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Abstract

We analyze a class of signal-to-interference-and-noise-ratio (SINR) random graphs.
These random graphs arise in the modeling packet transmissions in wireless networks.
In contrast to previous studies on SINR graphs, we consider both a space and a time
dimension. The spatial aspect originates from the random locations of the network
nodes in the Euclidean plane. The time aspect stems from the random transmission
policy followed by each network node and from the time variations of the wireless
channel characteristics. The combination of these random space and time aspects leads
to fluctuations of the SINR experienced by the wireless channels, which in turn determine
the progression of packets in space and time in such a network. In this paper we study
optimal paths in such wireless networks in terms of first passage percolation on this
random graph. We establish both ‘positive’ and ‘negative’ results on the associated time
constant. The latter determines the asymptotics of the minimum delay required by a
packet to progress from a source node to a destination node when the Euclidean distance
between the two tends to ∞. The main negative result states that this time constant
is infinite on the random graph associated with a Poisson point process under natural
assumptions on the wireless channels. The main positive result states that, when adding
a periodic node infrastructure of arbitrarily small intensity to the Poisson point process,
the time constant is positive and finite.
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1. Introduction

There is a rich literature on random graphs generated over a random point process. These
graphs are often motivated by physical, biological, or social networks. Many interesting large-
scale properties of these networks related to connectivity have been studied in terms of the
percolation of the associated graphs. An early example of such a study can be found in [12],
where the connectivity of large networks was defined as the supercritical phase in what is today
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called the continuum (Boolean) percolation model. More recently, a random SINR graph model
for wireless networks was studied with the same perspective in [9] and [10].

The routeing, and, more precisely, the speed of delivery of information in networks are
further problems which motivated the study of random graphs. The main object in this context
is the evaluation of the so-called time constant, which gives the asymptotic behavior of the
number of edges (hops) in the paths (optimal or produced by some particular routeing protocol)
joining two given nodes as a function of the (Euclidean) distance between these nodes, when this
distance tends to ∞. In the case of a shortest (in terms of the number of hops) path, this problem
is usually called the first passage percolation problem and was originally stated by Broadbent
and Hammersley in [7] to study the spread of fluid in a porous medium. More recently,
in [6] and [19], such time constants were studied on so-called small-word graphs, motivated
by routeing in certain social networks, where any two given nodes are joined by an edge
independently with a probability that decays as some power function with the Euclidean distance
between them. The complete graph on a Poisson point process with ‘nearest neighbor’ routeing
policy was studied in this context in [2]. The first passage percolation problem on the Poisson–
Delaunay graph was considered in [20] and [23]. In the case of graphs whose edges are marked
by some weights, we can extend the notion of the time constant by studying the sum of the edge
weights. First passage percolation on the complete Poisson point process graph, with weights
proportional to some power of the distance between the nodes, was studied in [13].

The present paper focuses on the speed of delivery of information in SINR graphs. In contrast
to previous studies of this subject, in particular to [9] and [10], we consider graphs with space–
time vertices. This new model is motivated by multihop routeing protocols used in wireless ad-
hoc networks. In this framework, the random point process on the plane describes the locations
of the users of an ad-hoc network and the discrete-time dimension corresponds to successive
time slots in which these nodes exchange information (here packets). As in [3], we assume the
spatial Aloha policy to decide which node transmits at a given time slot. We also assume some
space–time fading model (already used in, e.g. [5]) to describe the variability of the wireless
channel conditions (see, e.g. [22, Chapter 2]). In this space–time SINR graph, a directed edge
represents the feasibility of the wireless transmission between two given network nodes at a
given time. More precisely, the direct transmission of a packet succeeds between two nodes in
a given time slot if the ratio of the power of the signal between these nodes to the interference
and noise at the receiver is larger than a threshold at this time slot. This definition has an
information theoretic basis (see, e.g. [22, Chapter 4]). It is rigorously defined below using some
power path-loss model and an associated shot noise model representing the interference.

We study various problems on this random graph, including the law of its in- and out-degrees,
the number of paths originating from (or terminating at) a typical node or its connectedness.
The most important results bear on the first passage percolation problem in this graph. In the
case of a Poisson point process for the node locations, we show that the time constant is infinite.
We then show that, when adding a periodic node infrastructure of arbitrarily small intensity
to the Poisson point process, the time constant is positive and finite. These results lead to
bounds on the delays in ad-hoc networks which hold for all routeing algorithms. This subject
or, more generally, the question of the speed of the delivery of information in large wireless
ad-hoc networks currently receives a lot of attention in the engineering literature; see, e.g. [11]
and [14].

The paper is organized as follows. In Section 2 we introduce the space–time SINR graph
model. The results are presented in Section 3. Most of the proofs are deferred to Section 4.
Some implications on routeing in ad-hoc networks are presented in Section 5.
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2. The model

2.1. Probabilistic assumptions

Throughout the paper we consider a simple, stationary, independently marked (i.m.) point
process (PP) �̃ = {(Xi, ei , Fi , Wi )} with finite, positive intensity λ on R

2. In this model, we
use the following notation.

• � = {Xi} denotes the locations of the network nodes in the R
2 plane. The following

three cases regarding the distribution of � will be considered:

General PP: � is a general (stationary, nonnull, with finite intensity) PP,

Poisson PP: � is a Poisson PP,

Poisson+grid PP: � = �M + �G is the superposition of two independent PPs, where
�M denotes a stationary Poisson PP with finite, nonnull intensity λM and �G =
sZ2 + UG is a stationary, periodic PP whose nodes constitute a square grid with
edge length s, randomly shifted by the vector UG that is uniformly distributed in
[0, s]2 (this makes �G stationary). Note that the intensity of �G is λG = 1/s2.

• ei = {ei(n)}∈n∈Z, where Z = {. . . ,−1, 0, 1, . . .} denotes the set of integers; the variables
{ei(n) : i, n} are independent and identically distributed (i.i.d.) (in n and i) Bernoulli
random variables (RVs) with P{e = 1} = 1−P{e = 0} = p, where e denotes the generic
RV for this family. We always assume that 0 < p < 1. The variable ei(n) represents the
medium access indicator of node Xi at time n; it says whether the node transmits (e = 1
case) or not at time n.

