).

(c) As a consequence of (a), we have

L".

= KHnS

This implies [K H ,X H ] s5 because [ f lnR,S] = {0}.

(d) First of all, if zeZ(KH) is decomposed as z = hR + hs, then hs = z — hReZ(KH) since
H n R^Z(KH), whence /i seZ0. Secondly, if heHs is decomposed as h = z + h\ then
z = h-h'eHnS since H'^HnS. Q

Note that Hs: = HnS is a compactly embedded Cartan algebra of S; the maximal
compactly embedded subalgebra of S containing / / s is

Let us note at the end how the various sets of roots mentioned above behave under
the Weyl group action. Here the Weyl group W of (L, H) is the set of all equivalence
classes [a] where ae<eadL> with <x.(H) = H and a~/? if and only if <x = /} on H.

Proposition 6.

(a) The Weyl group 'W operates on Q via

[a] *co: = a>oa~1;

we have L0"*" =a(La)).

(b) For all [ a ] e # , t/ie map a|L+ preserves the complex structure I of L +; i.e., ao/ =
/ o a on L + .

(c) The sets fiK,QP,QR anrf ils are invariant under the Weyl group action.

Proof, (a) There is a root X of the pair (LC,HC) such that a>=— i/|H; then
L'° = (Lc © Lc A) n L. Now let [ a ] e # . We consider a as an automorphism of Lc leaving
invariant the real form L. Then it suffices to show that Aoa"1 is a complex root
satisfying Lc"~' = a(Lc). But this is true, because for all xeL^ and all heHcv/e have
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x ] =

(b) Let XEL"* and choose heH such that a>(/i)/0. NOW we have [h,x] = co(h)Ix. Thus
on the one hand, we have

a.[h, x] = a{co(h)Ix) = co(h)a.Ix.

On the other hand, we have

a[7i,ax] = [a/i, <xx J=(a)°(x~i){(xh)I(xx =

A comparison yields a/x = /ocx. Since L+ = @toeii+ La, we have oco/ = /oa.

(c) We have oc(R)^R for all ae<eadZ'> because R is an ideal of L. In particular, for all
[a] E iV the following equivalences hold:

Thus the invariance of QR (and hence also that of Qs) is shown.
If [a]£T^", then a£<eadK">, whence a(KH)^KH. As a consequence, the following

equivalences hold:

•Thus the invariance of QK (hence also that QK) is shown.

4. An example

Let N be the Heisenberg algebra, i.e.,

We consider the semidirect product L = N x^,sl(2, U) where sl(2, U) acts on Â  as an
algebra of derivations via

Explicitly, we have

= R2xRxsl(2,IR) with t

A)

i / " \

' \A'JJ

, Au'-A'u
= 1 det(«,u')

\AA'-A'A
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Clearly, R: = N is the radical of this algebra, and S: = sl(2, R) is a Levi complement. One
readly verifies that

compL = ({0} x U x {0}) u (R2 x U x C)

a b
where C=(compsl(2,R))\{0} =

c -a
a2 + bc<0}. Also,

J
/

: = {0} x U x Uu

is a compactly embedded Cartan algebra of L. The condition [// nR,5] = {0} holds
because H n R = {0} x U x {0} is the centre of L.

We define co:H-*U by co(0,t,rU): = r. Then it is easy to verify that fi = { + cu, ±2a>}.
The root spaces are

L2a = { } { }

the complex structure / on L+ =Lt° © L2ra is given by

We see that QR = {±co} and Qs = {±2co}. Since KH = H in this example, we have fiK =

Let us remark that the algebra L possesses two one-parameter families of invariant
cones (where one family consists just of the negatives of the cones in the other family).
For details, see [6, (10.4), pp. 143-144].
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