• Wi = {Wi(n)}n; {Wi(n) : i, n} is a family of nonnegative i.i.d. RVs with some arbitrary
distribution. The variable Wi(n) represents the power of the thermal noise at node Xi at
time n. Let W denote the generic RV for this family.

• Fi = {Fi,j (n)}j,n; {Fi,j (n) : i, j, n} is a family of nonnegative i.i.d. RVs. The variable
Fi,j (n) represents the quality of the radio channel (also called fading) from node Xi ∈ �

to node Xj ∈ � at time n. The following two cases regarding the distribution of F

(denoting the generic RV for this family) will be considered:

General fading: when F has some arbitrary distribution with finite mean,

Exponential fading: when F has exponential distribution with mean 1/µ.

In wireless signal propagation models, the exponential distribution appears naturally as the
square power of the norm of a complex RV, whose real and imaginary components are i.i.d.
Gaussian. In this case we often speak about the Rayleigh fading model because the norm
(absolute value) of such a complex RV is Rayleigh distributed; see, e.g. [22, pp. 50 and 501].
To complete the probabilistic description of the model, we assume that, given �, the random
elements {ei}i , {Wi}i , and {Fi}i are independent. For more on this framework, which is
classical, see, e.g. [3], [4], or [5].

Our stationary i.m. PP �̃ is considered on some probability space with probability P. We
will denote by P0 the Palm probability with respect to �; see [8, Chapter 13]. Recall that it can
be interpreted as the conditional probability, given � has a point at the origin 0 of the plane.
We will denote this point (considered under P0) by X0 and call it the typical node. Under P0,
�̃ is also an i.m. PP with marks distributed as in the original law. Moreover, in the case of
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Poisson PPs, the distribution of � under P0 is equal to the distribution of � ∪ {X0 = 0} under
the stationary probability P (cf. the Slivnyak–Mecke theorem [8, p. 281]).

2.2. SINR marks

Given the i.m. PP �̃ described above, we construct another family of random variables
{SINRij (n) : i, j, n}, which will be interpreted as the SINR observed in the channel from
Xi ∈ � to Xj ∈ � at time n. These variables, which have an information theoretic background,
will be used to assess the success of transmissions. For defining these variables, we give
ourselves some nondecreasing function l : R

+ = {t : t ≥ 0} → R
+ that we call the path-loss

function. A special example considered in this paper (and commonly accepted in the wireless
communication context) is

l(r) = (Ar)β with some A > 0 and β > 2. (2.1)

Denote by �1(n) = {Xi : ei(n) = 1} the PP of transmitters at time slot n and by �0(n) =
{Xi : ei(n) = 0} the PP of (potential) receivers. For a given receiver Xj ∈ �0 and trans-
mitter Xi ∈ �1(n) pair, we will assume that Xj receives a signal from Xi with power
Fi,j (n)/ l(|Xj − Xi |) at time n. Node Xj also receives signals from other transmitters Xk ∈
�1(n), Xk �= Xi , at time n. The total received power is equal to

Ii,j (n) =
∑

Xk∈�1(n)\{Xi }

Fk,j (n)

l(|Xk − Xj |) .

Also, let

Ij (n) =
∑

Xk∈�1(n)\{Xj }

Fk,j (n)

l(|Xk − Xj |) .

Both Ii,j (n) and Ij (n) are shot noise RVs generated by �1(n), the fading marks and the path-
loss function. The are infinite sums of nonnegative RVs. In order to check whether these RVs
are almost surely (a.s.) finite, we use the Campbell–Little–Mecke formula (Campbell for short;
cf. [8, Proposition 13.3.II]), which implies that

E0
[ ∑

Xk∈�1(n), |Xk |>ε

Fk,0(n)

l(|Xk|)
]

= p E[F ]
∫

R2\[0,ε]2

1

l(|x|)M̆[2](dx), (2.2)

where M̆2(·) is the reduced second-order moment measure of � (cf. [8, p. 238]). In what
follows, we will always tacitly assume that l(·) and � are such that the integral on the right-
hand side of (2.2) is finite for some ε ≥ 0, which implies that I0(n) is a.s. finite under P0 for
all n as well as all Ij (n) and Ii,j (n) under P. If � is the homogeneous Poisson PP, we have
M̆[2]( dx) = λ dx and it is easy to see that the we have finiteness for l(·) given by (2.1) for all
ε > 0. It is also relatively easy to see that it holds for the Poisson+grid PP � = �M + �G.

The SINR at the receiver Xj ∈ �0(n) with respect to transmitter Xi ∈ �1(n) at time n is
defined as

SINRi,j (n) = Fi,j (n)/ l(|Xi − Xj |)
Wj (n) + Ii,j (n)

. (2.3)
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2.3. Space–time SINR graph

Let

δi,j (n) =

⎧⎪⎨
⎪⎩

1(SINRi,j ≥ T ) if ei(n) = 1, ej (n) = 0, i �= j,

1 if i = j,

0 otherwise,

(2.4)

where T > 0 is a threshold assumed to be some given constant throughout the paper. We define
the space–time SINR graph G as the directed graph with the set of vertices �×Z and a directed
edge from (Xi, n) to (Xj , n + 1) if δi,j (n) = 1.

Let us stress an important convention in our terminology. By a network node, or point, we
understand a point of �. A (graph) vertex is an element of �×Z, i.e. it represents some network
node at some time. The existence of a graph edge is to be interpreted as the possibility of a
successful communication between two network nodes (those involved in the edge) at time n.
This can be rephrased as follows. Suppose that at time n the network node Xi has a packet
(containing some information). Then the set of graph neighbors of the vertex (Xi, n) describes
all the nodes that can decode this packet at time n+1. Thus, any path on the graph G represents
some possible route of the packet in space and time.

3. Results

In this section we present our results on G.

3.1. Existence of paths

All the results of this section are obtained under the general PP and fading assumptions of
Section 2, under the assumption that the finiteness of the expression in (2.2) is granted.

Note first that G has no isolated nodes in the usual sense. Indeed, we have always (Xi, n)

connected to (Xi, n + 1). We will consider directed paths on G and call them paths for short.
Note that these paths are self-avoiding due to the fact that there are no loops in the time
dimension.

Denote by Hout,k
i (n) the number of paths of length k (i.e. with k edges) originating from

(Xi, n). Similarly, denote by H in,k
i (n) the number of such paths terminating at (Xi, n). In par-

ticular, Hout
i (n) = Hout,1

i (n) and H in
i (n) = H in,1

i (n) are respectively the out- and in-degrees
of the node (Xi, n).

Lemma 3.1. For a general PP � and a general fading model, the in-degree H in
i of any node

of G is bounded from above by the constant ξ = 1/T + 2.

Proof. Assume that there is an edge to node (Xj , n) from nodes (Xi1 , n−1), . . . , (Xik , n−1)

for some k > 1 and ip �= j (p = 1, . . . , k). Then, for all such p,

Fip,j

l(|Xip − Xj |) ≥ T

1 + T

k∑
q=1

Fiq,j

l(|Xiq − Xj |) .

When summing up all these inequalities, we obtain T k ≤ 1 + T , that is, k ≤ 1/T + 1.
Considering the edge from (Xi, n − 1) to (Xi, n), the in-degree of any node is bounded from
above by ξ = 1/T + 2.

Let
hout,k = E0[Hout,k

0 (n)] = E0[Hout,k
0 (0)]
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and
hin,k = E0[H in,k

0 (n)] = E0[H in,k
0 (0)]

be the expected numbers of paths of length k originating or terminating at the typical node,
respectively. In particular, hout = hout,1 and hin = hin,1 are the mean out- and in-degrees of
the typical node, respectively.

Lemma 3.2. For a general PP � and a general fading model,

hin,k = hout,k.

Proof. We use the mass transport principle to obtain E0[Hout,k
0 (0)] = E0[H in,k

0 (0)], which
implies the desired result. Indeed, Campbell’s formula and stationarity give

λhout,k = λ

∫
[0,1)2

E0[Hout,k
0 (0)] dx

= E

[ ∑
Xi∈�∩[0,1)2

Hout,k
i (0)

]

=
∑
v∈Z

E

[ ∑
Xi∈[0,1)2

∑
Xj ∈[0,1)2+v

(# of paths from (Xi, 0) to (Xj , k))

]

=
∑
v∈Z

E

[ ∑
Xi∈[0,1)2−v

∑
Xj ∈[0,1)2

(# of paths from (Xi, 0) to (Xj , k))

]

= λ

∫
[0,1)2

E0[H in,k
0 (k)] dx

= λhin,k,

where # denotes the cardinality. This completes the proof.

Immediate consequences of the two above lemmas are as follows.

Corollary 3.1. Under the assumptions of Lemma 3.1,

• G is locally finite (both on in- and out-degrees of all nodes are P-a.s. finite),

• H in,k
i (n) ≤ ξk , P-a.s. for all i, n, k,

• hin,k = hout,k ≤ ξk for all k.

For all Xi, Xj ∈ � and n ∈ Z, we define the local delay from Xi to Xj at time n by the
quantity

Li,j (n) = inf{k ≥ n : δi,j (k) = 1},
with the usual convention that inf ∅ = ∞. Note that Li,j (n) is the length (number of edges)
of the shortest path (with the smallest number of edges) from (Xi, n) to {Xj } × Z among the
paths contained in the subgraph G ∩ {Xi, Xj } × Z of G, which is of the form

((Xi, n), (Xi, n + 1)), . . . , ((Xi, n + Li,j (n) − 1), (Xi, n + Li,j (n))) ,

((Xi, n + Li,j (n)), (Xj , n + Li,j (n) + 1)).

Our next result gives a condition for the local delays to be a.s. finite.
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Lemma 3.3. Consider a general PP � and a general fading model with F having unbounded
support (P{F > s} > 0 for all 0 < s < ∞). Then, given �, all local delays Li,j (n) are P-a.s.
finite geometric RVs.

Proof. Owing to our assumption on the independence of marks in successive time slots,
given �, the variables {δi,j (n) : n ∈ Z} are (i.i.d.) Bernoulli RVs and, thus, Li,j (n) is a
geometric RV. It remains to show that P{δi,j (0) = 1 | �} := πi,j (�) > 0 for P-almost
all �. For this, note that

πi,j (�) = p(1 − p) P{Fi,j (0) ≥ l(|Xj − Xi |)(Wj (0) + Ii,j (0))}.
Under our general assumptions (including finiteness of the expression in (2.2)), Ii,j (0) is a finite
RV P-a.s. The result follows from the assumption that 0 < p < 1 and the fact that Fi,j (0) is
independent of Ii,j (0) and Wi,j (0) and has infinite support.

The next result directly follows from Lemma 3.3.

Corollary 3.2. Under the assumptions of Lemma 3.3, G is P-a.s. connected in the following
weak sense: for all Xi, Xj ∈ � and all n ∈ Z, there exists a path from (Xi, n) to the set
{(Xj , n + l) : l ∈ N}, where N = {1, 2, . . .}.

We denote by Li(n) = infj �=i Li,j the length of a shortest directed path from (Xi, n) to
({� \ Xi}) × Z. We will call Li(n) the exit delay from Xi at time n. Finally, we denote by
Pi,j (n) the length of a shortest path of G from (Xi, n) to {Xj } × Z. We call Pi,j (n) the delay
from Xi to Xj at time n. Obviously, for i �= j , we have

Li(n) ≤ Pi,j (n) ≤ Li,j (n), (3.1)

and, thus, it follows immediately from Lemma 3.3 that all the three collections of delays are
finite RVs P-a.s.

3.2. Optimal paths: Poisson PP case

We have seen in the previous section that, under very general assumptions, all the delays
are P-a.s. finite RVs. In this section we show that, under some natural assumptions (such as
the Poisson PP and exponential fading), the averaging over � may lead to infinite mean values.
This averaging is expressed in terms of the expectation for the typical node under the Palm
probability. The proofs of the results stated in what follows are given in Section 4.1.

Define � = E0[L0(n)] = E0[L0(0)].
Proposition 3.1. Assume that � is a Poisson PP, F is exponential, and that the noise W is
bounded away from 0: P{W > w} = 1 for some w > 0. Let the path-loss function be given
by (2.1). Then P0{L0(0) ≥ q} ≥ 1/q for large enough q.

Corollary 3.3. Under the assumptions of Proposition 3.1, the following statements hold.

• The mean exit delay from the typical node is infinite, i.e. � = ∞.

• In any given subset of the plane with positive Lebesgue measure, at a given time, the
expected number of points of � which have exit delays larger than q decreases not faster
than 1/q asymptotically for large q.

The fact that the mean exit delay from the typical point is infinite (� = ∞) seems to
be a consequence of the potential existence of arbitrarily large ‘voids’ (disks without points
of �) around this point. Indeed, when conditioning on the existence of another point in the
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configuration �, we obtain finite-mean local delays. This will be shown in Proposition 3.2
below.

Before stating it we need to formalise the notion of the existence of two given points X, Y ∈
R

2 of �. For this, we consider � under the two-fold Palm probability PX,Y . Since our results
on the matter bear only on the Poisson PP case, we can assume (by Slivnyak’s theorem) that
the following version of the Palm probability of the Poisson PP � holds:

PX,Y {� ∈ ·} = P{� ∪ {X, Y } ∈ ·}. (3.2)

Moreover, under PX,Y , the marked Poisson PP �̃ is obtained by an independent marking of
the points of � ∪ {X, Y } according to the original distribution of marks. Slightly abusing the
notation, we denote by LX,Y (n) the local delay from X to Y at time n when considered under
PX,Y . A similar convention will be adopted in the notation of other types of delay under the
Palm probability PX or PX,Y .

Proposition 3.2. Assume that � is a Poisson PP, F is exponential, and that the noise W has a
general distribution. Then, for all X, Y ∈ R

2, the mean local delay from X to Y is finite given
the existence of these two points in �. More precisely,

EX,Y [LX,Y (0)] < ∞.

The next result follows immediately from (3.1).

Corollary 3.4. Under the assumptions of Proposition 3.2,

EX,Y [LX(0)] ≤ EX,Y [PX,Y (0)] < EX,Y [LX,Y (0)] < ∞.

The following result is our main ‘negative’ result concerning G in the Poisson PP case.

Proposition 3.3. Under the assumptions of Proposition 3.1, we have

lim|X−Y |→∞
EX,Y [PX,Y (0)]

|X − Y | = ∞.

In other words, the expected shortest delay necessary to send a packet between two given
points of the Poisson PP grows faster than the Euclidean distance between these two points.
However, we do not know the exact asymptotic of this delay. This latter problem seems to be
much more complicated.

3.3. Filling in Poisson voids

In this section we show that adding an independent periodic pattern of points to the Poisson
PP allows us to get a linear scaling of the shortest path delay with Euclidean distance. In
order to prove the existence and finiteness of the associated time constant, we adopt a slightly
different approach to the notion of paths on G, which will allow us to exploit a subadditive
ergodic theorem. The proofs of the results stated in what follows are given in Section 4.2.

For x ∈ R
2, let X(x) be the point of � which is closest to x. The point X(x) ∈ � is a.s.

well defined for all given x ∈ R
2 since � is assumed to be a simple and stationary PP. For all

x, y ∈ R
2, define P(x, y, n) = PX(x),X(y)(n) to be the length of a shortest path of G from

vertex (X(s), n) to the set {(X(y), n + l), l ∈ N}. We will call P(x, y, n) the delay from x to
y at time n. For all triples of points x, y, z ∈ R

2, we have

P(x, z, n) ≤ P(x, y, n) + P(y, z, n + P(x, y, n)). (3.3)
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Let

p(x, y, �) = E[P(x, y, 0) | �].
Using the strong Markov property, we find that, conditionally on �, the law of P(y, z, n +
P(x, y, n)) is the same as that of P(y, z, n). Then, the last relation and (3.3) give

p(x, z, �) ≤ p(x, y, �) + p(y, z, �). (3.4)

We are now in a position to use the subadditive ergodic theorem to show the existence of the
time constant

κd = lim
t→∞

p(0, td, �)

t
,

where κd may depend on the unit vector d ∈ R
2 representing the direction in which the delay

is measured. Here is the main result of this section.

Proposition 3.4. Consider the Poisson+grid PP defined in Section 2.1 with exponential fading
F and with path-loss function given by (2.1). Then, for all unit vectors d ∈ R

2, the nonnegative
limit κd exists and is P-a.s. finite. The convergence also holds in L1.

Note that κd is not a constant. Indeed, the superposition of the PPs � = �M and �G is
ergodic but not mixing due to the fact that � is a (stationary) grid. For d parallel to say the
horizontal axis of the grid �G, the limit κd will depend on the distance from the line {td : t ∈ R}
to the nearest parallel (horizontal) line of the grid �G, i.e. on the shift UG of the grid. A more
precise formulation of the result is a follows.

Proposition 3.5. Under the assumptions of Proposition 3.4, the limit κd = κd(UG) is mea-
surable with respect to the shift UG of the grid PP �G and does not depend on the Poisson
component �M of the PP �. Moreover, the set of vectors d in the unit sphere for which κd(UG)

is not P-a.s. a constant is at most countable.

The final result on this case is as follows.

Proposition 3.6. Under the assumptions of Proposition 3.4, suppose that W is constant and
strictly positive. Then E[κd ] > 0.

Finally, let us remark that the method used in this section cannot be used in the case of the
Poisson PP (without the addition of the grid PP). The main problem is the lack of integrability
of p(x, y, �) as stated in the following result. Note, however, that this does not immediately
imply that κd = ∞.

Corollary 3.5. Under the assumptions of Proposition 3.1, E[p(x, y, �)] = ∞ for all x and y

in R
2.

4. Proofs

Consider the shortest path from (Xi, n) to (�\ {Xi})×Z. Let Ti (n) be the number of edges
(Xi, k), (Xi, k + 1) in this path such that ei(k) = 1. These variables are the number of trials
before the first exit form Xi at time n. Obviously,

Ti (n) ≤ Li(n). (4.1)
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We will also consider an auxiliary graph Ĝ, called the (space–time) signal to noise ratio
(SNR) graph, defined exactly in the same manner as the SINR graph G except that the variables
SINRi,j (n) defined in (2.3) are replaced by the variables

SNRi,j (n) = Fi,j (n)/ l(|Xi − Xj |)
Wj (n)

. (4.2)

Note that this modification consists in suppressing the interference term Ii,j (n) in the SINR
condition in (2.4). The edges of G form a subset of the edges of Ĝ (both graphs share the same
vertices), which will be denoted by

G ⊂ Ĝ. (4.3)

In what follows, we will denote the delays, local delays, exit delays, and numbers of trials related
to Ĝ by P̂i,j (n), L̂i,j (n), L̂i(n), and T̂i (n), respectively. The inclusion G ⊂ Ĝ immediately
implies that P̂i,j (n) ≤ Pi,j (n), and the same inequalities hold for the three other families of
variables mentioned above.

4.1. Proofs of the results of Section 3.2

Proof of Proposition 3.1. The inclusion (4.3) and the inequality (4.1) yield

T̂i (n) ≤ Ti (n) ≤ Li(n),

which holds for all i, n. The results follow from the above inequalities and the next lemma.

Lemma 4.1. Under the assumptions of Proposition 3.1, P0{T̂0(0) ≥ q} ≥ 1/q for large
enough q.

Proof. Under P0, denote by τk the kth time slot in {0, 1, . . .}, such that e0(k) = 1. For all
q ≥ 0, we have

P0{T̂0(0) > q | �}
= P0{for all 0 ≤ k ≤ q and 0 �= Xi ∈ �, δ0,i (τk) = 0 | �}
= P0{for all 0 ≤ k ≤ q and 0 �= Xi ∈ �, ei(τk) = 1 or SNR0,i (τk) < T | �},

and, by the conditional independence of marks given �,

P0{T̂0(0) > q | �} =
∏

0 �=Xi∈�

(p + (1 − p) P{F < T l(|Xi |)W })q

= exp

{
q

∑
0 �=Xi∈�

log(p + (1 − p)(1 − e−µT l(|Xi |)W ))

}
,

whereF andW are independent generic RVs representing fading and thermal noise, independent
of �, and F is exponential with mean 1/µ, Using the Laplace functional formula for � and
the assumption that W > w a.s., we have

P0{T̂0(0) ≥ q} ≥ exp

{
−2πλ

∫
v>0

(1 − (1 − (1 − p) e−wµl(v)T )q)v dv

}

= exp

{
−πλ

∫
v>0

(1 − (1 − f (v))q) dv

}
, (4.4)
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where
f (v) := (1 − p) exp{−Kvβ/2} and K = wµT Aβ .

In what follows, we will show that the expression in (4.4) is not smaller than 1/q for large
enough q. To this end, denote by vq the unique solution of f (v) = 1/q. We have

vq = 1

A2(µT w)2/β
(log(q(1 − p)))2/β .

It is clear that f (v) tends to 0 when v tends to ∞ and that vq tends to ∞ as q tends to ∞.
Therefore, there exists a constant Q = Q(µ, w, A, T ) < ∞ such that, for all q ≥ Q and
v ≥ vq ,

(1 − f (v)) ≥ exp{−f (v)}.
Hence, for all q ≥ Q,∫

v>0
(1 − (1 − f (v))q) dv ≤ vq +

∫ ∞

vq

(1 − (1 − f (v))q) dv

≤ vq +
∫ ∞

v=vq

(1 − exp{−qf (v)}) dv

≤ vq +
∫ ∞

vq

qf (v) dv

= vq +
∫ ∞

u=0
qf (u + vq) du.

The third inequality follows from the fact that 1 − exp{−x} ≤ x. Now using the fact that
(u + vq)β/2 ≥ u + v

β/2
q (for large enough q, say again q ≥ Q), we obtain∫ ∞

u=0
qf (u + vq) du =

∫ ∞

u=0
q(1 − p) exp{−K(u + vq)β/2} du

≤
∫ ∞

u=0
q(1 − p) exp{−Ku − Kv

β/2
q } du

= 1

K
,

since (1 − p) exp{−Kv
β/2
q } = 1/q. Hence, for q ≥ Q,∫

v>0
(1 − (1 − f (v))q) dv ≤ vq + α

K
.

Also, it is not difficult to see that β > 2 implies that

vq ≤ log q

πλ
− 1

K

for large enough q. This implies that, for large enough q, say again q ≥ Q,

exp

{
−πλ

∫
v>0

(1 − (1 − f (v))q) dv

}
≥ exp

{
−πλ

(
vq + 1

K

)}
≥ 1

q
, (4.5)

which completes the proof.
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Proof of Proposition 3.2. Assume without loss of generality that Y = 0 and |X| = r .
Under P, consider the PP � ∪ {X, 0} and its independent marking. Given �, the RV LX,0(0)

associated with the i.m. PP � ∪ {X, 0} has a geometric distribution with parameter

πX,0(�) = p(1 − p) P{F ≥ l(r)(W + I )},
where F, W , and I are independent RVs, F and W are generic fading and noise variables, and
I = ∑

Xi∈� ei(0)Fi,0(0)/ l(|Xi |). Using the exponential distribution of F and the indepen-
dence, we obtain

πX,0(�) = E[e−µl(r)T W ] E[e−µl(r)T I | �].
The mean of the geometric RV is known to be EX,0[LX,0(0) | �] = 1/πX,0(�). By uncondi-
tioning with respect to �, we obtain

EX,0[LX,0(0)] = 1

LW(µl(r)T )
E

[
1

E[e−µl(r)T I | �]
]
.

The first factor in the above expression is obviously finite. In what follows, we will evaluate
the second factor.

By the conditional independence of marks and denoting by LeF (·) the Laplace transform
of eF , where e and F are independent generic variables for ei(0) and Fi,0(0), we have

(E[e−µl(r)T I | �])−1 =
(

E

[
exp

{
−µl(r)T

∑
Xi∈�

ei(0)Fi,0(n)

l(|Xi |)
} ∣∣∣∣ �

])−1

= exp

{ ∑
Xi∈�

log LeF

(
µT l(r)

l(|Xi |)
)}

.

Note that LeF (ξ) = 1 − p + pLF (ξ) = 1 − p + pµ/(µ + ξ). Using this and the Laplace
functional formula for � (cf. [8, Equation 9.4.17]), we obtain

E

[
1

E[e−µl(r)T I | �]
]

= exp

{
2πpλ

∫ ∞

0

vT l(r)

l(v) + (1 − p)T l(r)
dv

}
;

cf. (2.2). Now, using the fact that, for the Poisson PP, M̆[2](dx) = λ dx, it is easy to see that,
for any path-loss function satisfying

∫ ∞
ε

v/ l(v) dv < ∞, the integral in the exponent of the
last expression is finite. This completes the proof.

Proof of Proposition 3.3. Using inclusion (4.3), inequality (4.1), and the left-hand side
of (3.1), we have

T̂i (n) ≤ Ti (n) ≤ Li(n) ≤ Pi,j (n).

Thus, it is enough to show that

lim|X−Y |→∞
EX,Y [T̂X(0)]

|X − Y | = ∞.

Without loss of generality, assume that X = 0 and |Y | = r . Using the same arguments as in the
proof of Lemma 4.1 and representation (3.2) of the Palm probability with respect to Poisson PP,
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we obtain

P0,Y {T̂0(0) > q | �}

≥
∏

0,Y �=Xi∈�

(p + (1 − p) P{F < T l(|Xi |)W })q(p + (1 − p) P{F < T l(|Y |)W })q

≥ exp

{
−πλ

∫
v>0

(1 − (1 − f (v))q) dv

}
α(r)q,

where α(r) = 1 − (1 − p) e−wµAαT rβ
. Using (4.5), which holds for large q, or, more precisely,

for q > Q = Q(µ, w, A, T ), we obtain

E0,Y [T̂0(0)]
r

≥ 1

r

∑
q>Q

α(r)q

q
.

It is now easy to see that

lim
r→∞

1

r

∑
q>Q

α(r)q

q
= ∞.

4.2. Proofs of the results of Section 3.3

Denote by Bx(R) the ball centered at x ∈ R
2 of radius R. Similarly as for the delays,

we extend the definition of the local delays to arbitrary pairs of points x, y ∈ R
2 by taking

L(x, y, n) = LX(x),X(y)(n). We first establish the following technical result.

Lemma 4.2. Under the assumptions of Proposition 3.4, let Xi, Xj ∈ � ∩ B0(R) for some
R > 0, where � = �M + �Gs . Then the conditional expectation of the local delay Li,j (0)

given � satisfies

E[Li,j (0) | �]

= 1

p(1 − p)LW(T µAβ |Xi − Xj |β)
exp

{
−

∑
��Xk, k �=i,k

log LeF ′
(

T |Xi − Xj |β
|Xj − Xk|β

)}
(4.6)

≤ 1

p(1 − p)LW(T µ(A2R)β)

× exp{−49 log(1 − p) + (2R)βpT C(s, β)} (4.7)

× exp{−�M(B0(2R)) log(1 − p)} (4.8)

× exp

{
−

∑
Xk∈�M, |Xk |>2R

log

(
1 − p + p(|Xk| − R)β

(|Xk| − R)β + T (2R)β

)}
, (4.9)

where C(s, β) < ∞ is some constant (which depends on s and β but not on �), F ′ is an
exponential RV of mean 1, and LeF ′(·) is the Laplace transform of eF ′.
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Proof. We first prove the equality in (4.6). When using the independence assumptions, we
have

P{Li,j (0) > m | �}
= P{for all 1 ≤ n ≤ m, ej (n) = 1 or

ej (n) = 0 and ei(n)Fi,j (n) ≤ T l(|Xi − Xj |)(Wj (n) + Ii,j (n))}

=
m∏

n=1

(
p + (1 − p)

(
1 − p + p

(
1 − LW(T µAβ |x − y|β)

×
∏

��Xk, k �=i,j

LeF ′
(

T |Xi − Xj |β
|Xj − Xk|β

))))
.

The result then follows from the evaluation of

E[Li,j (0) | �] =
∞∑

m=0

P{Li,j (0) > m | �}.

The bound |Xi − Xj | ≤ 2R used in the Laplace transform of W leads to the first factor of
the upper bound. We now factorize the exponential function in (4.6) as the product of three
exponential functions:

α := exp

{
−

∑
�Gs �Xk, k �=i,j

}
,

β := exp

{
−

∑
�M�Xk, k �=i, j |Xk |≤2R

}
,

γ := exp

{
−

∑
�M�Xk, |Xk |>2R

}
.

Next we prove that the last three exponentials are upper bounded by (4.7), (4.8), and (4.9),
respectively.

We use |Xi − Xj | ≤ 2R and Jensen’s inequality to obtain

log LeF ′
(

T |Xi − Xj |β
|Xj − Xk|β

)
≥ log LeF ′

(
T (2R)β

|Xj − Xk|β
)

≥ −T (2R)β E[eF ′]
|Xj − Xk|β

= −pT (2R)β |Xj − Xk|−β.

We now prove that ∑
{�Gs �Xk : |Xj −Xk |>3

√
2s}

|Xj − Xk|−β ≤ C(s, β)

for some constant C(s, β). This follows from an upper bounding of the value of |Xj − Xk|−β

by the value of the integral 1/s2
∫
(|Xj − x| − √

2s)−β dx over the square with corner points
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Xk , Xk + (s, 0), Xk + (0, s), and Xk + (s, s). In this way we obtain∑
{�Gs �Xk : |Xj −Xk |>3

√
2s}

|Xj − Xk|−β ≤ 1

s2

∫ ∞

|x−Xj |>2
√

2s

(|Xj − x| − √
2s)−β dx

= 2π

s2

∫ ∞
√

2s

t + √
2s

tβ
dt

=: C(s, β)

< ∞.

Combining this and what precedes, we obtain

exp

{
−

∑
Xk∈�Gs , |Xj −Xk |>2

√
s

log LeF ′
(

T |Xj − Xi |β
|Xj − Xk|β

)}
≤ exp(T (2R)βC(s, β)).

We also have

log LeF ′
(

T (2R)β

|y − Xi |β
)

≥ log LeF ′(∞) = log(1 − p)

for all Xk ∈ �Gs and, in particular, for |Xj − Xk| ≤ 3
√

2s. Hence, we obtain

exp

{
−

∑
Xk∈�Gs

(· · · )
}

≤ exp{−49 log(1 − p) + T (2R)βC(s, β)},

where 49 upper bounds the number of points Xk ∈ �Gs such that |Xj − Xk| ≤ 3
√

2s.
Using the bound |Xj − Xi | ≤ 2R and the inequality

log LeF ′(ξ) ≥ log LeF ′(∞) = log(1 − p),

we obtain

exp

{
−

∑
�M�Xk, k �=i,j, |Xi |≤2R

(· · · )
}

≤ exp{−�M(B0(2R)) log(1 − p)}.

Using the bounds |Xj − Xi | ≤ 2R and |Xj − Xk| ≥ |Xk| − R (the latter follows from the
triangle inequality), and the expression LeF ′(ξ) = 1 − p + p/(1 + ξ), we obtain

exp

{
−

∑
�M�Xk,|Xk |>2R

(· · · )
}

≤ exp

{
−

∑
Xk∈�M, |Xk |>2R

log

(
1 − p + p(|Xk| − R)β

(|Xk| − R)β + T (2R)β

)}
.

This completes the proof.

We can now prove the following auxiliary result.

Lemma 4.3. Under the assumptions of Proposition 3.4 for all points x, y of R
2,

E
[

sup
x1,y1∈[x,y]

p(x1, y1, �)
]

< ∞,

where the supremum is taken over x1 and y1 belonging to the interval [x, y] ⊂ R
2.
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Proof. Without loss of generality, we assume that (x + y)/2 = 0 is the origin of the plane.
Let B = B0(R) be the ball centered at 0 of radius R such that no modification of the points in
the complement of B modifies X(z) for any z ∈ [x, y] (recall that X(z) is the point of � which
is the closest from z). Since � = �M + �Gs , with �GS

the square lattice PP with intensity
1/s2, it suffices to take R = |u − v|/2 + √

2s. Let B ′ = B0(2R). By the above choice of B

and inequality (3.1), we have, for all x1, y1 ∈ [x, y],

P(x1, y1, 0) ≤
∑

Xi,Xj ∈�∩B

Li,j (0),

and, consequently,

sup
x1,y1∈[x,y]

p(x1, y1, �) ≤
∑

Xi,Xj ∈�∩B

E[Li,j (0) | �].

Using (4.6), we obtain

sup
x1,y1∈[x,y]

|p(x1, y1, �)|

≤ exp{−49 log(1 − p) + (2R)βpT C(s, β)}
p(1 − p)LW(T µA(2R)β)

× exp

{
−

∑
Xk∈�M, |Xk |>2R

log

(
1 − p + p(|Xk| − R)β

(|Xk| − R)β + T (2R)β

)}

×
(

�M(B) + π(R + √
2s)2

s2

)
exp{−�M(B ′) log(1 − p)},

where π(R + √
2s)2/s2 is an upper bound of the number of points of �Gs in B. The first factor

in the above upper bound is deterministic. The two other factors are random and independent
due to the independence property of the Poisson PP. The finiteness of the expectation of the
last expression follows from the finiteness of the exponential moments (of any order) of the
Poisson RV �M(B ′). For the expectation of the second (exponential) factor, we use the known
form of the Laplace transform of the Poisson shot noise to obtain the expression

E

[
exp

{
−

∑
(· · · )

}]
= exp

{
2πpλM

∫ ∞

R

T (2R)β

vβ + (1 − p)T (2R)β
(v + R) dv

}
< ∞.

Proof of Proposition 3.4. The existence and finiteness of the limit κd follows from the
subadditivity (3.4) and Lemma 4.3 by the continuous-parameter subadditive ergodic theorem
(see [18, Theorem 4]).

Proof of Proposition 3.5. First, we prove the second statement, i.e. that κd is constant for
all d in the unit sphere of some countable subset. Note that the PP � is ergodic since it is
an independent superposition of the mixing Poisson PP �M and the ergodic grid process �G.
This can be easily proved using, e.g. the respective characterizations of the above properties
by means of Laplace transforms of PPs (see [8, Proposition 12.3.VI]). From the ergodicity of
� we cannot conclude the desired property for any vector d since the limit κd = κd(�) is not
necessarily invariant with respect to translations of � by any vector x ∈ R

2, but only x = αd

for any scalar α ∈ R. The announced result follows from [21, Theorem 1].
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For the first statement, consider a product space on which two independent PPs (�M, �G)

are defined. Fix some vector d, and define the operator T = T1 × T2 on this product space as
the product of two operators which correspond to the shift in the direction d of �M and �G,
respectively. The σ -field invariant with respect to T is the product of the respective σ -fields
invariant with respect to T1 and T2. The latter is trivial since �M is mixing (as a Poisson PP).
Consequently, every function of (�M, �G) that is invariant with respect to the shift in the
direction d of its first argument (�M ) is a.s. constant. This concludes the proof that κd is
constant in �M and, thus, depends only on UG.

Proof of Proposition 3.6. For a given path σ = {(X0, n0), (X1, n0 + 1), . . . , (Xk, n0 + k)}
on G denote by |σ | = ∑k

i=1 |Xi − Xi−1| the Euclidean length of the projection of σ on R
2;

let us call it the Euclidean length of σ for short and recall that the (graph) length of σ is equal
to k. For fixed ε > 0 and all n ≥ 1, denote by �(n) = �ε(n) the event that there exists a path
on G starting at (X(0), 0) that has (graph) length n and Euclidean length larger than n/ε.

Assume that E[κd ] = 0. We show first that this implies that, for any ε > 0, P0-a.s., the event
�ε(n) holds for infinitely many n:

P0
{⋂

n≥1

⋃
k≥n

�ε(k)

}
= 1. (4.10)

Indeed, E[κd ] = 0 implies that κd = 0, P-a.s. and, by Palm–Matthes’ definition of the Palm
probability, P0-a.s. as well. This means that E0[P(0, td, 0) | �]/t → 0 when t → ∞, which
implies that

lim
k

P (0, tkd, 0)

tk
→ 0 (4.11)

P0-a.s. for some subsequence {tk : k ≥ 1}, with limk tk = ∞. Recall that P(0, tkd, 0) is the
length of a shortest path from (X(0), 0) (with X(0) = 0 under P0) to {(X(tkd), n) : n ≥ 0}.
Denote one of these shortest paths by σk . By the triangle inequality, its Euclidean length satisfies

|σk| ≥ |0 − X(tkd)| ≥ tk − √
2s. (4.12)

From (4.11) and (4.12), we conclude that, for any ε > 0 and large enough k, the length of the
path σk is smaller than ε times its Euclidean length |σk|. Now, (4.10) follows from the fact that
the length of the path σk tends to ∞ with k, which is a consequence of tk → ∞ and the local
finiteness of the graph G (cf. Corollary 3.1).

We conclude the proof by showing that, for small enough ε,∑
n

P0{�ε(n)} < ∞, (4.13)

which, by the Borel–Cantelli lemma, implies that �(n) holds P0-a.s. only for a finite number of
integers n and, thus, contradicts (4.10). To this end, assume that the constant W = w > 0 and
let P n

w denote the set of paths σ in G of length n, originating from (X(0) = 0, 0). Also, denote
by P n

0 the analogous set of paths on the graph constructed under the assumption that W = 0.
Note that, by monotonicity,

P n
w ⊂ P n

0 .

By definition,

P0{�ε(n) | �} = P0
{⋃

σ

{
σ ∈ P n

w and |σ | ≥ n

ε

} ∣∣∣∣ �

}
,
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where the sum bears on all possible n-tuples σ = ((Xj1 , 1), . . . , (Xjn, n)), with Xji
∈ �. From

this we have

P0{�ε(n) | �}
≤

∑
σ

P0
{
σ ∈ P n

W , |σ | ≥ n

ε

∣∣∣∣ �

}

=
∑
σ

P0
{
σ ∈ P n

W , |σ | ≥ n

ε

∣∣∣∣ �, σ ∈ P n
0

}
P0{σ ∈ P n

0 | �}

≤ E0[Hout,n;W=0
0 (0) | �] sup

σ
P0

{
σ ∈ P n

W , |σ | ≥ n

ε

∣∣∣∣ �, σ ∈ P n
0

}
, (4.14)

where Hout,n;W=0
0 (0) denotes the number of paths of length n originating from (X0 = 0, 0)

under the assumption that W = 0. But

sup
σ

P0
{
σ ∈ P n

w, |σ | ≥ n

ε

∣∣∣∣ �, σ ∈ P n
0

}

≤ sup
σ=((Xj1 ,1),...,(Xjn ,n))∑n

i=1 |Xji
−Xji−1 |≥n/ε

E0
[ n∏

i=1

δji−1,ji
(i − 1, w)

∣∣∣∣ �, σ ∈ P n
0

]
,

where Xj0 = 0 and δji−1,ji
(i − 1, w) = δji−1,ji

(i − 1) is the indicator of the existence of the
edge from (Xji−1 , i − 1) to (Xji

, i) defined by (2.4), and where we add in the notation the
dependence on the noise W = w. Using the conditional independence of marks, (2.4), (2.3),
and the lack of memory of the exponential distribution of F of parameter µ, we have, for the
path-loss function (2.1),

E0
[ n∏

i=1

δji−1,ji
(i − 1, w)

∣∣∣∣ �, σ ∈ P n
0

]

=
n∏

i=1

E0[δji−1,ji
(i − 1, w) | �, δji−1,ji

(i − 1, 0) = 1]

=
n∏

i=1

exp{−µ(A|Xji−1 − Xji
|)βT w}.

Hence,

sup
σ

P0
{
σ ∈ P n

w, |σ | ≥ n

ε

∣∣∣∣ �, σ ∈ P n
0

}
≤ exp{−µAβT wnε−β},

where the last inequality follows from a convexity argument. Using this and (4.14), we obtain

E0[�ε(n)] ≤ E0[Hout,n;W=0
0 (0)] exp{−µAβT wnε−β}

≤ ξn exp{−µAβT wnε−β}
≤ exp

{
n

(
log(ξ) − K

εβ

)}
,

where K is a positive constant and in the second inequality we used the following result of
Corollary 3.1:

E0[Hout,n;W=0
0 (0)] = hout,n;W=0 = hin,k,W=0 ≤ ξk.

This shows (4.13) for small enough ε, and, thus, concludes the proof.
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Proof of Corollary 3.5. Without loss of generality, assume that x = 0. We use the left
inequality in (3.1), (4.1), and the inclusion (4.3) to obtain

PX(0),X(y)(0) ≥ LX(0)(0) ≥ TX(0)(0) ≥ T̂X(0)(0),

and as a consequence,
p(0, y, �) ≥ E[T̂X(0)(0) | �].

Using the isotropy and the strong Markov property of the Poisson PP,

E[T̂X(0)(0) | �] = E0[T̂0(0) | �|B ],
where �|B is the restriction of � to the complement of the open ball B = B(0,R)(R), centered
at (0, R) of radius R ≥ 0, where R is an RV independent of � and having density

dθ

2π
2πλr exp{−λπr2}.

However, since we consider here the SNR graph Ĝ,

E0[T̂0(0) | �|B ] ≥ E0[T̂0(0) | �].
The result now follows from Lemma 4.1.

5. SINR space–time graph and routeing

Let us now translate our results regarding the SINR graph into properties of routeing in
ad-hoc networks.

Firstly, it makes sense to assume that any routeing algorithm builds paths on G. This takes
two key phenomena into account: contention for the channel (nodes have to wait for some
particular time slots to transmit a packet) and collisions (lack of capture due to insufficient
SINR).

Our time constant gives bounds on the delays that can be attained in the ad-hoc network by
any routeing algorithms. Of course, realistic routeing policies cannot use information about
future channel conditions. In the case of the Poisson PP there is hence no routeing algorithm
with a finite time constant. The existence of such an algorithm in the case of the Poisson+grid PP
remains an open question. In the Poisson PP case, we can ask about the exact asymptotics of the
optimal delay (we know it is not linear) and about the delay realizable by some nonanticipating
algorithm.

Let us now discuss the relation of our results to those obtained in [11] and [14]. In these
papers the so-called delay-tolerant networks are considered and modeled by a spatial SINR or
SNR graph with no time dimension. In these models, the time constant (defined there as the
asymptotic ratio of the graph distance to the Euclidean distance) is announced to be finite, even
in the pure Poisson case. The reason for the different performance of these models lies in the
fact that they do not take the time required for a successful transmission from a given node into
the evaluation of the end-to-end delay. The heavy tailedness of this time (which follows from
that of the exit time (cf. Proposition 3.1)) makes the time constant infinite in the space–time
Poisson scenario. The reason for the heavy tailedness of the successful transmission time is
linked to the so called ‘RESTART’ algorithm (see, e.g. [1], [15]–[17]). In our case the spatial
irregularities in the ad-hoc network play a role similar to that of the file size variability in the
RESTART scenario.
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